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Retrodiction beyond the Heisenberg
uncertainty relation
Han Bao1,2,3, Shenchao Jin3, Junlei Duan3, Suotang Jia 1,2, Klaus Mølmer4✉, Heng Shen 2,5,6✉ &

Yanhong Xiao 1,2,3✉

In quantum mechanics, the Heisenberg uncertainty relation presents an ultimate limit to the

precision by which one can predict the outcome of position and momentum measurements

on a particle. Heisenberg explicitly stated this relation for the prediction of “hypothetical

future measurements”, and it does not describe the situation where knowledge is available

about the system both earlier and later than the time of the measurement. Here, we study

what happens under such circumstances with an atomic ensemble containing 1011 rubidium

atoms, initiated nearly in the ground state in the presence of a magnetic field. The collective

spin observables of the atoms are then well described by canonical position and momentum

observables, x̂A and p̂A that satisfy ½x̂A; p̂A� ¼ i_. Quantum non-demolition measurements of

p̂A before and of x̂A after time t allow precise estimates of both observables at time t. By

means of the past quantum state formalism, we demonstrate that outcomes of measure-

ments of both the x̂A and p̂A observables can be inferred with errors below the standard

quantum limit. The capability of assigning precise values to multiple observables and to

observe their variation during physical processes may have implications in quantum state

estimation and sensing.
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Heisenberg’s uncertainty relation (HUR)1 is one of the
pillars of quantum mechanics and it sets the limit of how
precisely one can predict the outcome of the measure-

ments of two non-commuting observables. While the relation
itself is a simple consequence of Born’s rule and the operator
character of physical observables, it has spurred both founda-
tional discussions of the interpretation of quantum theory and
efforts to identify and surpass quantum limits for practical high
precision measurements. The HUR deals with the ability to
predict the outcomes of measurements of either one of two
observables in different experiments with the same quantum
state. As a related concept in quantum metrology, the so-called
standard quantum limit (SQL) denotes the measurement preci-
sion achievable with conventional resources, such as coherent
states of light and product states of many particles. Poissonian
counting statistics and field amplitude measurements with equal
size errors on all quadratures are examples of the SQL, while
number states and squeezed states permit precision measure-
ments of a single, relevant observable below the SQL2.

Beyond the conventional HUR scenario concerned with mea-
surements of only one observable in each experiment, more
complex scenarios have been pursued, where more observables
are, simultaneously or sequentially, measured in the same
experiment. Measurements generally disturb a quantum system3,4

and several approaches have been proposed to mitigate effects of
this disturbance in high precision measurements of one or more
observables over time. These include entanglement based “nega-
tive mass” or “quantum-mechanics-free” subsystem measure-
ments5–9 and quantum dense metrology based on an
Einstein–Podolsky–Rosen entangled two-mode system10. The
present work is not aimed at such scenarios but serves to illustrate
how the HUR does not account for our ability to retrodict the
outcome of a measurement on a system at a past time t, if we have
access to the system after the measurement11. Consider for
example the particularly simple situation where prior to the
measurement at time t the system was prepared in an eigenstate
amj i of an observable Â, while a projective measurement of
another observable B̂ is applied right after t, yielding the eigen-
value bn. Clearly, under this circumstance, the outcome of a
hypothetical measurement of Â at time t would have to be am,
while the outcome of a measurement of B̂ would have had to be
bn, in order to be consistent with the subsequent projective
measurement. Either outcome can thus be stated with certainty
even though Â and B̂ do not commute. Separate formalism has
been developed to describe the sometimes paradoxical situations
occurring in weak and strong measurement scenarios with prior
and posterior measurement information11–13.

Recently, quantum trajectory theory where the density matrix ρ
(t) is conditioned on the dynamics and probing of the system
until time t, was supplemented by an effect matrix E(t) condi-
tioned on the dynamics and probing of the system in a sub-
sequent time interval [t, T]14,15. At the final time T, the matrices ρ
(t) and E(t) together incorporate all our information about the
“past quantum state”, i.e., they yield the probability for the out-
come of any general measurement which could have been per-
formed in the laboratory at the earlier time t. Analogous to the
forward-backward formalism of hidden Markov models and the
similar smoothing procedures in Kalman filtering theory, the past
quantum state formalism provides an improved estimate of the
system dynamics and allows better estimation of physical para-
meters and of time-dependent perturbations on the system. This
has been demonstrated by the observed conditional dynamics of
the photon number evolution in a cavity16, the excitation and
emission dynamics of a superconducting qubit17 and the
motional state of a mechanical oscillator18. For an alternative
application of prior and posterior measurements, see also the

definition of quantum smoothing in19,20. However, experimental
studies of such schemes have so far only addressed retrodiction of
a single observable, and hence the prospects of “violating” the
HUR have not yet been demonstrated.

