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Cordyceps militaris is an entomopathogenic fungus producing a variety of bioactive
compounds. To meet the huge demand for medicinal and edible products, industrialized
fermentation of mycelia and cultivation of stromata have been widely developed in
China. The content of bioactive metabolites of C. militaris, such as cordycepin, is
higher when cultivated on silkworm pupae than on rice or in broth. However, compared
with other cultivation methods, C. militaris grows more slowly and accumulates less
biomass. The hypoxic environment in pupa hemocoel is one of environmental factor
which is not existed in other cultivation methods. It is suggested that hypoxia plays an
important role on the growth and the synthesis of bioactive compounds in C. militaris.
Here, we demonstrated that the distinct effects on the growth and synthesis of
bioactive compounds employing different strategies of improving hypoxia adaption.
The introduction of Vitreoscilla hemoglobin enhanced growth, biomass accumulation,
and crude polysaccharides content of C. militaris. However, cordycepin production
was decreased to 9–15% of the control group. Meanwhile, the yield of adenosine
was increased significantly. Nonetheless, when the predicted bHLH transcription
factor of sterol regulatory element binding proteins (SREBPs) was overexpressed in
C. militaris to improve the hypoxia adaption of fungal cells, cordycepin content was
significantly increased more than two-fold. These findings reveal the role of SREBPs
on growth and bioactive compounds synthesis. And it also provides a scientific basis
for rationally engineering strains and optimization strategies of air supply in cultivation
and fermentation.

Keywords: Cordyceps militaris, Vitreoscilla hemoglobin, SREBP, hypoxia, bioactive compounds

Abbreviations: bHLH, basic helix-loop-helix; SREBP, sterol regulatory element binding protein; VHb, Vitreoscilla
hemoglobin; rt-qPCR, real-time quantitative PCR; WT, wild type; CK, control check; PDA, potato dextrose agar; SDB,
Sabouraud dextrose broth.
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INTRODUCTION

Cordyceps militaris is a well-known edible and medicinal
mushroom, and has an extensive popularity as a traditional
Chinese medicine for a long time in China (Paterson, 2008;
Zhou et al., 2009; Reis et al., 2013). Compared to Ophiocordyceps
sinensis, another medicinal fungus belonging to the genus
Cordyceps, C. militaris is much easier to cultivate (Wu et al.,
2020). Industrialized cultivation and fermentation of C. militaris
have been successfully realized (Lou H. et al., 2019). Therefore,
the market price of C. militaris is far lower than that of O. sinensis
(Yin et al., 2018). Currently, it has been developed into a
variety of commercial products, since its biomass is rich in
bioactive compounds. Therefore, C. militaris has more promising
application prospects (Wang et al., 2017).

Previous studies have proved that C. militaris contains a
variety of bioactive compounds beneficial to human body,
such as cordycepin, Cordyceps polysaccharides, oxalic acid,
carotenoid, and pentostatin (Xia et al., 2017; Nurmamat et al.,
2018; Kunhorm et al., 2019; Lou H.W. et al., 2019; Chen
et al., 2020). Among them, cordycepin is the most studied and
has been confirmed to interfere with RNA synthesis, inhibit
cell proliferation, and have anti-cancer effects (Cunningham
et al., 1950; Lee et al., 2013). At present, the fruiting bodies
of C. militaris have been commercialized for medicinal and
healthcare products. Even as an ordinary edible mushroom, it is
used for a food ingredient of Chinese cuisine. In addition to fruit
bodies grown on grains or silkworm pupae, mycelia in submerged
culture have become important raw materials for industrial
application of C. militaris (Chan et al., 2015). At all events, the
content of cordycepin is the main evaluation index of its quality
(National industry indicators of China, GHT 1240-2019) (Li et al.,
2019). Different cultivation methods lead to different levels of
cordycepin (Dong et al., 2014; Guo et al., 2016). In addition to the
nutrient content of the culture medium, environmental factors
substantially affect the synthesis of cordycepin (Wang et al., 2017;
Lou H. et al., 2019; Suparmin et al., 2019). It is essential to
clarify the regulatory mechanisms of these environmental factors
for large-scale industrial production of high-quality C. militaris
fruiting bodies and mycelia (Dong et al., 2015).

