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Abstract: Prion diseases are neurodegenerative diseases that affect humans and animals. They are
always fatal and, to date, no treatment exists. The hallmark of prion disease pathophysiology is the
misfolding of an endogenous protein, the cellular prion protein (PrPC), into its disease-associated
isoform PrPSc. Besides the aggregation and deposition of misfolded PrPSc, prion diseases are charac-
terized by spongiform lesions and the activation of astrocytes and microglia. Microglia are the innate
immune cells of the brain. Activated microglia and astrocytes represent a common pathological fea-
ture in neurodegenerative disorders. The role of activated microglia has already been studied in prion
disease mouse models; however, it is still not fully clear how they contribute to disease progression.
Moreover, the role of microglia in human prion diseases has not been thoroughly investigated thus far,
and specific molecular pathways are still undetermined. Here, we review the current knowledge on
the different roles of microglia in prion pathophysiology. We discuss microglia markers that are also
dysregulated in other neurodegenerative diseases including microglia homeostasis markers. Data on
murine and human brain tissues show that microglia are highly dysregulated in prion diseases. We
highlight here that the loss of homeostatic markers may especially stand out.

Keywords: prion diseases; microglia; homeostatic microglia; Creutzfeldt-Jakob disease; neuro-
inflammation; neurodegenerative diseases; prion protein; astrocytes

1. Introduction

Prion diseases, also known as transmissible spongiform encephalopathies, are neu-
rodegenerative, progressive disorders. They are always fatal and, to date, no therapeutic or
disease-modifying strategies exist. Prion diseases affect humans and animals alike and, oc-
casionally, may even be transmitted between different species. The animal prion disorders
include scrapie in sheep and goats, bovine spongiform encephalopathy (BSE; also known
as “mad cow disease”) in cattle, and chronic wasting disease in deer and elk [1–3]. The
human diseases include Creutzfeldt–Jakob disease (CJD), Gerstmann–Sträussler–Scheinker
Syndrome, Kuru, and Fatal Familial Insomnia [4–10]. The most common human prion
disease is sporadic CJD (sCJD) with an incidence of 1–2 per million people per year [11].
Several sCJD subtypes have been defined, which may differ in clinical presentation. The
molecular basis for this phenotypic variability is defined by the distinct biochemical prop-
erties of the prion protein and an allelic variation in codon 129 (methionine or valine) of
the prion protein gene (PRNP) [12,13]. This polymorphism also modulates the degree
of disease susceptibility, e.g., for BSE, since BSE has been transmitted to humans in a
number of cases, mainly in 129 MM carriers during the BSE crisis, and gave rise to a
subtype of CJD, which was termed variant CJD [14,15]. However, variants of PRNP were
also identified as a key risk factor for sCJD, besides the recent identification of novel risk
loci [16,17]. Upon adaptive passaging, prion diseases can also be transmitted to small
animal models such as hamsters and mice, and such adapted prion strains and animal
models have been intensively used to study the pathophysiology of the disease. Prion
diseases are characterized by the conformational conversion of the endogenous cellular
prion protein PrPC into the disease-associated protein isoform PrPSc, which is key to prion

Cells 2022, 11, 2948. https://doi.org/10.3390/cells11192948 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11192948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-9178-3949
https://orcid.org/0000-0001-9439-6533
https://orcid.org/0000-0003-0176-2042
https://orcid.org/0000-0002-7720-8817
https://orcid.org/0000-0001-8795-818X
https://doi.org/10.3390/cells11192948
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11192948?type=check_update&version=1


Cells 2022, 11, 2948 2 of 17

formation and disease progression [18] (Figure 1A). PrPC is a glycosylphosphatidylinositol
(GPI)-anchored protein that is attached to the outer leaflet of the plasma membrane [19].
Misfolding of this cellular isoform leads to the β-sheet-enriched and protease-resistant dis-
ease conformer PrPSc [20,21]. Since PrPC is the essential substrate for the disease-associated
PrPSc-templated misfolding cascade, PrP-knockout mice are resistant to prion infection
and disease [22]. Besides the accumulation of aggregated PrPSc in the brain, prion diseases
are characterized by neuronal loss, spongiform lesions, and the widespread activation of
astrocytes and microglia (Figure 1B).
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1.1. Microglia Are Dysregulated and May Have a Dual Role in Prion Diseases 