Here, we demonstrate theoretically and experimentally that the
past quantum state formalism “violates” the HUR for a spin
oscillator. It is shown that quantum non-demolition (QND)
measurements in the earlier and later time intervals [0, t−] and
[t+, T] provide better estimates of the outcome of measurements
at time t of either of the observables than could be inferred from
the HUR. Our experiment addresses the collective atomic spin of
a 87Rb ensemble of 1011 atoms contained in a macroscopic vapor
cell. Previously, we used a similar setup to demonstrate
measurement-based spin squeezing for a single observable p̂A and
showed that subsequent probing of the same observable improved
the ability to guess the outcome of measurements of that quantity
further below the SQL21. The improved estimation of the
expected experimental outcome was then exploited to demon-
strate RF magnetic field sensitivity better than the SQL21. In the
experiment reported in the present article, we develop a four-
pulse sequence of quantum non-demolition (QND) measure-
ments of different observables, that allows retrodiction of spin
quadratures along any direction, and we show that the ability to
guess the outcome of a past position and momentum measure-
ment is not generally limited by any HUR. We can, indeed, infer
the outcomes of measurements of both the x̂A and p̂A observables
with errors below the SQL. This protocol holds the potential for
estimation of perturbations causing displacements along any
directions in phase space, without change of the preparation and
post-selection steps. In future applications, these may be used in
magnetometers equally capable of measuring the amplitude and
phase of an RF magnetic field below the SQL.

Results
Atom-light Faraday interaction. Consider the collective atomic

spin Ĵ i ¼
PNat

k¼1 ĵ
k
i , with i = x, y, z, given by the sum of the total

angular momenta ĵ
k
i of individual atoms. The macroscopic spin

orientation Jx is along the applied bias magnetic field B, and the
perpendicular collective spin components Ĵy;z oscillate in the lab

frame at the Larmor frequency ΩL. We denote
Ĵy0
Ĵz0

� �
¼

cosΩLt sinΩLt
� sinΩLt cosΩLt

� �
Ĵy
Ĵz

� �
as the spin in the rotating frame.

Assuming a highly oriented spin state, the Holstein-Primakoff
transformation maps the perpendicular spin operators in the
rotating frame to the oscillator quadrature operators x̂A ¼
Ĵy0=

ffiffiffiffiffiffiffiffiffiffi
Jxh ij jp

and p̂A ¼ Ĵz0=
ffiffiffiffiffiffiffiffiffiffi
Jxh ij jp

. The spin commutator

½̂Jy0; Ĵz0� ¼ iJxð_ ¼ 1Þ, leads to the HUR, Δx̂A � Δp̂A ≥ 1=2. The
ground state of the harmonic oscillator corresponds to all atoms
being in the j5S1=2; F ¼ 2;mF ¼ �2i state, forming the Coherent

Spin States (CSS) characterized by Var ðĴy0Þ ¼ Var ðĴz0Þ ¼
Jx=2 ¼ NatF=2 and Δx̂A � Δp̂A ¼ 1=2. The first excited state of the
oscillator corresponds to a symmetric superposition state of the
ensemble with one atom in the state j5S1=2; F ¼ 2;mF ¼ �1i22,23.

In the limit of large probe detuning with respect to the atomic
excited-state hyperfine level22,23, the spin observable Ĵz is coupled
to the Stokes operators Ŝz of an optical probe pulse with Nph

photons and duration τ via the far off-resonance Faraday
interaction Ĥint ¼ ð ffiffiffi

2
p

κ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NphNat

p ÞĴzŜz ¼ κ
τ p̂Ap̂L, permitting the

QND measurement of Ĵz
22,24–27. Here canonical operators of

light are defined as x̂L ¼ Ŝy=
ffiffiffiffiffiffiffiffiffiffiffi
Sxh ij jp

and p̂L ¼ Ŝz=
ffiffiffiffiffiffiffiffiffiffiffi
Sxh ij jp

. The
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coupling constant κ2 ∝ NphNat characterizes the strength of the
atom-light interaction.