Compared to stirred fermentation, static fermentation
contributes to a higher yield of cordycepin (Suparmin et al.,
2019). When C. militaris is cultured in a liquid medium (static
culture), the hypha on the surface grows vigorously and forms
a layer of aerial mycelia. As a result, the submerged hyphae
were isolated from the air and grew toward the bottom of
the culture medium. A hypoxic environment appears in the
submerged mycelia because of the liquid surface culture (van
Keulen et al., 2003). It was confirmed that submerged mycelia
contribute to the production and secretion of cordycepin in
the media instead of the hypha on the surface (Suparmin et al.,
2017, 2019). It suggests that a hypoxic environment may induce
the synthesis and secretion of cordycepin. In addition, it is
possible that the hypoxic environment of insect hemocoel also
caused the higher cordycepin content in the fruiting bodies
growing on pupae (Kato et al., 2021). However, the regulatory
mechanism of hypoxia in bioactive compounds synthesis has not

been investigated in C. militaris. Alleviating hypoxic stress in
C. militaris cells is an effective way to comfirm our hypothesis.
The prokaryotic hemoglobin (Vitreoscilla hemoglobin; VHb)
from the obligate aerobic bacterium Vitreoscilla is an oxygen-
binding protein, acting as an O2 conveyor and transporter
(Wakabayashi et al., 1986). The transformation of VHb has
been confirmed to efficiently relief hypoxia stress in bacteria
(Horng et al., 2010), yeasts (Wu and Fu, 2012), plants (Jokipii
et al., 2008), and animals (Pendse and Bailey, 1994). Recently,
many reports have verified that this strategy also works as an O2
conveyor and transporter in filamentous fungi (Lin et al., 2017;
Wang et al., 2019; Xu et al., 2019). Sterol regulatory element
binding proteins (SREBPs) are also required for adaptation
to hypoxic environment in fungi (Bien and Espenshade, 2010;
Gutierrez et al., 2019). Currently, SREBP-like orthologs have been
identified in a great many of fungi, especially Pezizomycotina,
which comprises many pathogenic fungal species of animal
and plant pathogens (Ruan et al., 2019). In addition to their
role in hypoxia adaptation, these proteins are essential for the
pathogenesis and tolerance to antifungal agents (Hillmann et al.,
2015; Burgain et al., 2019). However, the functions of hypoxia
and its regulators have not been well investigated in C. militaris.
In a previous study, only increased expression levels of the genes
involved in the ergosterol biosynthetic pathway were reported in
hypoxic submerged mycelia, but not of genes encoding SREBPs
(Suparmin et al., 2019). Therefore, the investigation of exogenous
vgb and endogenous SREBPs-related genes is helpful to better
understand the regulatory role of hypoxia stress in the growth
and biosynthesis of bioactive compound in C. militaris.

In this study, we employed the VHb to relieve hypoxia in
C. militaris, and analyzed the growth and the main metabolites
of VHb-transformed strains. We also constructed an SREBP-
overexpressing strain for comparing the effects of different
strategies to improve hypoxia adaptation on C. militaris. We thus
engineered a high-yield polysaccharide and fast-growing strain,
and also constructed a strain with high cordycepin fermentation
level. Our research also provides a good optimization strategy for
large-scale artificial cultivation and fermentation.

MATERIALS AND METHODS

Strain, Media, and Culture Conditions
The wild-type (WT) strain of C. militaris (CM01) was a gift
from Prof. Wang (CAS Center for Excellence in Molecular Plant
Sciences, CAS, China) and was preserved in this laboratory. The
fungal strain was cultured in potato dextrose agar (PDA) medium
at 25◦C for subculture. Mycelia were grown in Sabouraud
dextrose broth (SDB) liquid media at 25◦C and 150 rpm for 5 days
for collection of blastospores and mycelia. Escherichia coli strain
DH5α (Weidi, Shanghai, China) was cultured in LB medium
(yeast extract 5 g/L, tryptone 10 g/L, and sodium chloride
10 g/L) at 37◦C for plasmid DNA replication. Agrobacterium
tumefaciens strain (AGL1), purchased from Sangon Biotech Co.,
Ltd. (Shanghai, China), was used for fungal transformation; it was
propagated in LB medium at 28◦C.
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DNA Manipulation and Vector
Construction
Oligonucleotide primers were synthesized and sequenced by
BioSune (Shanghai, China). All molecular cloning procedures,
including genomic DNA extraction, DNA fragment acquisition,
restriction-ligase reaction, transformation, colony verification,
plasmid propagation, and sequencing, were operated according
to the previous report (Wang et al., 2020; Zou et al., 2020). The
Pgpd promoter, Ptef promoter, and Sre1N encoding gene were
amplified from the genomic DNA of CM01. The VHb encoding
gene (vgb) of Vitreoscilla was synthesized using GenScript
(Nanjing, China) (Supplementary Data 1). The primer pairs
used are shown in Supplementary Table 1. The plasmids of
Pxbthg-Pgpd-VHb, Pxbthg-Ptef-VHb, and Pxbthg-oeSre1N were
obtained by linking the target fragment with the expression
vector of Pxbthg, digested by HindIII and BamHI using a one-
step rapid cloning kit (Yeasen, Shanghai, China).