Figure 1. The cellular prion protein is misfolded in prion diseases. (A) A glycosylphosphatidyli-
nositol (GPI) anchor tethers the cellular prion protein (PrPC; schematic in green) to the outer leaflet
of the plasma membrane. In prion disease, PrPC is conformationally converted into its disease-
associated isoform PrPSc (schematic in red). Misfolded PrPSc is more stable against proteolytic
digestion and can be detected in prion disease but not in healthy brain tissue after proteinase K (PK)
digestion by Western blotting. (B) Prion disease histopathological hallmarks include spongiform
changes (hematoxylin and eosin (H&E) staining, see vacuolation), deposition of aggregated protein
(misfolded PrPSc), astrogliosis (GFAP), and microglial activation (IBA1).

To date, the mechanisms leading to neurotoxicity and neuronal loss are only partially
understood, yet cellular levels of PrPC seem to critically determine neurotoxicity [23]. Toxic
signaling of misfolded PrPSc via cellular receptors (with PrPC possibly being one of them)
on the neuronal membrane may lead to direct synapto- and neurotoxicity [24,25]; however,
non-neuron autonomous pathways may contribute as well. The view that microglia might
be a critical component of prion disease pathophysiology was already noted decades
ago [26–28]. Here, we review the current knowledge of microglia and their involvement in
prion disease pathophysiology. We show staining examples of different microglial markers
in prion mouse models and human sCJD. In agreement with previous studies of our and
other research groups, microglia show progressive dysregulation during the course of prion
disease in a region-dependent manner.

1.1. Microglia Are Dysregulated and May Have a Dual Role in Prion Diseases

Small rodents can be infected with prions from various natural sources (i.e., isolated
from animals such as sheep that succumbed to prion disease and then serially passaged in
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mice). These experiments led to the generation of different mouse-adapted prion variants,
so-called strains (such as 22L, RML, ME7, etc.) with distinct neuropathological features
and disease kinetics [29,30]. Hamster and mouse models faithfully recapitulate all aspects
of prion disease with generation and deposition of misfolded PrPSc, astrogliosis, and
microgliosis, and also including behavioral changes and a shortened life span. Therefore,
prion-infected mice represent a versatile tool to study and understand prion biology [31].
The use of these rodent models also led to the early discovery that microglia are activated
in prion diseases with the mounting of an atypical inflammatory response [32–34].