Conditioned dynamics and the past quantum state. The unitary
evolution operator of the QND interaction can be written as

Û ¼ e�iĤ intτ ¼ e�iκp̂A�p̂L : ð1Þ
As explained below, the QND measurement of p̂A can be

generalized to that of a spin component x̂AðθÞ ¼ p̂A cos θ þ
x̂A sin θ with an arbitrary direction θ in the oscillator phase space.
After the interaction, the field quadrature x̂L is measured, which
amounts to an indirect, noisy measurement of x̂AðθÞ. Thus, if the
field outcome is m, the atomic state is transformed by the
operator,

Ω̂m ¼
Z

ψx̂L
ðm� κaÞ a; θj i a; θh jda ð2Þ

where a; θj i is the eigenstate of x̂AðθÞ with eigenvalue a, while
ψx̂L

ðmÞ ¼ 1
π1=4

expð� m2

2 Þ characterizes the quadrature distribution
of the input coherent state of the probe laser beam. The operators
fΩ̂mg specify a positive operator valued measurement (POVM)
28). For infinite κ, Ω̂m converges to a projective measurement
Ω̂a ¼ a; θj i a; θh j, which projects the atomic state on the
eigenstate a; θj i with a = m/κ.

Conditioned upon the output value m1 of the first measure-
ment, the atomic oscillator is described by the unnormalized
density matrix ρ ¼ Ωm1

ρ0Ω
y
m1
, with the probability distribution

Prðajm1Þ / TrðΩ̂aρΩ̂
y
aÞ ¼ a; θh jρ a; θj i for a subsequent projec-

tive measurement of the atomic observable x̂AðθÞ. The distribu-
tion is Gaussian and we denote its expectation value and variance
by μρ(θ) and σ2ρðθÞ. The conditional variance does not depend on
the outcome of the first measurement.

In the experiment, however, we are restricted to optical
measurements employing the finite Faraday interaction described
by the POVM Ω̂m2

¼ R
ψx̂L

ðm2 � κ2aÞ a; θj i a; θh jda, and the

corresponding distribution Prðm2jm1Þ / TrðΩ̂m2
ρΩ̂

y
m2
Þ. This

interaction imprints the atomic observable onto the light
observable which acquires the expectation value 〈m2〉 = κ2μρ(θ),
while shot noise fluctuations contribute to the variance of the
optical measurement, Varðm2jm1Þ ¼ κ22σ

2
ρðθÞ þ 1

2 (see Supple-
mentary Note 3). It is customary to regard the optical
measurement as a noisy measurement of the atomic observable
and thus infer its variance by the relation,
σ2ρðθÞ ¼ ðVarðm2jm1Þ � 1

2Þ=κ22.
So far, our discussion was concerned with the usual application

of the conditioned quantum state to determine the uncertainty of
the outcome of projective and general measurements. Now, we turn
to the case where such outcomes are retrodicted by the combination
of a prior measurement of p̂A with measurement strength κ1 and
posterior measurements of x̂A and p̂A with measurement strengths
κ3 and κ4, respectively. The reason we implement the fourth
measurement is explained in Supplementary Note 4. If we consider
a projective second measurement, represented by Ω̂a, the joint
probability of all four measurement outcomes is

TrðΩ̂m4
Ω̂m3

Ω̂aΩ̂m1
ρ0Ω̂

y
m1
Ω̂

y
aΩ̂

y
m3
Ω̂

y
m4
Þ. Fixing the arguments of this

expression by the known values of m1, m3 and m4, this yields the

conditional probability Pr ðajm1;m3;m4Þ / TrðΩ̂aρΩ̂
y
aEÞ, where

the effect matrix E is defined as E ¼ Ω̂
y
m3
Ω̂

y
m4
Ω̂m4

Ω̂m3
. It follows

that Pr ðajm1;m3;m4Þ / a; θh jρ a; θj i a; θh jE a; θj i, and it is easy to
show that by our assumptions, a; θh jE a; θj i is a Gaussian function.

We denote the centroid and variance of this distribution function
by μE(θ) and σ2E ðθÞ (see Supplementary Note 3).