Transformation and Screening
Agrobacterium-mediated transformation was based on previously
described methods (Wang et al., 2020; Zou et al., 2021). The
mycelia of CM01 were cultured in SDB at 25◦C and 150 rpm for
4 days. Blastospores were collected using sterile non-woven fabric
and diluted to 107–108 spores/mL. Transformants were screened
using M-100 medium (KH2PO4 16 g/L, Na2SO4 4 g/L, KCl 8 g/L,
MgSO4·7H2O 2 g/L, CaCl2 1 g/L, and M-100 trace element
solution 8 mL/L. M-100 trace element solution: H3BO3 0.06 g/L,
MnCl2·4H2O 0.14 g/L, ZnCl2 0.40 g/L, Na2MoO4·2H2O 0.04 g/L,
FeCl3·6H2O 0.10 g/L, CuSO4·5H2O 0.40 g/L) containing
50 µg/mL cefotaxime sodium and 150 µg/mL hygromycin B.
Genomic DNAs were extracted for transformant verification.
The primers used are listed in Supplementary Table 1. Western
blots were used to analyze the expression of the VHb protein.
Three transformants were randomly selected for following tests.
Mycelia were collected and ground using 1 mL lysis buffer
for WB/IP assays (Yeasen, Shanghai, China) and 5 µL PMSF
protease inhibitor (Yeasen). The sample was decomposed on ice
for half an hour and then centrifuged (12,000 × g, 4◦C) for
5 min. The VHb was verified using a 6 × His-tag and HA-tag
monoclonal antibody (Yeasen).

Growth Assay
One milliliter of blastospore suspension (∼105 spores) was
inoculated onto a 250-mL flask and incubated at 25◦C, 150 rpm.
The mycelia were filtered, washed, dried, and weighed. To
measure the growth on plates, 1 µL of blastospore suspension
(∼104 spores) inoculated onto PDA plate and incubated at 25◦C.
The growth diameter was measured. Chinese Tussah silkmoth
(Antheraea pernyi) pupae were used for fruiting body cultivation.
Briefly, blastospore suspension (10 µL) of WT strain and its
transformants (5 × 106 blastospores/mL) was injected into 5-
day-old A. pernyi pupae. The injected pupae were incubated at
25◦C (12:12-h dark/light, >95% relative humidity) for fruiting
bodies formation. The growth status of C. militaris on pupae was
observed regularly in 50 days.

Analysis of Adenosine, Cordycepin, and
Polysaccharides
To measure the yield of adenosine and cordycepin, the WT
strain and its transformants were incubated in 50 mL SDB for
4 days at 25◦C, 150 rpm. The cultures were then incubated
statically for 11 days. The cultured mixtures were divided into
supernatants and mycelia by filtration. The supernatants were
further filtered using membrane filter (0.25 µL, Pall; Ann Arbor,
MI, United States) for the detection of bioactive compounds.
The collected mycelia were freeze-dried after washed three times
with distilled water. And then the dried mycelial granules were
ground into powder in liquid N2. The powdery mycelia were
extracted using deionized water (1:20, w:v) and sonicated at
40 KHz and 225 W for 1 h. The yield of adenosine and cordycepin
were determined via high-performance liquid chromatography
analysis using Waters Alliance e2695 (Waters, MA, United States)
with a Waters SunFire R© C-18 reverse phase column (100 Å, 5 µm,
4.6 mm × 250 mm; MA, United States). The standard adenosine
(Catalog No. A9251, Sigma) and cordycepin (Catalog No. C3394,
Sigma) were used for standard curves. The elution conditions
were modified for adenosine and cordycepin with a solvent of
methanol and deionized water (1:4, v:v). The retention time of
aimed products was monitored was at a wavelength of 260 nm
(flow rate: 1 mL/min; column oven: 25◦C).