The clinical course of prion disease in mice is accurately predictable, suggesting
that prion pathogenesis is driven by precisely timed molecular events [35]. In the RML
infection mouse model of prion diseases, the incubation time to terminal disease is about
150 days ± 5 days (Figure 2) [36]. While infectious prions can be detected in the brains
of intracerebrally infected animals at about 30 dpi, misfolded PrPSc can be detected by
Western blotting only after about 60 dpi. Symptomatic disease starts at around day 90,
with mice displaying a stiff tail and a gradual loss of nest-building behavior. The latter
deteriorates from the building of a proper nest via the unorganized stacking of nesting
material to the complete absence of a nest, with the material tramped to the floor and
soiled by excrement close to terminal disease. Progressive dysregulation of glia cells
including microglia could also be demonstrated on the gene expression level using novel
techniques [37,38]. Interestingly, while microglia expression profiles changed considerably
of the course of disease in a region-dependent manner, neuronal phenotypes remained
comparatively stable [37,38]. Microglia are the innate immune cells of the brain, yet in
contrast to their counterparts in peripheral organs, the macrophages, they arise from
primitive yolk sack macrophages that colonize the brain early during development [39,40].
In the adult brain, microglia replenish by a self-renewal process and local proliferation
upon stimulation [41–44]. Different groups have independently shown that the appearance
of reactive microglia starts before the onset of symptoms, can be detected at around
day 70–80 in a region-dependent manner, and is visible mainly in the thalamus at this
time point (Figure 2) [45–47]. In terminal prion disease, two changes in microglia are
apparent: First, microglia morphology is changed from the ramified presentation typical
in homeostasis to a bushy/reactive or even amoeboid morphology in a region-dependent
manner (Figure 3A,B) [45–47]. The number of activated microglia is highest in the thalamus,
a region where reactive microglia can already be detected at a preclinical time point (see
Figure 2) [45–47]. Second, microglia proliferation leads to a significant increase in microglia
numbers (Figure 3B). Although microglia numbers were significantly increased in all
four brain regions at the terminal stage, the increase was highest in the thalamus [45–47].
The region-specific increase in microglia numbers during the course of a prion disease
had already been shown with several mouse adapted prion strains [45–47] and may be
aggravated by systemic infection [48,49]. Moreover, it has been shown that suppression
of microglia proliferation in the clinical disease phase significantly prolonged survival
in the mouse model [45], suggesting a detrimental role for this cell type at a late disease
stage. In contrast, reducing microglia numbers by knocking out interleukin 34 (IL-34), an
essential signaling molecule, led to augmented PrPSc deposition and shortened survival in
a prion mouse model [50,51], while the inhibition of IL-34 resulted in reduced microglia
proliferation [52]. Moreover, partial depletion of microglia in early stages of the disease
was reported to enhance the accumulation of prions in the brain and accelerate the onset
of clinical disease [46]. Novel data on the complete depletion of brain microglia have
shown that mice displayed an accelerated disease course, but did not show an enhanced
accumulation of PrPSc [53]. These controversial outcomes highlight a complex dual role
of microglia also observed in other brain diseases [54–56] and might be attributed to
the fact that the total removal of microglia might be harmful, whereas targeting specific
microglia activation states later in disease might prolong survival time. Interestingly, novel
data have also shown that M-CSF/CSF1R signaling is upregulated in prion infection [57].
Work on prion-infected organotypic brain-slice cultures support the prion clearing and
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neuroprotective functions of microglia [50]. This is in line with findings showing that
microglia isolated from the brains of prion-infected mice are infectious [58]. Moreover,
microglia are directly activated by PrPSc in vitro [33,59]; however, such causalities are
difficult to prove in vivo. Novel research in mice that exclusively produce PrPSc in neurons
or in astrocytes shows that neither drive the dysregulation of glia cells on their own [60].
These findings warrant more research about the putative cross-talk of the different brain
cell types in disease.
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Figure 2. Prion disease course in the mouse model. Prion diseases are neurodegenerative diseases
that can be easily experimentally transmitted by the inoculation of mouse-adapted prions (such as the
Rocky Mountain Laboratory strain; RML inoculum) to the brains of mice. Disease onset and clinical
course are relatively accurately predictable, eventually leading to terminal disease usually within
150 ± 5 days after high-dose intracerebral inoculation. RML 5.0 is a specific and very well-
characterized passage of RML that was and is used in several laboratories [35]. After a latency
period, in this model, prion infectivity is already detectable in the brain at 30 days post infection
(dpi), and misfolded PrPSc can be detected by Western blot (WB) at around 60 dpi. Symptoms appear
around 90–100 dpi. Lower panel: The pan-microglia/monocyte marker ionized calcium-binding
adaptor molecule 1 (IBA1) is shown at 80 dpi in different brain regions in comparison to the brain of
a mock-infected control mouse (healthy brain). Note the region-specific change towards a reactive
microglia phenotype in the thalamus in prion disease during the preclinical stage before the onset of
symptoms, including an increase in microglia numbers [45–47]. Scale bar: 100 µm.

As mentioned above, microglia in the healthy brain display a homeostatic morphology
characterized by a small cell body and long branching processes which are constantly
surveying their environment [61]. Moreover, microglia are involved in several mechanisms
regulating brain development and plasticity. They actively shape neuronal connectivity by the
removal of excess/neglected synapses, which are formed during development [62–64]. For
this, microglia have been shown to directly contact tagged pre- and postsynaptic structures
and remove them by phagocytosis. The targeting of unwanted elements for removal
involves complement receptors and adaptor proteins, among other signals [62,64].
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Figure 3. Microglia are highly activated in terminal prion disease. The pan-microglia/macrophage
marker IBA1 is shown in mouse brain sections of (A) mock-infected healthy mice and (B) RML 5.0
prion-infected mice at a terminal disease state. (A) Microglia in the healthy brain show a ramified
phenotype with a small soma and thin processes in all four regions displayed here (see magnified
close-up). (B) During the terminal prion disease stage, microglia massively proliferate (see overview)
and change their morphology towards bigger cell bodies and thicker arms (see close-ups) with a
bushy appearance in the hippocampus and an amoeboid phenotype in the thalamus [45–47]. Scale
bar: 100 µm; close-up: 50 µm.