We thus assign the probability distribution Pr(a∣m1, m3, m4) to
the outcome of a past projective atomic measurement, and we

readily evaluate its expectation value μρEðθÞ ¼
μρðθÞσ2E ðθÞþ μEðθÞσ2ρðθÞ

σ2ρðθÞþ σ2E ðθÞ
and variance Varðajm1;m3;m4Þ ¼ σ2ρE ðθÞ ¼ 1

1=σ2ρðθÞþ1=σ2E ðθÞ
. Polar

plots for σ2ρðθÞ and σ2ρE ðθÞ based on analytical expressions in
Supplementary Note 3 are shown as blue and red curves in Fig. 1
(c). As σ2ρðθ ¼ 0Þ and σ2E ðθ ¼ π=2Þ may be independently
reduced well below 1/2, σ2ρ E ðθÞ may expose squeezing of both
p̂A and x̂A.

While the theory thus shows that the HUR does not apply for
retrodiction of projective measurements, we recall that our
experiments are based on optical probing, and for a comparison
between theory and experiment, we must address the predictions
for the POVM Ω̂m2

, conditioned on m1, m3, and m4. They read
(See Supplementary Note 3),

Pr ðm2jm1;m3;m4Þ /
Z Z

ψx̂L
ðm2 � κ2aÞψx̂L

ðm2 � κ2a
0Þ

� a; θh jρ a0; θj i a0; θh jE a; θj idada0:
ð3Þ

and we can show (See Supplementary Note 3) that for the special
cases of θ ¼ 0; π2, we recover the same simple relation between the
variances of the atomic and the optical measurements, as we
found for the prediction based on the density matrix ρ,

Varðm2jm1;m3;m4Þ ¼ κ22σ
2
ρEðθÞ þ

1
2
; θ ¼ 0;

π

2

� �
: ð4Þ

The reduced fluctuations of the optical measurements around
their retrodicted mean value thus constitute a test of the past
quantum state theory, and if the uncertainty product Δx̂A � Δp̂A
inferred from the optical measurements and Eq. (4) is less than 1/
2, it may be taken as a demonstration of the violation of the HUR.

Experimental realization of retrodiction beyond HUR. The
core of the experiment is a paraffin coated vapor cell29 containing
about 1011 atoms of 87Rb, as sketched in Fig. 1(a). The anti-
relaxation coating on the inner wall of the cell ensures a relatively
long spin coherence lifetime. We initially populate the atoms in
the state j5S1=2; F ¼ 2;mF ¼ �2i by optical pumping along the x-
direction parallel to the magnetic field B with up to 97.9%
polarization, orienting the atoms along the x-direction. It leads to
a 6% increase in the measured variance compared to the fully
polarized CSS. The projection noise limit is calibrated by mea-
suring the noise of the collective spin of the unpolarized sample,
which is 1.25 times that of the ideal CSS state (see Methods).

The linear-polarized probe light propagating along the z-
direction is turned on after the optical pumping, to measure
quantum spin fluctuations in the transverse y-z plane through
Faraday rotation. The intensity of the probe beam is strobo-
scopically modulated at twice the Larmor frequency in order to
probe a spin component x̂AðθÞ21,22. The measurement direction θ
is tuned by adjusting the phase of stroboscopic modulation. The
phase is experimentally calibrated by radio frequency signal
excitation (See Methods). As shown in Fig. 1(b), the probe pulse
sequence is divided into four parts. The 1st pulse measures p̂A,
representing the information of ρ. The 3rd and 4th pulse measure
x̂A and p̂A respectively, representing the information of E. ρ and E
together provide an estimation of the result at the time of 2nd
pulse. In each experimental repetition, we can only obtain the
result for one value of θ. Hence, the QND measurement of x̂AðθÞ
for different θ are obtained from independent experiments.
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While Eq. (3) permits evaluation of the conditional variance of
the m2 measurement, it does not take decoherence, losses, and
experimental imperfections into account. In the following, we
shall present our bare experimental results based exclusively on
analyses of correlations in the measurement data, cf. Eqs. (10),
(11) in Methods. These analyses only assume Gaussian correla-
tions between the measurement outcomes, which is compatible
with realistic errors and decoherence mechanisms in the system,
and they assume that Eq. (4) can be applied to infer the atomic
variances from the optical measurement.

