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Megan D. McCollum2, Annie Mai1, Derek A. Wiggins3, Seesandra V. Rajagopala1, 
Shibu Yooseph5, R. Stokes Peebles2, Tina V. Hartert3,8* & Suman R. Das1,6,7*

Despite being commonly used to collect upper airway epithelial lining fluid, nasal washes are poorly 
reproducible, not suitable for serial sampling, and limited by a dilution effect. In contrast, nasal filters 
lack these limitations and are an attractive alternative. To examine whether nasal filters are superior 
to nasal washes as a sampling method for the characterization of the upper airway microbiome and 
immune response, we collected paired nasal filters and washes from a group of 40 healthy children 
and adults. To characterize the upper airway microbiome, we used 16S ribosomal RNA and shotgun 
metagenomic sequencing. To characterize the immune response, we measured total protein using 
a BCA assay and 53 immune mediators using multiplex magnetic bead-based assays. We conducted 
statistical analyses to compare common microbial ecology indices and immune-mediator median 
fluorescence intensities (MFIs) between sample types. In general, nasal filters were more likely to 
pass quality control in both children and adults. There were no significant differences in microbiome 
community richness, α-diversity, or structure between pediatric samples types; however, these were 
all highly dissimilar between adult sample types. In addition, there were significant differences in the 
abundance of amplicon sequence variants between sample types in children and adults. In adults, 
total proteins were significantly higher in nasal filters than nasal washes; consequently, the immune-
mediator MFIs were not well detected in nasal washes. Based on better quality control sequencing 
metrics and higher immunoassay sensitivity, our results suggest that nasal filters are a superior 
sampling method to characterize the upper airway microbiome and immune response in both children 
and adults.

Abbreviations
ASV	� Amplicon sequence variant
IQR	� Interquartile range
MFI	� Median fluorescence intensity
rRNA	� Ribosomal ribonucleic acid
BCA	� Bicinchoninic acid
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The upper airway microbiome and immune response are important determinants of health and studying these is 
a critical part of ongoing research in the allergy, immunology, and pulmonary fields1,2. However, little research 
has been done to identify the best sampling method for the characterization of the upper airway microbial com-
munities and immune-response signatures.

Despite being the most common technique used for in vivo collection of upper airway epithelial lining 
fluid3–5, nasal washes are occasionally not tolerated well when performed (particularly by children), not suitable 
for serial sampling, poorly reproducible, and limited by an unknown dilution effect4–9. In contrast, nasosorption 
methods (e.g., nasal filters) lack these limitations and, by directly absorbing the upper airway epithelial lining 
fluid, have recently emerged as an attractive alternative to nasal washes4. We and others have previously shown 
that nasal filters are well tolerated, easy-to-use, and suitable for multiple research applications5,7,8,10–13. However, 
whether nasosorption methods are superior to nasal washes as a sampling method for studies of the upper air-
way microbiome and immune response is largely unknown. To address this gap in knowledge, we conducted a 
cross-sectional study in a group of healthy children and adults.

Methods
For the whole study, all methods were carried out in accordance with relevant guidelines and regulations.

Study population and sample collection.  For this study, we sampled the upper airway of 40 healthy 
participants (20 children [mean age (SD) = 3.10 (0.1) years, 60% females] and 20 adults [mean age (SD) = 34.80 
(13.02) years, 70% females]) with paired nasal filters and washes. The nasal filter method consisted of introduc-
ing ~ 1/3 to 1/2 of a 15 × 25 mm filter paper made of synthetic absorptive matrix (Leukosorb, Pall Life Sciences) 
into one of the nostrils and placing it laterally against the anterior portion of the inferior nasal turbinate. We then 
briefly compressed the nasal alae together (in children) or pressed the nasal filter against the lateral wall of the 
nose with a gloved finger (in adults) to facilitate absorption of the upper airway epithelial lining fluid. The nasal 
filter was left in the nostril for a minimum of 30 s and up to 2 min. Once removed, it was placed into a sterile 
container. The nasal wash method consisted of using a bulb syringe to flush 3–5 mL of sterile, non-bacteriostatic, 
normal saline solution into the contralateral nostril. Both nasal filters and washes were transferred to a freezer 
and stored at − 80 °C until further processing. The paired samples of all 20 children and 10 of the 20 adults were 
used for characterization of the upper airway microbiome as described below. In addition, the paired samples of 
the remaining 10 adults were used for characterization of the upper airway immune response as described below.