Microglia can react to alterations in the brain environment or the presence of threats
to its cellular integrity e.g., invading pathogens and aggregated proteins, but also apoptotic
cells or cell debris, by mounting an inflammatory response to restore homeostasis. The latter
enables microglia to increase their phagocytic capacity to remove unwanted structures and
to release proinflammatory mediators including cytokines and chemokines [65]. Activated
microglia represent a common feature of neurodegenerative diseases [54,66,67]. Activation
can be identified by a combination of morphological and immuno-phenotypic changes [68].
Several proinflammatory cytokines are upregulated in the brain during the prion disease
course including TNF α, IL 1α, and C1qa [46,69–73]. The same outcome was recently
published after region-specific bulk transcriptomic analyses of brains infected with two
different prion strains [74]. Although these strains target different cell populations in the
brain, the regional glia response was comparable. This is in line with further research
using three different prion strains, RML, 22L, and ME7 which produce different patterns
of PrPSc deposition. Despite these obvious differences, highly similar expression patterns
in neuroinflammatory genes and glia response genes were measured in all three mouse
models [75].

Since pro-inflammatory mediators are upregulated slightly before the onset of symp-
toms, several studies were conducted to investigate the impact of manipulating microglia
receptor abundance or cytokine release, and yielded a somewhat mixed outcome. In line
with the proposed capacity of microglia to phagocytose PrPSc, the knockout of C-X-C
chemokine receptor type 3 (CXCR3) led to accelerated PrPSc accumulation and increased
prion infectivity titers, but prolonged survival in the mouse model [76]. Moreover, these
mice developed excessive astrocytosis. The knockout of the cluster of differentiation CD14
also led to a prolonged survival with enhanced microglia activation in two different mouse
models [77]. The NLRP3 inflammasome is a multi-molecular complex which can sense
heterogeneous pathogen-associated molecular patterns (PAMPs) culminating in the ac-
tivation of caspase 1 and the release of interleukin IL 1β. It has been shown to play a
fundamental role in Alzheimer’s disease (AD) pathophysiology [78,79]. In contrast to AD,
the knockout of NLRP3 or the adaptor protein ASC does not influence the prion disease
course [80]. Interestingly, retroviral infection preceding prion infection in mice led to a stim-
ulation of microglia at early disease time points with a reduction in infectious prions [47],
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while another stimulator of inflammation, the bacterial lipopolysaccharide (LPS), could
not further stimulate their PrPSc-degrading function during disease progression [81]. In
addition to the upregulation of PAMPs in prion diseases, the transcription of several genes
encoding damage-associated molecular pattern (DAMP) proteins and receptors such as
Toll-like receptors or proteins of the complement cascade are also increased in the brains
of prion-infected mice [70,82]. Interestingly, depletion of any of the DAMP receptor genes
Tlr2, C3ar1, and C5ar1 in a prion mouse model only led to a slightly increased survival in
the Tlr2-model, while C3ar1, and C5ar1 did not influence prion disease course [82].

Since these studies did not lead to conclusive data about the role of microglia and their
putative PrPSc-reducing function, another line of experiments was performed to address
the impact of “eat me”-signals on neurons or “eat-me”-receptors on microglia on neuronal
survival in prion pathophysiology [83]. These experiments were fueled by the notion that
the milk fat globule-EGF factor 8 protein (MFGE8) produced by astrocytes might target
apoptotic bodies via binding to their surface-exposed phosphatidylserine for their clearance
by interaction with the MFGE8 receptor on microglia in prion disease. Accordingly, the
knockout of MFGE8 accelerated disease but this was restricted to certain mouse models [84].
However, neither the “eat me”-protein developmental endothelial locus-1 nor the “don’t
eat me”-receptor signal regulatory protein SIRPa, nor the macrophage scavenger receptor 1
(Msr1) influence the prion disease course, since their depletion had no effect on disease
pathophysiology [85–87].