Figure 2 depicts the value of the uncertainty product Δx̂A � Δp̂A
as a function of both measurement durations τ1 and τ3. The

atomic variances are inferred from the variances of the optical
measurements and the simple scaling (4) applicable for θ = 0, π/
2. We find that the minimum value of Δx̂A � Δp̂A ¼
1=2 ´ ð0:680 ± 0:019Þ is smaller than the Heisenberg uncertainty
limit of 1/2, and that it is obtained for τ1 = 1 ms and τ3 = 2 ms.
Fig. 2 shows that Δx̂A � Δp̂A first decreases with the probing time
τ1 and corresponding measurement strength κ1, while extending
τ1 beyond 1 ms causes incoherent scattering by spontaneous
emission of the atoms, which reduces the effective mean spin
projection, breaks the correlations between pairs of spins
responsible for the squeezing, and adds random fluctuations to
the collective ground state spin30,31. The later measurements of
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Fig. 1 Schematics for retrodiction beyond the Heisenberg uncertainty relation. a Experiment schematics. A paraffin coated 20mm × 7mm × 7mm
rectangular vapor cell at 53 °C resides inside a 4-layer magnetic shielding. A coherent spin state (CSS) is created along the quantization axis x by optical
pumping, with a pump laser tuned to the Rb D1 transition 5S1=2; F ¼ 2 ! 5P1=2; F

0 ¼ 2 and a repump laser beam stabilized to the Rb D2 transition
5S1=2; F ¼ 1 ! 5P3=2; F

0 ¼ 2, sharing the same circular polarization. A magnetic field of 0.71G induces a ground-state Zeeman splitting of about
ΩL = 2π × 500 kHz and stabilizes the collective spin component along the x direction. A linearly polarized off-resonance D2 laser beam, propagating in the
z direction, probes the quantum fluctuations of the spin. The Stokes component Sy that characterizes the linear polarization in the ± 45∘ basis is measured
using a balanced polarimetry scheme. A Lock-in amplifier (LIA) extracts the signal at the Lamor frequency. b Pulse sequence. The pump lasers prepare the
atoms in the CSS. The pump lasers are turned off and the probe laser is turned on to interact with the atoms. The probe pulse sequence is divided in four
parts, measuring the quadratures indicated in the figure. c Theoretical polar plot of the variance of the atomic oscillator quadratures conditioned on prior
(blue curve) and on prior and posterior measurements (red curve). The plot assumes ideal experiments without decoherence and decay, probing strengths
κ21 ¼ 1:7, κ23 ¼ 3:3 and κ24 ¼ 2:2 and a duty factor of 14%, for details see Supplementary Note 4. The radial distance of 0.5 in the polar plot represents the
SQL, and the retrodicted variances of the horizontal and vertical p̂A and x̂A quadratures are both reduced in violation of the HUR.
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duration τ3 and τ4 do not decohere the spin state at the earlier
time t, but we observe a slow rise in the uncertainty product after
an optimal probe duration τ3 in panel (b) of Fig. 2. The optimal
probe duration is longer and the increase in uncertainty is slower
than for τ1, which may be due to the reduction of the length of the
mean spin, appearing in the definition of x̂A and p̂A and hence in
the effective coupling strength of the field and atomic oscillator
degrees of freedom. A too long τ3 depolarizes the spins and hence
reduces the efficiency of the final τ4 measurement which plays an
important role for the retrodicted variance (see Supplementary
Note 4).

The outcome of the Faraday rotation measurements by
coupling to atomic oscillator quadratures in arbitrary directions
are shown by polar plots in Fig. 3. The blue curve shows
the variance conditioned on the prior measurements (Eq. (10) in
Methods). The result is scaled to atomic units, i.e., we
plot ðVarðm2jm1Þ � 1

2Þ=κ22, and we observe that the variance of
the p̂A quadrature (horizontal direction in the polar plot) is a
factor 0.80 ± 0.05 below the SQL, and the anti-squeezed x̂A
quadrature is noisier than the SQL (vertical direction in the polar
plot). When we implement also the subsequent m3 and m4

measurements (Eq. (11) in Methods), the corresponding
ðVarðm2jm1;m3;m4Þ � 1

2Þ=κ22, shown as the red curve in
Fig. 3a shows that x̂A is now subject to a similar squeezing effect
as observed for p̂A. The degree of squeezing is less than
theoretically predicted for the ideal experiment in Fig. 1(c)
because decay and decoherence in the experiment is not
considered in the simple theory.