Crude polysaccharides of the transformants and WT strains
were extracted using an improved water extraction method
(Cui et al., 2019). Briefly, the mycelial biomass was separated
from the fermentation mixturesby filtration. The filtered broth
was centrifuged at 10,000 × g for 10 min and was collected
for determining the extracellular polysaccharides. And the
collected mycelia were freeze-dried for determining mycelial
polysaccharides, after washing three times with distilled water.
Extracellular polysaccharides were deposited by mixing the
fermentation broth absolute ethanol (1:4, v:v). The precipitate
was obtained after centrifuge at 12,000 × g for 20 min, and then
was freeze-dried. Mycelial polysaccharides were extracted from
the collected mycelial biomass at 100◦C for 2 h. The extract was
mixed with 4 volumes of absolute ethanol and was deposited
for 24 h at 4◦C, and finally was freeze-dried and weighted. The
production of crude polysaccharide was calculated by dividing
the weight of polysaccharide by the volume of fermentation broth
or by the freeze-dried mycelial biomass.

Quantitative Real Time PCR Analysis of
Transformants
Total RNA was extracted using a Redzol kit (SaiBaiSheng,
Shanghai, China). The total RNA mass and concentration
were verified using 1% agarose gel electrophoresis and a
Nanodrop1000, respectively. PrimeScriptTM RT reagent kit (with
genomic DNA eraser) (Takara, Dalian, China) was used for
reverse transcription of cDNA, according to the manufacturer’s
instructions. Quantitative real-time PCR (qRT-PCR) was carried
out using TB Green R© Premix Ex TaqTM II (Tli RNaseH Plus)
(Takara) and SYBR R© Green Reagents (Takara). The relative
expression level of genes involved in cordycepin biosynthesis
(cns1: CCM_04436, cns2: CCM_04437) and predicted sterol
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FIGURE 1 | Verifications of vgb-expression in C. militaris transformants. (A) Comparison of relative expression levels of vgb in transformants. CmG1-3: vgb
expressed tranformants controlled by Pgpd promoter; CmT1-3: vgb expressed tranformants controlled by Ptef promoter. Significant differences between
transformants of two series (Student’s t-test): ***P < 0.001 (B) Western blots of vgb expression using Pgpd promoter. Lane 1–3: transformants CmG1-3; lane 4: wild
type strain CM01. (C) Western blots of vgb expression using Ptef promoter. Lane 1–3: transformants CmT1-3; lane 4: wild type strain CM01. Error bars show
standard deviation of three replicates.

regulatory element-binding proteins (sre1n: CCM_04014, scp1:
CCM_03924, ins1: CCM_07354, ofd1: CCM_07850) were
quantified using qRT-PCR. The sre1 orthologs were discarded
in the genome assembly process and were re-corrected at
Scaffold 00003: 3173021-3176010.1 The oligonucleotide primers
used are listed in Supplementary Table 1. The β-tubulin gene
(CCM_07292) was used as an endogenous control to quantify
the relative gene expression. Relative gene expression levels were
calculated using the 2−1 1 CT method.

Data Processing
The two-tailed Student’s t-test was analyzed using Prism 5.0
(Graphpad, San Diego, CA, United States) and Microsoft Excel
2016 (Redmond, WA, United States) for statistical analysis
(∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001). All experiments and tests
were performed in triplicates.

RESULTS

Heterologous Expression of the VHb
Gene in Transformants
To study the regulation of hypoxia, we first attempted
to investigate phenotypic changes after introducing vgb
(Supplementary Table 1) into C. militaris to alleviate hypoxia.
VHb, a homodimeric oxygen-binding protein encoded by vgb,
can enhance the oxygen utilization of a cell (Frey and Kallio,
2003), thereby improving cellular respiration efficiency. We
utilized two native promoters (Ptef, promoter of translation
elongation factor 1α coding gene (CCM_00809), and Pgpd,
promoter of glyceraldehyde-3-phosphate dehydrogenase
encoding gene (CCM_04549) (Zheng et al., 2011) with different
strengths to control VHb expression. The constructed plasmids
Pxbthg-Ptef-VHb (under control of Ptef) and Pxbthg-Pgpd-VHb
(under control of Pgpd) were transformed into C. militaris CM01