1.2. Homeostatic Microglia: Guardians of the Physiological State

For decades, microglia research was focused on the inflammatory context and profile.
Only recent research has brought into the focus the homeostatic functions of microglia,
which—if lost—might be a driver of neurodegeneration in disease [55,88–91]. However, the
identification of microglia-specific profiles was complicated by the lack of understanding
of whether and how brain-resident microglia functionally differ from peripheral myeloid
cells which might enter the brain in certain instances [92]. Only recently were the molecular
and functional characteristics of murine bona fide homeostatic microglia identified by
different groups using a set of novel methodologies such as quantitative proteomics or RNA
sequencing [88,93,94]. Thus, a unique transcriptional expression signature of homeostatic
microglia was identified which allowed for their differentiation from peripheral myeloid
cells. Homeostatic microglia are characterized by the expression of specific markers such
as Tmem119, Hexb, Gpr34, P2ry12, Olfml3, and Tgfbr1. Several of these genes are also
expressed on human microglia, including the P2Y purinoceptor 12 (P2RY12) [95] and
the transmembrane protein TMEM119 [96]. The development of robust tools including
microglia-specific antibodies followed soon after.

We recently showed that the abundance of homeostatic microglia proteins such as
TMEM119 and P2RY12 is significantly reduced in terminal prion disease (Figure 4) [47,73,97].
In the healthy brain, microglia show a ramified morphology with a small cell body and
thin processes that are especially visible after staining with P2RY12 [55,88–91]. In contrast,
both markers are affected in terminal prion disease. While the homeostatic markers are still
abundant in the hippocampus, this signature is almost completely lost in the thalamus, an
effect which is especially severe for P2RY12 (Figure 4) [47,73,97].
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Figure 4. Loss of microglial homeostatic phenotype in terminal prion disease. The microglia-
specific homeostasis markers P2RY12 and TMEM119 show a ramified morphology of microglia in
the healthy brain [47,73,97]. In terminal prion disease, this homeostatic microglia signature is lost
in a region-dependent manner [47,73,97]. While the activated microglia in the dentate gyrus of the
hippocampus display a bushy morphology with thick and retracted processes and still express both
markers, microglia in the thalamus (posterior complex) have almost completely lost the expression
of the markers, especially P2RY12. In the RML-prion mouse model, the deposition of PrPSc-specific
staining is stronger in the thalamus than in the hippocampus in terminal prion disease. Scale bar:
25 µm.

The loss of homeostatic microglial proteins is visible in immunofluorescence double-
staining of IBA1 and TMEM119 in terminally sick mice and mock-infected healthy control
brains, and shows the reciprocal regulation of both proteins in prion disease
(Figure 5A) [55,73,88–91]. Both markers co-localize, highlighting the high specificity for
microglia and the ramified morphology with fine processes that are mainly stained by
TMEM119 in the healthy brain [55,88–91]. As previously shown, TMEM119-positive pro-
cesses are highly reduced at the terminal stage of prion disease in the hippocampus, and
almost completely lost in the thalamus during terminal prion disease (Figure 5) [73]. In-
terestingly, these findings on the loss of homeostatic microglial proteins in terminal prion
disease are in contrast to findings on the RNA expression of the corresponding genes,
since P2ry12 RNA expression has been shown to be relatively upregulated [98,99]. On
one hand, this might be due to the usage of different prion strains, disease stages, or
tissue sampling. On the other hand, discrepancies in RNA levels as compared to actual
protein expression in microglia activation have been noted before (see also upcoming white
paper on microglia: Defining Microglial States and Nomenclature: A Roadmap to 2030
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4065080 (accessed on 10 September
2022)) [100]. Thus, further experiments including mass spectrometry analyses of microglial
protein expression at different disease stages might help to solve this controversy. The home-
ostatic microglia signature is also downregulated in other neurodegenerative diseases. We
and others have identified a disease-specific microglia signature that is commonly dysregu-
lated in brain diseases including AD [55,101]. The transcriptional phenotypes of microglia