Another reason for the discrepancy between Figs. 1c and 3 is
the more complex relations between the retrodicted variance of
the optical measurement and the hypothetical projective atomic
measurement for directions in the oscillator phase space, θ ≠ 0; π2.
The optical measurement outcome is correlated with the atomic
observables, represented by the full matrix character of the
operators ρ and E and hence its expectation value and variance in
general involve both the probability distribution (diagonal
elements) and coherences (off-diagonal elements) in Eq. (3).
We thus emphasize that while the determination of the
conditional variances of the optical measurement, for θ ≠ 0; π2,
are in agreement with our theoretical expectations for those
quantities, the angular dependence of the results is different from
the one of the hypothetical projective measurement of the atomic
quadrature observables. Only in the limit of large κ2, we recall
that the optical Faraday rotation measurement becomes a

projective atomic measurements, as shown in Supplementary
Note 3.

Discussion
We have demonstrated that measurements of two non-
commuting observables of a spin oscillator can both be retro-
dicted with a precision below the SQL by prior and posterior
QND detection of these observables. These detection results
respectively condition the Gaussian Wigner function for the
density matrix ρ(t) and the effect matrix E(t) which together
incorporate all our knowledge about the system at the past time t
and thus provide our best estimate of the outcome of any mea-
surement on the system. The past quantum state theory violates
the HUR for non-commuting observables of the spin oscillator,
and it may also violate error-disturbance relations3,4 for
sequential measurements of non-commuting observables, as the
disturbance of the system by the first measurement does not
prevent precise retrodiction of the second measurement outcome
by the later probing. Our detection method is compatible with
spin-based sensing and spectroscopy32–34, and the predicted and
retrodicted evolution may offer insight and allow precision esti-
mation of external influences, which can be applied to general
quantum metrology2 such as interferometers35,36,
magnetometers21,37,38 and force sensors based on mechanical
oscillators18,39.

Methods
Experiment details
Experimental setup. The experiment setup (Fig. 1) includes a 4-layer magnetic
shielding, containing a paraffin-coated 20 mm × 7mm × 7mm rectangular vapor
cell, and a set of coils for generating a homogeneous bias magnetic field of 0.71G
which gives a ground-state Zeeman splitting of about ΩL = 2π × 500 kHz. The
measured decay time for the atomic Zeeman population and coherence are
T1 = 125 ms and T2 = 20 ms, respectively, with the latter mainly limited by
residual magnetic field inhomogeneity. A y-polarized probe laser propagating along
the z-axis is blue-detuned by 2.1GHz from the 5S1=2; F ¼ 2 ! 5P3=2; F

0 ¼ 3
transition of the D2 line. Its intensity is modulated at twice the Larmor frequency
by an acousto-optic-modulator to implement the stroboscopic quantum back-
action evasion protocol22, with an optimal duty cycle of 14%. In this protocol, the
variance of Ŝy in photon shot noise unit for pulse duration τ after the interaction
is22

Var Ŝ
out
y;τ

� �
SN

� 1þ ~κ 2 þ ~κ 4

3
1� Sinc ðπDÞ
1þ Sinc ðπDÞ

� �
; ð5Þ

where D is duty cycle, and ~κ 2 is proportional to κ2 with a coefficient accounting for
the stroboscopic effect (See Supplementary Note 6). The home-made balanced
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Fig. 3 Polar plot of the experimentally observed (and rescaled) variances. aMeasured ðVarðm2jm1Þ � 1
2Þ=κ22 (blue) and ðVarðm2jm1;m3;m4Þ � 1

2Þ=κ22 (red)
for the Faraday probing of atomic quadratures x̂AðθÞ. The data are obtained with optical probe pulse durations corresponding to coupling strengths κ21 ¼ 1:7,
κ22 ¼ 0:81, κ23 ¼ 3:3 and κ24 ¼ 2:2 between the atoms and the field. A value of 1/2 corresponds to the standard quantum limit (SQL) for the atomic spin
variance. b Zoom-in of the red curve in (a). The shaded error bar (one standard deviation) is derived from 5 identical experiments, each consisting of
10,000 repetitions of the pulse sequence.
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photodetector for measuring the Sy has a quantum efficiency of 92.4% and it
operates in the unsaturated regime up to 12 mW.