1https://mycocosm.jgi.doe.gov/Cormi1/Cormi1.home.html

strain (Wang et al., 2020). The randomly selected transformants
were designated as CmT1–CmT3 and CmG1–CmG3. All the
selected transformants were showed that vgb was successfully
transformed (Supplementary Figure 1). After 10 days of
incubation in SDB, total RNA and intracellular protein were
extracted for further verification of vgb transcription and
translation (Wang et al., 2020). Using RT-qPCR the relative
expression levels of vgb were consistent with the strength of
the corresponding promoter (Figure 1A; Zheng et al., 2011).
The copy numbers of vgb in the genome of the triplicate
transformants were identical based on the expression levels
(Figure 1A). Relative expression levels of vgb in transformants
CmT1–CmT3 were about two-fold higher than those in CmG1–
CmG3 (Figure 1A). The western blot assay based on intracellular
protein confirmed that VHb protein was correctly expressed in
each transformant (Figures 1B,C and Supplementary Figure 2).
These results indicate that the VHb protein can be correctly
expressed in all randomly selected transformants.

VHb Expression Improves Mycelial
Growth
In filamentous fungi, heterologous expression of vgb promotes
growth and increases biomass accumulation (Roos et al., 2002).
In the present study, colony diameter (Figure 2A) was measured
in three replicates of transformants expressing vgb, the transgenic
strain (CK, the strain transformed using the Pxbthg plasmid
without vgb cassette), and the WT to observe the effect of VHb
on PDA plates. Our results showed that vgb expression enhanced
growth significantly after 6 days of incubation at 25◦C. The
fastest growing transformants (CmT1–CmT3), which were under
the control of Ptef, increased by about 20% in colony diameter
compared to the WT strain on the 15th day (Figure 2B). We
also tested the amount of mycelia under liquid culture conditions.
After 15 days of incubation, the dry weight of mycelia of the
transformants increased by 12.2% (CmG1–CmG3, P < 0.001)
and 18.4% (CmT1–CmT3, P< 0.001), compared to that of the CK
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FIGURE 2 | Effects of VHb on growth of C. militaris. (A) Colony diameters of C. militaris and its tranformants growing on PDA plates. WT: CM01; CK: transformation
control; CmG: average diameter of transformants Cmpgd1-3; CmT: average diameter of transformants CmT1-3. (B) Dry weight of mycelial biomass of C. militaris
and its tranformants growing in SDB for 15 days. WT: CM01; CK: transformation control; CmG: average dry weight of mycelia biomass of transformants CmG1-3;
CmT: average dry weight of mycelia biomass of transformants CmT1-3. Error bars show standard deviation of three replicates. Significant differences between CM01
and transformants (Student’s t-test): *P < 0.05, **P < 0.01, ***P < 0.001.

and WT strain. These results demonstrate that VHb expression
promotes mycelial growth in C. militaris.

VHb Expression Promotes the Fruiting
Body Formation
Although the mycelia of C. militaris are often developed into
various health products, its fruiting body is more commonly
utilized as an edible mushroom. To determine the influence of
VHb on fruiting body formation, A. pernyi pupae were used
as cultivation substrate to grow C. militaris strains. Suspension
spore solution was added to each pupa and cultured in an
incubator at 25◦C (L:D = 12:12). After 17 days, stromata formed
at the surface of the pupae injected with blastopores of CmG1 and
CmT1 strains; however, no stroma was observed on the spores
of WT and CK strains (Figure 3). When cultured for 23 days,
the formation of fruiting bodies was observed in all pupae, and
those injected with CmT1 spores had grown to approximately
1 cm. However, WT formed fruiting bodies of approximately
1 cm in length at 33 days. At the moment, the fruiting bodies
expressing the VHb protein had grown to 2 cm (CmG1) to
4 cm (CmT1). Up to 50 days, the fruiting bodies of the vgb-
expressing transformants had obvious advantages in terms of
length (Figure 3) and weight (Supplementary Table 2). These
results showed that the introduction of VHb allowed fruiting
bodies to form rapidly and grow vigorously. Compared with
CmG1, the CmT1 strain has more obvious advantages. This is
consistent with the relative expression levels of vgb. The relative
expression levels of vgb in CmT1 were about 1.1 times higher than
those of CmG1 (Figure 3). This is similar to the result of mycelial
growth in the PDA plate or the SDB shake flask (Figure 2). These
results indicate that alleviating hypoxia can effectively promote
growth and biomass accumulation. VHb has been reported to
promote the production of chitinase and other proteases (Zhang
et al., 2014). This may also lead to the earlier formation of fruiting
bodies in transformants.