One parent of each child and all adults provided informed consent for participation in this study. The Insti-
tutional Review Board of Vanderbilt University Medical Center approved this study.

Bacterial DNA isolation.  The PowerSoil DNA Isolation Kit (QIAGEN) was used to extract bacterial DNA 
from paired samples of all 20 children and 10 of the 20 adults. To this end, we placed nasal filters in 700 µl 
PowerBead buffer (QIAGEN), vortexed them for 5 min, and removed 600 µl of the supernatant to use with the 
isolation kit. For nasal washes, 100 µl of the fluid was used. To mechanically lyse bacterial cells, all samples were 
shaken at 20 Hz in a TissueLyser II system (QIAGEN) for 20 min (for pediatric samples only) or vortexed for 
20 min at maximum speed (for adult samples only). One extraction negative control was processed alongside 
each batch of samples.

Characterization of the upper airway microbiome with 16S ribosomal RNA sequencing.  Fol-
lowing bacterial DNA isolation, the paired samples were processed to prepare sequencing libraries by PCR 
amplification of the hypervariable V4 region of the bacterial 16S ribosomal RNA (rRNA) gene using universal 
primers. Both negative and positive controls (with known taxonomic composition) were amplified alongside all 
samples. We then sequenced the pooled libraries on an Illumina MiSeq platform with either 2 × 250 (in children) 
or 2 × 300 (in adults) base pair reads.

The 16S rRNA datasets were processed in R14 using the dada2 pipeline by following its standard operating 
procedure (available at: https​://benjj​neb.githu​b.io/dada2​/tutor​ial.html)15. To this end, sequences were grouped 
into amplicon sequence variants (ASVs) and taxonomy was assigned using the Ribosomal Database Project refer-
ence dataset16. Sequences were subsequently processed through the R package decontam to remove any suspected 
contaminants that were found in the negative control samples17. Further details on library construction and data 
processing are available in the E-Methods section of the Online Repository.

Characterization of the upper airway microbiome with shotgun metagenomic sequencing.  To 
complement the 16S rRNA sequencing, we also performed shotgun metagenomic sequencing in paired samples 
from a subset of children (n = 8). First, eukaryotic DNA was depleted using the NEBNext Microbiome Enrich-
ment Kit (New England Biolabs). Next, we constructed dual-indexed sequencing libraries with the Nextera XT 
DNA Library Prep Kit (Illumina). Equimolar amounts of each library were then pooled and sequencing was 
performed on 5% of an Illumina NovaSeq6000 platform (S4 flow cells run) with 2 × 150 base pair reads. For the 
initial processing of the shotgun whole metagenomic sequencing dataset, we used FastQC to assess the sequence 
quality18. The adapter trimming and removal of low-quality data were performed with Trimmomatic19. Follow-
ing this, we removed human DNA by aligning sequences to the Genome Research Consortium Human Build 
38 reference assembly with the Burrows-Wheeler Aligner20,21. Last, we assigned taxonomy using GOTTCHA22.