First, we prepare the atoms in the state 5S1=2 F ¼ 2;mF ¼ �2j i (with quantum
number mF associated with the quantization axis along x, the direction of the
magnetic field) by applying the circular polarized and spatially overlapped σ−

pump and repump lasers propagating along the x-direction. We achieve up to
97.9% degree of spin orientation, as measured by the magneto-optical
resonances40. The optimized laser powers are 50 mW for the repump and 5mW
for the pump, both having elongated-Gaussian transverse intensity distribution.
The probe mode is a symmetric Gaussian with 1/e2 beam diameter of 6 mm. All
three fields cover nearly the entire cell volume.

Calibration of the spin projection noise limit. The coupling strength ~κ2 of the atom
and field variables is calibrated by measuring the spin noise of the atomic ensemble
in thermal equilibrium which is unpolarized and not affected by the tensor
interaction. The observed spin noise in the thermal state should be 5

4 �
Var ðx̂A; p̂AÞCSS by the following reasoning. The thermal state is isotropic, which

implies ĥj2x i ¼ ĥj2y i ¼ ĥj2z i ¼ FðFþ1Þ
3 ¼ 2 for F = 2. Meanwhile, all sublevels have

the same population, including those in F = 1 which are not observed in the
measurement. Since there are 8 sublevels in total for 5S1/2 hyperfine states, and 5 of
them belong to F = 2, the observed noise will thus be 2 � 58 ¼ 5

4. This is
5
4 times the

noise variance ĥj2z i in the CSS deduced from the Heisenberg uncertainty relation.
In our system, the linearly polarized probe light is transmitted through the

atomic sample and it undergoes a small polarization rotation due to its interaction
with the atoms. Our effective polarization homodyne detection employs the
original linear polarization component as a local oscillator for the orthogonal
component of the field system generated by the interaction with the atoms. The
total noise on the optical readout signal includes photon shot noise and spin noise,
σ2xph ¼ 1

2 þ κ2σ2pat . In addition to estimating the coupling strength κ from the

physical parameters, we can thus infer its value from the noise in the probe
experiments. In order to calibrate the photon shot noise level, the Larmor
frequency is tuned far away from the lock-in detection bandwidth by changing the
DC bias magnetic field, suppressing the noise contribution from the spin oscillator.
The photon shot noise depends linearly on the input probe power21, since for the
coherent state of light the variances of Ŝy and Ŝz should satisfy

Var ðŜyÞ ¼ Var ðŜzÞ ¼ Sx
2 . In addition, as shown in ref. 21, the linear scaling of spin

noise power as a function of the atomic number indicates a quantum-limited
performance and the QND character of the measurement.

Calibration of the measurement direction in the spin oscillator phase space. In the
rotating frame, we first measure the quadrature p̂A. To measure x̂A, we need to wait
for the spin oscillator to rotate by π/2, i.e., a quarter of the Larmor period. Here
we describe how we verify that the measured quadrature is really x̂A, perpendicular
to p̂A.

As depicted in the main text, we use a homogeneous DC bias magnetic field Bx
in the spin orientation direction, which is the x-direction in this paper. This
corresponds to an additional Hamiltonian term Ĥ ¼ ΩL Ĵx with ΩL = gFμBBx/ℏ,
where gF is the hyperfine Landé g-factors for the ground state of 87Rb, while μB and
B are the Bohr magneton and the magnitude of the applied magnetic field. If we
also add a radio frequency (RF) magnetic field oscillating at frequency Ω along the

y-direction such that in the absence of light Bext ¼ Bxex þ ½Bc cosðΩt þ ϕÞ þ
Bs sinðΩt þ ϕÞ�ey with constant Bc and Bs one can derive Heisenberg equations of

motion for the collective spin components Ĵ
0
y and Ĵ

0
z in the rotating frame41,

∂Ĵ
0
y

∂t
¼ �ωs sinðΩLtÞ sinðΩt þ ϕÞJx ð6Þ

∂Ĵ
0
z

∂t
¼ �ωc cosðΩLtÞ cosðΩt þ ϕÞJx; ð7Þ

with ωc,s = gFμBBc,s/ℏ. Choosing the phase and the frequency of the RF-drive such