Hypoxia Influences Yield of the Main
Bioactive Metabolites in C. militaris
Vitreoscilla hemoglobin expression stimulates the yield of
secondary metabolites (Li et al., 2016; Xu et al., 2019). We also
tested the main bioactive metabolites of C. militaris, including
cordycepin, adenosine, and polysaccharides. Unlike the reports
in other microorganisms, cordycepin, the main metabolite in
C. militaris, was significantly reduced in the transformants. Both
intracellular (mycelia) and extracellular (fermentation broth)
cordycepin of transformants decreased to 9–15% of that of the
control group (Figure 4). The cordycepin concentration (both
extracellular and intracellular) of CmT1–CmT3 was lower (47–
85%) than that of CmG1–CmG3 (Figure 4). In contrast, the
adenosine levels of the transformants increased overall. The
intracellular adenosine concentration and the total intracellular
denosine increased by approximately 10–25% and 20–49%,
respectively (Figures 4A,B); and the extracellular adenosine
concentration increased by more than 10 times (Figure 4C).
Moreover, the content of adenosine and cordycepin in the
fruiting bodies harvested on the 50th day also showed that there
was a large amount of adenosine accumulated in transformants,
and the cordycepin content decreased to undetectable level
(Supplementary Figure 3).

The mycelial polysaccharide content did not differ among
the tested strains (Figure 4D). However, since the transformants
accumulated more mycelial biomass (Figure 4E), the total
amount of mycelial polysaccharides was about 10–20% higher
than that of the WT strain and transformation control. The yield
of extracellular polysaccharides increased significantly by 24–30%
in the fermentation broth of transformants, compared to that
in the control group (Figure 4F). These results suggest that the
synthesis of polysaccharides and cordycepin has different oxygen
requirements. In this study, the increased content of crude
polysaccharides may be related to the enhanced mycelial biomass
after alleviating hypoxia. The synthesis of secondary metabolites,
such as cordycepin, may be related to the adaptation of fungi to
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FIGURE 3 | Effects of VHb on fruiting body formation. Fruiting body formation
was observed on day 17, 23, 33, 43, and 50, after injection using
blastospores. WT: CM01; CK: transformation control; CmG1: transformant
Cmpgd1; CmT1: transformant CmT1.

environmental stress. However, under the same conditions, the
critical decline of cordycepin yield suggests that hypoxia might
be essential for stimulating cordycepin synthesis.

SREBPs Involved in Cordycepin Gene
Cluster Expression
To investigate the decrease in cordycepin production, we
detected the relative expression of genes in the cordycepin
biosynthesis cluster. The results showed that the expression levels
of cns1–cns2 in the transformants were significantly reduced to
less than 1.4% (CmT1–CmT3) or 5.7% (CmG1–CmG3) of the
control strain (Supplementary Figure 4). The expression level of
vgb was negatively correlated with that of the cordycepin gene
cluster (Figure 1A). This suggested that the improvement in the
oxygen utilization rate determined the decrease in cordycepin
production. In contrast, the activation of cordycepin gene cluster
expression might be related to hypoxia stress in C. militaris
cells. It was reported that SREBPs required for hypoxia fitness
in fungi (Dhingra and Cramer, 2017). Through bioinformatics
analysis, we found SREBP orthologs in C. militaris, including
Sre1N (CCM_04014), Scp1 (CCM_03924), Ins1 (CCM_07354),
and Ofd1 (CCM_07850). However, Sre1 ortholog was discarded
in the genome assembly process because of the internal gap
in sequence (see text footnote 1). Consequently, the expression
levels of SREBPs in the genome were determined. It was found
that all the SREBP-encoding genes were downregulated by 40–
70% in the transformants (Supplementary Figure 5). These
results suggest that the introduction of VHb alleviates hypoxia
stress in the cells.