Characterization of the upper airway immune response.  The upper airway immune signatures 
were profiled in paired samples from 10 adults using 2 multiplex magnetic bead-based assays (Milliplex MAP 

https://benjjneb.github.io/dada2/tutorial.html)
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Human Cytokine/Chemokine Magnetic Bead Panel II Premixed 23 Plex Kit [MilliporeSigma] and Cytokine 
30-Plex Human Panel [Thermo Fisher Scientific]), as previously described12,23. These panels measure a total of 
53 immune mediators (i.e., cytokines, chemokines, and growth factors) that have been associated with clinical 
outcomes in allergy, immunology, and pulmonary research (Table E1). Prior to running the assay, filters were 
eluted into 300 µl of 0.9% NaCl solution. For each sample type, 20 µl was run on each multiplex plate. The assays 
were all conducted in duplicate on a Luminex MAGPIX platform. One blank well was used as a negative control.

To avoid potential bias in immune mediator readings due to a dilution effect between washes and filters, 
we measured total protein in adult nasal wash and filter samples with the Pierce BCA Protein Assay Kit (Ther-
moFisher). For all samples, 25 µl of each sample was used for the assay. This volume allowed detection down 
to 20 µg/ml. Saline was used as the negative control. Samples were run in triplicate and protein concentrations 
were averaged.

Statistical analyses.  For the 16S rRNA dataset, the statistical analyses were conducted in R14, mostly using 
the open-source package MGSAT24, as previously described10,11,25,26. The MGSAT pipeline wraps several R pack-
ages to compare common microbial ecology indices of community richness (e.g., Chao1, Jackknife, and Boot-
strap estimators), α-diversity (e.g., Hill numbers N1 and N2, which are equivalent to the exponentiated Shannon 
and inverted Simpson indices, respectively), and structure (e.g., Bray–Curtis dissimilarities) between groups. 
For the assessment of community structure, MGSAT uses the vegan package to test for differences in Bray–Cur-
tis dissimilarities and homogeneity of variances between groups with the PermANOVA (Adonis function) and 
betadisper tests, respectively27,28. For the PermANOVA test, strata was set as subject study numbers. To compare 
the abundance of taxa between groups, we used the DESeq2 test29, as implemented in MGSAT, which uses a Wald 
test with the Benjamini–Hochberg correction to control for multiple comparisons30. We included subject study 
number as a covariate in all DESeq2 models. Because the number of paired samples with shotgun metagenomic 
sequencing data was small, we did not perform any statistical comparisons between groups and only compared 
these using descriptive statistics.

The statistical analyses of the immune mediator dataset were also conducted in R14. The Luminex xMAP 
data was processed using a method that uses median fluorescence intensities (MFIs) of individual beads instead 
of the usual standard curve-based data-processing method to increase the sensitivity and accuracy of high-
throughput immunoassays23. The median fluorescence intensity (MFI) of each of the 53 analytes was calculated 
after subtracting out the background MFI and this was used for all statistical analyses. Because the MFIs were not 
normally distributed, these were log10 transformed. Prior to this, all negative MFIs were set to 0, as a value < 0 
indicates that the MFI for that particular analyte was lower than the background MFI (i.e., that the analyte was 
not truly detected in that sample). The MFIs were then transformed using the equation log10(x + 1) to allow 
analyte readings of 0 to remain 0. The comparisons of MFIs between paired samples were performed using a 
Wilcoxon signed-rank test with the Benjamini–Hochberg correction to control for multiple comparisons. For 
total protein concentration measurements, absorbance were obtained with the BCA (bicinchoninic acid) assay. 
Concentrations were calculated from the standards. The student’s paired t test was used to test for significance 
of protein concentrations between paired filters and washes.

For data visualization, we used grouped or stacked bar graphs, box and whisker plots, heatmaps, and ordina-
tion plots based on different microbial ecology indices or immune mediators MFIs, as appropriate. Figures were 
generated with the R packages ggplot231, vegan32, or ComplexHeatmap33, as appropriate. Heatmaps were generated 
with ComplexHeatmap33; the Pearson correlation was used to calculate dissimilarities. The number of cluster 
splits was determined by partitioning around medoids (method pamk in R package fpc34). Minor aesthetic edits 
to the figure were performed in Inkscape version 1.0. Statistical significance was defined as p- or q-values < 0.05. 
Due to the differences in sample processing steps between children and adults, all results are presented separately 
for each of these age groups. Further details on the study methods are available in the E-Methods section of the 
Online Repository.