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4065080


Cells 2022, 11, 2948 8 of 17

in neurodegenerative disease (MGnD) or disease-associated microglia (DAM) highlight
several proteins that actively influence disease progression. These include apolipoprotein
E (ApoE) and triggering receptor expressed on myeloid cells-2 (TREM2). Both proteins
are upregulated in prion disease and affect the expression of pro-inflammatory proteins
during the disease course in murine models. However, their depletion did not change
survival times [102–104]. However, the deletion of ApoE might influence the course of
prion disease including the exacerbation of prion pathology, a dysregulated microglial
phenotype, and impaired clearance of PrPSc and dying neurons by microglia [104]. The
microglia signature in prion diseases also differs from that seen in other neurodegenerative
diseases [104]. Fittingly, we found that the loss of the homeostatic signature is especially
severe in prion diseases compared to other neurodegenerative conditions [47,55].
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Figure 5. Loss of microglia homeostatic phenotype and increase in gliosis upon terminal prion
disease. (A) IBA1 (green) and TMEM119 (red) co-localize in the hippocampus and thalamus in the
healthy mouse brain, highlighting the ramified morphology with fine processes mainly stained by
TMEM119 [47,73,97]. TMEM119 is highly reduced (white arrowhead) in the dentate gyrus of the
hippocampus, and completely lost (white arrowhead) in the thalamus (posterior complex) in terminal
prion disease [73]. Scale bar: 20 µm. (B) IBA1 (microglia/green) and GFAP (astrocytes/red) show
intense dysregulation and are in close proximity (white asterisks) in the healthy brain and in terminal
prion disease. (DAPI/nucleus in blue) [73]. Scale bar: 20 µm.

Another characteristic of prion diseases is the widespread and severe reactive astroglio-
sis [105]. Astrocyte activation was noted as a specific hallmark of prion diseases, with
significant upregulation of the glial fibrillary acidic protein (GFAP). Thus, the impact of its
knockout on disease pathophysiology was tested several years ago [102,106]. Interestingly,



Cells 2022, 11, 2948 9 of 17

GFAP-knockout did not influence prion disease outcome. GFAP is highly upregulated in
astrocytes upon disease [73,75,107]. Microglia and astrocytes keep close contacts in the
healthy brain but also in terminal prion disease, although both cell types are considerably
dysregulated (Figure 5B) [73]. The functional consequences of these contacts in health or
disease are not yet clear.

Recent investigations on astrocyte dysregulation in neurodegenerative diseases have
provided substantial evidence that a proinflammatory microglial cytokine cocktail contain-
ing TNF α, IL 1α, and C1qa reprograms a subset of astrocytes to change their expression
profile and phenotype, thus becoming neurotoxic (designated A1 astrocytes) [108]. We
recently showed that astrocytes in murine and human prion diseases express the A1-
signature proteins complement 3 and GBP2 [73]. However, a typical A1 profile could not
be identified. In contrast, astrocytes in prion disease showed a mixed phenotype with an
expression of both A1 and A2 proteins that is unique in prion disorders and differs from
other neurodegenerative diseases [73]. Interestingly, novel investigations in mouse models
after microglia depletion have shown that this prion disease-specific astrocyte signature
develops without the proinflammatory stimulation provided by microglia [98].

1.3. Human Microglia and Their Regional Heterogeneity

For decades it has been noted, mainly based on morphological data from immunohis-
tochemical staining, that the microglia population within the brain is not uniform. Over
the last ten years, microglia heterogeneity has been studied in murine models, determin-
ing that microglia have distinct region-dependent transcriptional identities and that they
age in a regionally variable manner [109,110]. Recent advances in single-cell sequencing
have shown the diversity and regional heterogeneity of murine brain microglia in more
detail [111]. Interestingly, these data show that microglia diversity is the highest in the
developing, aged, or injured brain. Using a mouse model for multiple sclerosis (MS) and
human MS brain tissues, the authors found diverse activated microglia subpopulations
in demyelinating lesions [111]. Other groups complemented these data by combining ad-
vanced mass spectrometry methods and single-cell RNA sequencing, revealing comparable
data from human brain tissue [100,112].