that ϕ = 0 and Ω = ΩL, we obtain
∂Ĵ

0
y

∂t ¼ � ωs Jx
2 and ∂Ĵ

0
z

∂t ¼ � ωcJx
2 , given interaction

durations T satisfying the condition ωc,sT ≪ 1 ≪ ΩT. With the RF magnetic field

pulses, we are thus able to independently change the spin components Ĵ
0
y and Ĵ

0
z

by an amount controlled by the sine and cosine components Bs and Bc.
Therefore, we can implement the calibration with the pulse sequence depicted

in Fig. 4. An RF field pulse is applied between the pump laser and probe laser to
create a transverse spin excitation, rotating in the y-z plane. The stroboscopically
modulated probe laser is separated into two parts. The first measures the projection
component in p̂A and the second measures that in x̂A. The phase of the RF field
determines the phase of the rotating transverse spin (i.e., the direction in the
rotating frame). It is easy to maximize the signal of the first part of the probe by
adjusting the phase of the RF field. At this time, the induced transverse spin should
be in the p̂A direction (in the rotating frame) and there should be only a minimal
spin component in the x̂A direction. We verify that, after a quarter of the Larmor
period, the induced spin is in the x̂A-direction.

Data analysis. Since the expectation value μ of the gaussian distribution Pr(m2∣m1)
is proportional to m1, experimentally, the variance of m2 conditioned on the
measurement before t, with result m1, should be obtained from linear numerical
feedback23 as

Var ðm2jm1Þ ¼minα Var ðm2 � αm1Þ½ �
¼minα½Var ðm2Þ þ α2 Var ðm1Þ � 2αCov ðm2;m1Þ�

¼Var ðm2Þ �
Cov2ðm2;m1Þ

Var ðm1Þ
:

ð8Þ

where the minimum is achieved when

α ¼ Cov ðm2;m1Þ
Var ðm1Þ

ð9Þ

Similarly, since the expectation value μρE of the gaussian distribution Pr
(m2∣m1, m3, m4) is proportional to m1, m3, and m4, the variance of m2 conditioned
on the measurement before and after t, i.e., m1, m3, and m4, should also be obtained
from linear numerical feedback as

Var ðm2jm1;m3;m4Þ ¼minα;β;γ½Var ðm2 � αm1 � βm3 � γm4Þ�
¼minα;β;γ Var ðm2Þ þ α2 Var ðm1Þ þ β2 Var ðm3Þ þ γ2 Var ðm4Þ

	
� 2αCov ðm2;m1Þ � 2βCov ðm2;m3Þ � 2γCov ðm2;m4Þ
þ 2αβCov ðm1;m3Þ þ 2αγCov ðm1;m4Þ þ 2βγCov ðm3;m4Þ�

ð10Þ
The minimal is achieved when

α ¼ 1
Λ

Cov14Cov23Cov34 þ Cov13Cov24Cov34 � Cov12Cov
2
34



�Cov14Cov24Cov33 � Cov13Cov23Cov44 þ Cov12Cov33Cov44Þ

β ¼ 1
Λ

Cov13Cov14Cov24 þ Cov12Cov14Cov34 � Cov23Cov
2
14



�Cov24Cov34Cov11 � Cov12Cov13Cov44 þ Cov11Cov23Cov44Þ

γ ¼ 1
Λ

Cov13Cov14Cov23 þ Cov12Cov13Cov34 � Cov24Cov
2
13



�Cov23Cov34Cov11 � Cov12Cov14Cov33 þ Cov24Cov11Cov33Þ

Λ ¼ 2Cov13Cov14Cov34 � Cov214Cov33 � Cov213Cov44
þ Cov11Cov33Cov44

ð11Þ

Here Covuv = Cov(mu, mv) represent the covariance between mu and mv, where
u, v = 1, 2, 3. When u = v, Covuu = Var(mu).

Data availability
The data sets generated and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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Fig. 4 Pulse sequence for calibration of measurement direction. The RF
field pulse between the pump and probe laser pulses creates a transverse
spin excitation, rotating in the y-z plane. The first part of probe pulse
measures p̂A. By tuning the phase of the RF field to maximize the first probe
signal, we can validate that the transverse spin is in the p̂A direction (in the
rotating frame). If the second probe signal, after a quarter of the Larmor
period, is minimal, we verify that the induced spin is in the x̂A-direction.
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