Results
Comparison of the upper airway microbiome between pediatric nasal filters and washes using 
16S ribosomal RNA sequencing.  Following all the 16S rRNA data processing steps, the median (inter-
quartile range [IQR]) retained sequence count per sample among all pediatric samples was 15,858 (4777–21,149). 
The median (IQR) retained sequence count per sample was 20,369 (12,050–21,695) among nasal filters and 
8,927 (431–17,853) among nasal washes (Wilcoxon signed-rank test p = 0.04). Because samples with few reads 
are likely to represent environmental contamination, those with < 1000 reads (n = 7) were discarded. Of the 20 
paired samples from children with 16S rRNA data, 19 nasal filters (95%) and 14 nasal washes (70%) had > 1000 
reads (Fisher’s exact p-value = 0.09). Twenty-six of these remaining samples were paired and were thus included 
in further analyses.

There were no differences in community richness (Fig. 1A) or α-diversity (Fig. 1B) between sample types 
at the ASV level in children (p > 0.05 for all comparisons). The community structure at the ASV level was also 
similar between nasal filters and washes (PermANOVA test p = 0.3 and betadisper test p = 0.2) (Fig. 1C). Overall, 
174 ASVs were found in both filters and washes, while 161 ASVs were found only in nasal washes, and 159 ASVs 
were found only in nasal washes (Figure S1A).

There were a total of 81 and 79 genera identified in pediatric nasal filters and washes, respectively. The most 
abundant genera in nasal filters were Prevotella (29%), Veillonella (14%), Streptococcus (10%), Moraxella (10%), 
Haemophilus (5%), Neisseria (4%), and Actinomyces (3%), whereas the most abundant genera in nasal washes 
were Moraxella (21%), Prevotella (20%), Veillonella (12%), Haemophilus (11%), Streptococcus (6%), Dolosigran-
ulum (4%), Neisseria (3%), and Corynebacterium (3%); all other genera were present at < 3% mean relative 
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abundance. At the genus level, only Sphingobium was differentially abundant between paired samples (log2 fold 
change = − 24.4456, q-value = 3.93E−16) with the DESeq2 test (Fig. 2 and Table E2 in the Online Repository). 
Using the DESeq2 test at the ASV level, 22 ASVs were differentially abundant between paired sample types 
(Table E3 in the Online Repository).

Comparison of the upper airway microbiome between pediatric nasal filters and washes using 
shotgun metagenomic sequencing.  Following all the shotgun metagenomic sequencing data pro-
cessing steps, the median (IQR) retained sequence count per sample among all pediatric samples was 738,821 
(538,420–1,855,491). The median (IQR) retained sequence count per sample was 621,994 (296,015–700,034) 
among nasal filters and 1,616,436 (1,244,683–3,317,855) among nasal washes. Of the 8 paired samples undergo-
ing shotgun metagenomic sequencing in children, 2 samples failed to sequence, leaving 7 nasal filters (88%) and 
7 nasal washes (88%) that sequenced successfully. Twelve of these samples were paired and were thus included 
in further analyses.

There were a total of 36 and 60 species identified in pediatric nasal filters and washes, respectively. Rar-
efaction curves level off for most of the samples, suggesting that sequencing was generally performed to an 
adequate depth to identify the bacteria in the samples (Figure S2). The most abundant species in nasal filters were 
Moraxella catarrhalis (37%), Haemophilus influenzae (21%), Streptococcus pneumoniae (14%), Ralstonia pickettii 
(13%) and Propionibacterium acnes (9%); whereas the most abundant species in nasal washes were Moraxella 
catarrhalis (35%), Streptococcus pneumoniae (19%) Haemophilus influenzae (16%), Ralstonia pickettii (8%), and 
Propionibacterium acnes (8%); all other species were present at < 6% mean relative abundance. Even though the 