Regulation of SREBPs in fungi is complex and involves
additional regulatory layers including post-translational
mechanisms, however it was critically controlled by levels
of Sre1 and its orthologs (Dhingra and Cramer, 2017). To

confirm our hypothesis, we overexpressed the gene encoding
Sre1N, i.e., one of bHLH transcription factors in SREBPs,
considering the incorrect annotation of Sre1. Randomly
selected transformants designated as OeSre1N1-3. In sre1n-
overexpressing transformants, the expression levels of sre1n
significantly inscreased by 11–16-fold. This indicated that the
sre1n gene was successfully overexpressed in the three randomly
selected transformants (Supplementary Figure 6). Meanwhile,
ofd1 was also up-regulated by more than two-fold. Ofd1 was
reported negatively regulated Sre1N levels in a proteasome
dependent manner (Hughes and Espenshade, 2008). This
may be due to feedback regulation triggered by too much
Sre1N in the cells. All the other SREBP-encoding genes were
significantly downregulated. It was similar to the introduction
of vgb gene (Supplementary Figure 6). Under hypoxic stress,
cells overcome the harsh environment by upregulating the
expression of these genes (Hughes and Espenshade, 2008).
Therefore, down-regulation of these genes indicates that
transformants have better adaptability to hypoxic environment,
after overexpression of sre1n.

Transformants OeSre1N1-3 and control group were also
used to measure the yields of cordycepin, adenosine, and
polysaccharides (Figure 5). After 15 days of incubation, the yields
of both the extracellular and intracellular cordycepin increased
2.3- and 2.7-fold, respectively, compared to those in the control
group (Figures 5A,B). The relative expression levels of cns1 and
cns2 in OeSre1N1-3 were more than 1.7 times higher than those
of control group (Supplementary Figure 7). In contrast, the yield
of adenosine significantly decreased to 54 and 48%, respectively
(Figures 5A,B). These results indicate that overexpression of
sre1n can indeed increase cordycepin production. However, the
dry weight of transformant mycelia was approximately 70%
of that of the WT strain (Figure 5C). And the total mycelial
polysaccharide content decreased by 31% (Figures 5D,E). The
yield of extracellular polysaccharides significantly decreased by
26–29% in the fermentation broth of transformants, compared
to that of the control group (Figure 5F). The decrease in
extracellular polysaccharide production may be related to a
decrease in mycelial biomass accumulation.

DISCUSSION

In this study, we found that VHb promoted growth and increased
biomass accumulation in C. militaris. These results are consistent
with those of Aspergillus sojae (Mora-Lugo et al., 2015) and
Paecilomyces lilacinus (Zhang et al., 2014). The yield of crude
polysaccharides also increased significantly. These characteristics
have many advantages for cost reduction in the cultivation of
C. militaris. However, the decline in cordycepin is a fatal defect
in its quality. This is different from previous reports that VHb
can also promote the synthesis of bioactive compounds in other
fungi (Arnaldos et al., 2012; Ma and Lin, 2014; Zhang et al.,
2014). It is possible that the requirement for oxygen in the growth
process may vary in different organisms. However, this verifies
our original hypothesis that hypoxia plays an important role in
cordycepin production.
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FIGURE 4 | Comparisons of yield of the main bioactive compounds of C. militaris and its vgb-expressed transformants after 15 days’ fermentation. (A) Content of
mycelial adenosine and cordycepin. (B) Total content of mycelial adenosine and cordycepin. (C) Content of extracellular adenosine and cordycepin in fermentation
broth. (D) Crude mycelial polysaccharides. (E) Total crude mycelial polysaccharides in 50-mL fermentation broth. (F) Crude exo-polysaccharide in fermentation
broth. WT: CM01; CK: transformation control; CmG1-3 and CmT1-3: vgb-expressed transformants. Error bars show standard deviation of three replicates.
Significant differences between CM01 and transformants (Student’s t-test): *P < 0.05, **P < 0.01, ***P < 0.001.