Although a variety of new molecular tools, such as nuclear sequencing, are now
available to study expression profiles on a single-cell basis in the human brain in health
and disease [113], the transmissible nature of the fatal yet untreatable prion disorders
and their respective biosafety issues limit their use in the study of human prion disease.
However, bulk expression analysis in two brain regions in sCJD displayed regionally
distinct inflammatory profiles [114].

We have previously shown that the TMEM119 protein level is significantly reduced in
the brains of sCJD patients (Figure 6A) [97]. See Table 1 for an overview of the human tissues
displayed in this review. Despite high amounts of PrPSc deposition in the frontal cortex and
cerebellum in a very distinct pattern, the activation of microglia shown by IBA1 is evenly
high throughout these entire regions. Prion disease-associated astrogliosis is also prominent
in human prion diseases as shown by the upregulation of GFAP and YKL-40 (or Chitinase-
3-like protein 1; CHI3L1) (Figure 6B) [73,107]. However, while a GFAP increase is also
found in other neurodegenerative diseases such as AD [97], YKL-40 upregulation is more
specific for human CJD and might serve as a diagnostic marker [107]. As another marker for
diagnostic purposes, soluble TREM2 (sTREM2) in cerebrospinal fluid might emerge [115].
Although TREM2 is upregulated in murine and human prion diseases, it might not play
a role in disease modification [103,115]. However, while it may not be a therapeutic
target in prion disease, it might well serve as a diagnostic tool to discriminate prion
disease from other (rapidly progressing) neurodegenerative diseases such as AD in patients.
The microglia signature of sCJD patients differ from those of rapid AD, with significant
downregulation of the microglia homeostatic marker TMEM119 (Figure 7) [97]. Moreover,
the activation marker cluster of differentiation CD68 was increased in the frontal cortex
of a patient with sCJD compared to AD patients (Figure 7) [97]. Microglia are activated
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in both diseases. Interestingly, the loss of the homeostatic marker seems more severe in
sCJD compared to AD [97]. A significant increase in the abundance of CD68 compared
to healthy controls, in a region-specific manner and dependent on the sCJD subtype, has
already been shown in an independent study [116]. These data are in line with recent
findings that patients with AD only show a moderate loss of TMEM119 [95,97]. However,
immunohistochemical analyses and subsequent quantifications in a much bigger set of
patients with sCJD and AD and non-demented control patients are warranted to determine
disease and also to identify sCJD subtype-specific microglia dysregulation profiles.

Table 1. Summary of clinical parameters of Creutzfeldt–Jakob disease patients, an Alzheimer’s disease
(AD) patient, and age- and gender-matched human post-mortem control brain samples displayed in
this review. All cases underwent standardized neuropathological assessment, including macroscopic
and microscopic examination. sCJD and AD diagnoses were neuropathologically confirmed according
to current criteria. Controls did not show any sign of neurologic or neurodegenerative diseases [73,97].

Patient Disease Age Gender ABC Score CJD Subtype Cause of Death

1 sporadic CJD 78 M — MV2K+C CJD
2 sporadic CJD 69 F — VV1 CJD
3 sporadic CJD 77 F — MM/MV1 CJD
4 Control 69 F — — Bronchogenic adenocarcinoma
5 Control 79 M — — Ventricular fibrillation
6 AD 80 M A3B2C3 — DementiaCells 2022, 11, x FOR PEER REVIEW 11 of 17 
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matched non-demented control patient [97]. Deposits of misfolded PrPSc (sCJD) are also shown. 
Scale bar: 200 µm. (B) Besides microglia, astrocytes are also highly dysregulated in prion diseases 
such as sCJD [97,107], as displayed by the astrocyte markers GFAP and YKL-40 for an sCJD case 
and an age-matched control. Scale bar: 200 µm. 