Nasal washes

Sample type
Nasal filters

Chao 1 Jackknife Bootstrap
Index name

Shannon Simpson

In
de

x 
es

tim
at

e

50

40

30

20

10

0

Nasal washes
Nasal filters

Sample type

Shannon

A B

PCoA axis 1

PC
oA

 a
xi

s 
2

C

Sample type and
group centroid

Nasal filters

Nasal washes

Figure 1.   Common microbial ecology indices of the upper airway microbiome in children with paired samples 
based on 16S ribosomal RNA sequencing and according to sample type. (A) Grouped bar graphs of selected 
indices showing no differences in community richness between nasal filters and nasal washes at the amplicon 
sequence variant unit (ASV) level. (B) Box-and-whisker plots of selected indices showing no differences in 
community α-diversity between nasal filters than in nasal washes at the ASV level. (C) Principal coordinates 
analysis (PCoA) plot of Bray–Curtis dissimilarities showing no distinct clustering by sample type at the ASV 
level. The lines connect samples with their group centroids. (A,B) were generated with the R14 package ggplot2 
version 3.0.0 (https​://cran.r-proje​ct.org/web/packa​ges/ggplo​t2/index​.html);31 (C) was generated in vegan version 
2.5-2 (https​://cran.r-proje​ct.org/web/packa​ges/vegan​/index​.html)32 and minor aesthetic edits were performed 
with Inkscape version 1.0.
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predominant species detected by nasal filters and washes were usually the same, their relative abundances were 
not always consistent among sample types (Fig. 3).

Comparison of the upper airway microbiome between adult nasal filters and washes using 16S 
ribosomal RNA sequencing.  Following all the 16S rRNA data processing steps, the median (IQR) retained 
sequence count per sample among all adult samples was 11,823 (6773–19,812). The median (IQR) retained 
sequence count per sample was 10,547 (6123–12,238) among nasal filters and 18,288 (7891–24,337) among 
nasal washes (Wilcoxon signed-rank test p = 0.1). Of the 10 paired samples undergoing 16S rRNA sequencing in 
adults, all 10 nasal filters and 10 washes had > 1000 reads and, thus, these were all included in further analyses.

There were substantial differences in community richness (Fig. 4A) and α-diversity (Fig. 4B) between samples 
types at the ASV level in adults (p < 0.05 for all comparisons). The community structure at the ASV level was 
also highly dissimilar between nasal filters and washes (PermANOVA test p = 0.002 and betadisper test p = 0.003) 
(Fig. 4C). Overall, 104 ASVs were found in both filters and washes, while 290 ASVs were found only in nasal 
washes, and 226 ASVs were found only in nasal washes (Figure S1B).

There were a total of 141 and 188 genera identified in adult nasal filters and washes, respectively. The most 
abundant genera in nasal filters were Corynebacterium (20%), Staphylococcus (12%), and Streptococcus (9%); 
whereas the most abundant genera in nasal washes were Cloacibacterium (28%), Acidovorax (13%); Comamonas 
(9%), Dechloromonas (7%), Aquabacterium (6%), and Corynebacterium (5%); all other genera were present 
at < 5% mean relative abundance. The abundances of 29 genera (Fig. 5 and Table E2 in the Online Repository) and 
69 ASVs (Table E3 in the Online Repository) were different between paired samples (q < 0.05 for all comparisons).