The expression levels of all these SREBP-encoding genes in
the vgb-expressing transformants were decreased simultaneously
with those of the cordycepin cluster. In addition, overexpression
of Sre1N greatly increased cordycepin production. These results
further confirmed our hypothesis that hypoxia stress can activate
cordycepin expression. It suggests that uncovering the regulatory
mechanism of SREBPs in the synthesis of cordycepin will
contribute to optimizing the process of industrial-scale artificial
cultivation of C. militaris. However, the regulatory pathway of
SREBPs are still very superficial in this study, which needs to
be further uncovered. In the fission yeast Schizosaccharomyces
pombe, hypoxia is the major activation signal to proteolyze
Sre1 to generate an activated N-terminus (Hughes et al., 2005).
This proteolytic process releases the N-terminal transcription
factor for nuclear localization and activation of gene expression
(Espenshade and Hughes, 2007). It was reported that three Sre1
orthologs, all owning the canonical tyrosine residue in the bHLH
DNA binding domain, have their own regulon in Aspergillus
fumigatus. SrbC (one of Sre1 orthologs without transmembrane
and C-terminal domain) is expressed at low levels in conditions
examined to date including low oxygen and its role in SREBP
gene regulation are under investigation (Chung et al., 2014).
In C. militaris, there are two Sre1 ortholog. Although Sre1N
lacks the predicted transmembrane and C-terminal domains of
Sre1, it is confirmed that Sre1N regulates cordycepin synthesis
in some way. However, the roles of these two orthologs in

SREBP pathway still need to be figured out. Our results could
explain the different yields of active compounds under different
cultivation conditions. Good aeration in rice medium promotes
the growth, development, and synthesis of polysaccharides (Guo
et al., 2016). This is consistent with the high oxygen utilization
promoted by VHb. When cultivated in pupae, mycelia must
compete for oxygen with the cells in the hemocoel of insects. The
resulting hypoxia stress promoted the synthesis of cordycepin.
This explains why C. militaris cultivated in pupae had a high
content of cordycepin. In addition, it is consistent with the fact
that static submerged liquid fermentation can obtain a higher
yield of cordycepin than liquid fermentation with ventilation
does (Suparmin et al., 2017, 2019). Static liquid fermentation also
induced hypoxia stress in the cells of these submerged mycelia.

In addition, the introduction of VHb and overexpression of
Sre1N are both strategies to improve adaptability to hypoxic
environments. However, the phenotypes between the two types of
transformants are completely different. Vitreoscilla hemoglobin
effectively increased the mycelial capacity for oxygen utilization,
thereby boosting cellular respiration intensity (Suen et al., 2014).
Therefore, the vgb-expressing transformant cells do not reduce
the respiratory efficiency due to the hypoxic environment and
then improve their adaptability to the hypoxic environment.
On the contrary, SREBPs activate expression of genes encoding
enzymes involved in oxygen-dependent metabolic pathways,
when hypoxic conditions cause decreased intracellular sterol
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FIGURE 5 | Comparisons of yield of the main bioactive compounds and growth of C. militaris and its sre1n-overexpressed transformants after 15 days’
fermentation. (A) Content of mycelial adenosine and cordycepin. (B) Content of extracellular adenosine and cordycepin in fermentation broth. (C) Dry weight of
mycelial biomass of C. militaris and its tranformants growing in SDB for 15 days. (D) Crude mycelial polysaccharides. (E) Total crude mycelial polysaccharides in
50-mL fermentation broth. (F) Crude exo-polysaccharide in fermentation broth. WT: CM01; CK: transformation control; Sre1N1-3: randomly selected
sre1n-overexpressed transformants. Error bars show standard deviation of three replicates. Significant differences between CM01 and transformants (Student’s
t-test): *P < 0.05, **P < 0.01, ***P < 0.001.

levels (Chung et al., 2019; Venegas et al., 2020). Fungi sense
oxygen levels indirectly through the concentration of specific
metabolites, including ergosterol, reactive oxygen species, and
unsaturated fatty acids, which are generated only in the presence
of O2 (Dhingra and Cramer, 2017). Thus, overexpression of
Sre1N only increased the efficiency of metabolic pathways but did
not substantially improve mitochondrial respiration and redox
balance. Nevertheless, these results provide alternative strategies
for producing diversity bioactive compounds in cultivation
and fermentation.

In conclusion, this study is the first to report the
importance of hypoxia stress in the synthesis of cordycepin
in C. militaris. The successful expression of the functional
VHb significantly improved growth and polysaccharide
production. In addition, the overexpression of transcription
factor in SREBPs enhanced cordycepin yield. Our research
revealed the positive and negative regulation of hypoxia
during the cultivation of C. militaris. These results clearly
demonstrate that engineering genes involved in hypoxic stress is
an alternative strategy for improving growth and production of
bioactive compounds.
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