Figure 6. Glia cells are highly dysregulated in human sCJD. Human brain tissues are usually fixed
in 4% buffered formalin. To inactivate prion infectivity, tissues should be incubated in 98% formic
acid for 1.5 h. Tissues from healthy human controls should be similarly treated with formic acid, to
enable identical staining conditions. Frontal cortex and cerebellum brain sections from sCJD patients
and control patients without neurologic disease are shown for (A) the pan-microglia/macrophage
marker IBA1 and homeostatic microglia marker TMEM119 [97]. Note that while IBA1+ microglia
are increased in sCJD staining, the intensity of TMEM119 staining is reduced compared to an age-
matched non-demented control patient [97]. Deposits of misfolded PrPSc (sCJD) are also shown.
Scale bar: 200 µm. (B) Besides microglia, astrocytes are also highly dysregulated in prion diseases
such as sCJD [97,107], as displayed by the astrocyte markers GFAP and YKL-40 for an sCJD case and
an age-matched control. Scale bar: 200 µm.
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Figure 7. Disease-associated microglia profile differs between human sCJD and AD. Frontal
cortex tissue of a sCJD patient and an age-matched AD patient show reactivity for the pan-
microglia/macrophage marker IBA1, the microglial marker TMEM119, and the activation marker
CD68 [97]. Deposits of misfolded proteins are shown for the respective antibodies against amyloid-β
(AD) or PrPSc (sCJD). Note that the deposition pattern of misfolded PrPSc may vary considerably
between CJD patients (see also Figure 6). In contrast to AD, microglia activation is more prominent
and the microglial homeostasis marker is almost completely lost in sCJD [97]. Scale bar: 50 µm.

As already determined in the murine models in more detail (see above), the regional
differences in inflammation-associated expression changes are also beginning to be inves-
tigated and described in the frontal cortex and cerebellum of patients with sCJD [114].
Neuronal loss shows considerable variation between various regions of the brain within
a CJD-diseased individual and between CJD patients. However, the cortex areas and
cerebellum are often severely affected in sCJD, with a relative sparing of the hippocampus
and subcortical grey matter [117,118]. Thus, it will be of the highest interest to investigate,
if other, less-affected brain regions will show distinct inflammatory profiles in human prion
diseases. Although the deposition patterns of misfolded PrPSc are diverse in murine models
of prion disease, the heterogeneity of PrPSc deposition patterns is higher in human prion
diseases and comprises synaptic, perivacuolar, plaque-like, kuru-plaque, florid-plaque,
punctuate, perineuronal, and intraneuronal patterns, which might occur side-by-side or
even overlapping in the same patient [119,120]. If and how these protein deposits directly
influence the inflammatory profiles in individual brain regions in human prion diseases is
currently not clear.

A more systematic investigation including different brain regions and a set of different
techniques will certainly provide a better picture about region-dependent microglial (and
astrocytic) signature shifts and their respective pathophysiological consequences in the
future.

2. Conclusions

Microglia are dysregulated in neurodegenerative diseases. However, it is still not clear
how microglia contribute to disease pathophysiology in detail: Is it the gain of detrimental
proinflammatory functions? Or is it rather the loss of protective homeostatic support
towards neuronal and other brain cell types? Or could it be a combination of both? The
current data support the hypothesis that microglia activation at an early disease phase is
beneficial and contributes to the removal of PrPSc, whereas prolonged pro-inflammatory
signaling and increased proliferation at later disease stages are harmful and accelerate
neuronal decay. Thus, potential future therapeutic interventions targeting microglia in
prion diseases certainly need to be thoroughly timed, dosed, and balanced. Although
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prion diseases, in several pathomechanistic regards, can be considered as a “prototype”
for neurodegenerative diseases characterized by protein misfolding, we and others have
shown that microglia are exceptionally highly dysregulated in murine and human prion
diseases. They display an upregulation of activation markers that might be distinct from
those in AD. Moreover, in our recent experiments, the extensive loss of the homeostatic
signature in prion diseases stands out remarkably [47,73,97]. We thus speculate that certain
mechanisms of disease, especially regarding glial responses, might be highly distinct in
prion diseases and contrast with other neurodegenerative diseases such as Alzheimer’s
disease.
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