Comparison of the upper airway immune response between adult nasal filters and washes.  In 
the 10 adult paired samples with immune mediator data, the 53 analytes tested were detected more frequently 

Figure 2.   (A) Log2 fold change and log2 fold change standard error of nasal bacterial genera according 
to sample type in children as calculated with the paired DESeq2 analysis. The log2 fold change of the 20 
most differentially abundant bacterial genera are shown. A log2 fold change of > 0 (pink bars) indicates that 
abundance was detected to be higher in the nasal filters as compared to washes, while a log2 fold change < 0 
(blue bars) indicates that abundance was detected to be higher in nasal washes compared to nasal filters. After 
the Benjamini–Hochberg correction for multiple comparisons, only Sphingobium remained significantly 
differentially abundant between sample types. This figure was generated with the R14 package ggplot2 version 
3.0.0 (https​://cran.r-proje​ct.org/web/packa​ges/ggplo​t2/index​.html)31. (B) Hierarchically clustered heatmap of 
upper airway genera abundance in children with paired samples based on 16S ribosomal RNA sequencing and 
according to sample type. Only the top 20 genera with the lowest q-values are shown. The abundance of each 
genus is shown as its base mean, which represents the mean of counts of that particular genus in all samples 
after normalizing these by library size, and as regularized counts, which are calculated for each sample by 
transforming the normalized counts to the log2 scale. The heatmap cell colors represent the regularized counts 
as shown in the color scale. The log2-fold change in the abundance of each genus is also shown. P-values and 
adjusted p-values are shown; a green dot indicates the adjusted p-value was < 0.05. One genus, Sphingobium, 
was differentially abundant between nasal filters and washes with the DESeq2 test after controlling for multiple 
comparisons with the Benjamini–Hochberg correction (q-value < 0.05). This figure was generated with the R14 
package ComplexHeatmap version 1.18.1 (https​://www.bioco​nduct​or.org/packa​ges/relea​se/bioc/html/Compl​
exHea​tmap.html)33.

https://cran.r-project.org/web/packages/ggplot2/index.html
https://www.bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://www.bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
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in nasal filters (482/530 [91%]) than in nasal washes (125/530 [24%]) (Fisher’s exact test p < 0.001) (Fig. 6A). 
In nasal washes, only IL-1RA and IL-8 were consistently detected, whereas nearly all immune mediators were 
detected in nasal filters (mostly with medium to high MFIs). Except for IL-21, IL-28A, LIF, SDF-1A + β, TPO, 
and 6Ckine, the MFIs of the other 47 immune mediators tested were all higher in nasal filters than in nasal 
washes (q < 0.05 for all comparisons) (Fig. 6B and Table E4 in the Online Repository). The immune-response 
signatures were also highly dissimilar between sampling methods, distinctly clustering by sample type (Fig. 6C).

We examined the total protein in adult nasal washes and filters with a BCA assay (Fig. 6D). Protein con-
centrations detected in washes were similar to that of saline blank controls and were calculated to be 0 for 8/10 
washes (median [IQR] 0 [0–0] µg/ml). In contrast, the median (IQR) concentration reading in filters was 410.61 
(223.6–674.56) µg/ml. Total protein concentration in washes was significantly lower than that of filters (student’s 
paired t test p = 0.0009).

Conclusions
There is a need for novel methods of in vivo collection of upper airway epithelial lining fluid to improve the rigor 
and reproducibility of research in the allergy, immunology, and pulmonary fields4. In our study, we found that, for 
the characterization of the upper airway microbial communities and immune-response signatures, (1) nasal filters 
are overall superior to nasal washes as a sampling method, and (2) the upper airway sampling method can have 
a large impact in the study results, particularly in adults. Our results measuring both total protein concentration 
and levels of individual immune mediators suggest that, in contrast to nasal filters, proteins are not well-captured 
in nasal washes in adults. Previous research has demonstrated that, although less frequently used, nasal filters are 
easier to obtain and less prone to bias than nasal washes in both children and adults5,7,8,10–13,35,36, and our study 
adds to the literature supporting the superiority of nasal filters as an upper airway sampling method by showing 
they are more sensitive for both microbiome and immune assays.

In our prior studies of the upper airway microbiome, we have shown that nasal filters can be easily used 
in children younger than 6 months of age10,11. Nasal filters are well-tolerated and are particularly suitable for 
neonates (who are preferentially obligate nasal breathers37) and preschool-aged children (who tend to be poorly 
cooperative). It is also our experience that, although usually rare, the potential risks associated to nasal washes 
(e.g., upper airway trauma, pain, discomfort, and pulmonary aspiration) can be enough to discourage parents for 
enrolling their children in certain studies. Thus, the use of nasal filters could increase participation in pediatric 
research. Unlike other studies that have left nasal filters in the nostrils for up to 10 min5,7,35,36,38, we were able to 
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collect upper epithelial lining fluid leaving them for a minimum of 30 s. This shorter time improves tolerability 
and further facilitates its use in the pediatric population.

In spite of the importance of selecting the best sampling method as part of the design of studies of the upper 
airway microbial communities, no prior study had compared nasal filters to nasal washes to sample the upper 
airway microbiome, and this is the first study to show that a sufficient quantity of high-quality microbial DNA 
can be obtained from the nasal filters to perform both 16S rRNA and shotgun metagenomic sequencing. Fur-
thermore, other studies comparing these sampling methods for the evaluation of upper airway immune-response 
signatures have measured fewer analytes5,7,8. In one study (n = 16) assessing 5 immune mediators, the percent 
of samples with levels of IL-8, IL-1β, TNF-α, eosinophilic cationic protein, and tryptase above the assay’s lower 
limit of detection were consistently higher among nasal filters (100%, 100%, 67%, 86%, and 33%, respectively) 
than among nasal washes (93%, 94%, 57%, 71% and 8%, respectively)7. Likewise, the levels of IL-8, IL-1β, IP-10, 
and neutrophil elastase (but not IL-6) were higher in nasal filters than in nasal washes in one other study (n = 10), 
in many cases by several orders of magnitude8. In a more recent study (n = 6) assessing 30 immune mediators 
with one of the multiplex magnetic bead-based assays we used, all analytes were detected in nasal filters but not 
in nasal washes (with the immune mediator levels being ~ 4.7 times higher in nasal filters)5. Other studies have 
shown that nasal filters can be useful for the assessment of respiratory viruses, certain molecules (e.g., lactofer-
rin), and bacterial RNA expression7,8. In contrast to nasal washes—which should only be used once a day6—nasal 
filters can also be used multiple times a day, making them ideal for serial sampling and longitudinal studies of 
the upper airway microbiome and immune response7,12,39.

The comprehensive characterization of the upper airway microbiome using different next-generation sequenc-
ing techniques, the use of multiple statistical analyses, the measurement of a large number of immune mediators, 
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Figure 4.   Common microbial ecology indices of the upper airway microbiome in adults with paired samples 
based on 16S ribosomal RNA sequencing and according to sample type. (A) Grouped bar graphs of selected 
indices showing higher community richness in nasal filters than in nasal washes at the amplicon sequence 
variant (ASV) level. (B) Box-and-whisker plots of selected indices showing higher community α-diversity in 
nasal filters than in nasal washes at the ASV level. (C) Principal coordinates analysis (PCoA) plot of Bray–Curtis 
dissimilarities showing distinct clustering by sample type at the ASV level. The lines connect samples with their 
group centroids. (A,B) were generated with the R14 package ggplot2 version 3.0.0 (https​://cran.r-proje​ct.org/web/
packa​ges/ggplo​t2/index​.html)31; (C) was generated in vegan version 2.5–2 (https​://cran.r-proje​ct.org/web/packa​
ges/vegan​/index​.html)32 and minor aesthetic edits were performed with Inkscape.
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and the inclusion of both children and adults are all important strengths of our study. We should also acknowl-
edge several limitations. First, our study’s sample size was small, so it is possible that we were underpowered to 
detect some differences between sample types. However, we were still able to show large differences between the 
sampling methods (particularly in adults). Of note, because some of the laboratory methods used to characterize 
the microbiome in adult pediatric and adult samples differed, we could not directly compare these age groups and 
we have presented results separately for each of them. Second, nasal washes likely retrieve epithelial lining fluid 
from more distal regions of the upper airway than nasal filters (e.g., the nasopharynx), which could explain some 
of the differences we found. This may also explain why the differences in sampling methods were more obvious in 
adults, who have upper airways that are larger than those of children. Third, we did not compare nasal filters to 
other commonly used techniques that could be equally effective as sampling methods of the upper airway (e.g., 
nasal swabs). Other nasosorption methods (e.g., cotton strips, polyurethane foam, and cellulose sponges) have 
also been used in adult studies of the upper airway immune response and could potentially be used to assess the 
microbiome, although this has not been studied and these techniques may be harder to perform in children3,40,41. 
Fourth, our study only focused on sampling methods of the upper airway. In addition to being the initial site of 
respiratory bacterial colonization, the nostrils are the portal of entry for aeroallergens, air pollutants, and respira-
tory viruses, and thus are of critical importance in the pathogenesis of allergic, immunologic, and pulmonary 
diseases in both children and adults. Furthermore, it is impractical to obtain lower airway samples from healthy 
children, so most pediatric studies in these fields have traditionally sampled the upper airway. Of note, nasosorp-
tion methods to sample the lower airways have also been recently developed35. Fifth, we did not sequence unused 
filters or the saline solution that passed through the bulb syringe as part of this study, so there could be some 
degree of residual contamination that was not taken into account. Last, due to the concern that one sampling 
method may alter the results of the subsequent sampling method, we did not use both sampling methods in the 

Figure 5.   (A) Log2 fold change and log2 fold change standard error of nasal bacterial genera according to 
sample type in adults as calculated with the paired DESeq2 analysis. The log2 fold changes of the 29 differentially 
abundant bacterial genera are shown. A log2 fold change of > 0 (pink bars) indicates that abundance was detected 
to be higher in the nasal filters as compared to washes, while a log2 fold change < 0 (blue bars) indicates that 
abundance was detected to be higher in nasal washes compared to nasal filters. After the Benjamini–Hochberg 
correction for multiple comparisons, 29 genera were differentially abundant between nasal filters and washes. 
This figure was generated with the R14 package ggplot2 version 3.0.0 (https​://cran.r-proje​ct.org/web/packa​ges/
ggplo​t2/index​.html)31. (B) Hierarchically clustered heatmap of upper airway genera abundance in adults with 
paired samples based on 16S ribosomal sequencing and according to sample type. Twenty-nine genera were 
differentially abundant between nasal filters and washes with the DESeq2 test after controlling for multiple 
comparisons with the Benjamini–Hochberg correction (q-value < 0.05 for all comparisons). Only the 20 top 
genera with the lowest q-values are shown. The abundance of each genus is shown as its base mean, which 
represents the mean of counts of that particular genus in all samples after normalizing these by library size, and 
as regularized counts, which are calculated for each sample by transforming the normalized counts to the log2 
scale. The heatmap cell colors represent the regularized counts as shown in the color scale. The log2-fold change 
in the abundance of each genus is also shown. P-values and adjusted p-values are shown; a green dot indicates 
the adjusted p-value was < 0.05. This figure was generated with the R14 package ComplexHeatmap version 1.18.1 
(https​://www.bioco​nduct​or.org/packa​ges/relea​se/bioc/html/Compl​exHea​tmap.html)33.
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same participant’s nostril. However, other studies have shown that there is minimal intra-subject variability in 
regard to upper airway microbial communities and immune-response signatures between nostrils8,42.

In summary, we found that (1) nasal filters are a superior sampling method to characterize upper airway 
microbial communities and immune-response signatures when compared to nasal washes in both children and 
adults, (2) nasal filters can be used as a sampling method for studies examining the upper airway microbiome 
using both 16S rRNA and shotgun metagenomic sequencing. Based on this, future studies examining the upper 
airway microbiome and immune response should consider using nasal filters as their preferred sampling method.
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