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Zinc binding groups for histone deacetylase inhibitors
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ABSTRACT
Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the
active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high
affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An
alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs.
Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to
overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed
and their features have been discussed for further design of HDACIs.
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Introduction

Histone deacetylases are a family of enzymes that are responsible
for removing acetyl groups from the E-N-acetyl group of histone
lysine residues1–3. A total of 18 different isoforms of HDACs (which
are classified into four classes) have been discovered. Class I
(HDAC1, 2, 3, and 8), II (HDAC4–7, 9, and 10), and IV (HDAC11).
HDACs are zinc-dependent enzymes which require the zinc ion for
the catalytic reaction. On the other hand, class III HDACs (Sirt1–7)
are a group of nicotinamide adenine dinucleotide (NADþ)-depend-
ent enzymes. Enzymes in class I and II are known as classical
HDACs, which attracted enormous attentions in the HDAC function
exploration and inhibitor development.

Overexpression and aberrant recruitment of HDACs play crucial
roles in a variety of diseases such as neurodegenerative dis-
eases4,5, infection6,7, human immunodeficiency virus (HIV)8–10, car-
diac diseases11,12, and especially tumour13. Inhibitors of HDACs
have received considerable attention, in particular due to their
potential as antitumor agents. Four HDAC inhibitors (HDACIs) have
been approved by US Food and Drug Administration (FDA) for the
treatment of cancer (Figure 1). Suberoylanilide hydroxamic acid
(SAHA)/Vorinostat (Zolinza) was approved in 2006 for the treat-
ment of refractory and relapsed Cutaneous T-cell lymphoma
(CTCL)14. The cyclic tetrapeptide HDACI, FK228/Romidepsin
(Istodax)15, was also approved for treatment of CTCL. PDX101/
Belinostat (Beleodaq)16 and LBH589/Panobinostat (Farydak)17 were
approved for the treatment of peripheral T-cell lymphoma (PTCL)
and multiple myeloma, respectively (Figure 1).

Structures of HDACIs are generally characterised by a zinc bind-
ing group (ZBG), a cap, and a linker that combines the above two
parts together (Figure 2). The cap and linker bind to residues in
the active site of HDACs, thus contribute to the ligand–receptor
interactions and affect the selectivity of HDACIs. Meanwhile,
binding of ZBGs to the zinc ion and surrounding residues
play the decisive role in the inhibitory activity of HDACIs18.

Although different ZBGs have been evaluated and reported, modi-
fications in the cap and linker still received more attention in the
development of potent and selective HDACIs19. Structural modifi-
cation in the ZBGs of current HDACIs might be a more efficient
way of getting HDACIs to the market. In consideration of the
importance of ZBGs as functional moieties in the structure of
HDACIs, different kinds of ZBGs as well as their advantages and
disadvantages are systematically reviewed in the present work.

Classic ZBGs

The commonly used ZBGs, such as hydroxamic acid and benza-
mide, along with other ZBGs from HDACIs that had been
approved by FDA or currently being investigated in clinical trials
(such as carboxylic acid and thiol), are classified as classic ZBGs.
These ZBGs have been widely accepted in the development of
HDACIs, and their characteristics have been extensively studied20.
The classic ZBGs are characterised by high activity, selectivity, but
also off-target effects, potential toxicities and instability in vivo21.

Hydroxamic acid

Hydroxamic acid is the most commonly used ZBG for its strong
binding affinity with the zinc ion. By analysis of the crystal struc-
ture of the inhibitor–receptor complex, it was elucidated that
hydroxamic acid binds to the zinc ion in a chelating manner
(Figure 3), which is considered as a guarantee of inhibitor activity.
The naturally derived compound Trichostatin A (TSA), which
showed very high HDAC inhibitory and antiproliferative activities,
was equipped with hydroxamic acid as ZBG22. The first HDAC
inhibitor approved by the FDA, SAHA, also utilised the hydroxamic
acid as the ZBG. Moreover, most HDACIs currently in clinical trials
shared structural similarities with TSA and SAHA, using the
hydroxamic acid as ZBGs23.
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The advantages of hydroxamic acid group as ZBG include
superior zinc binding ability, fair in vitro stability, good solubility,
and easy synthesis. Therefore, in most cases, this group was the
preferred ZBG in the design of new HDACIs. Various groups have
been designed to mimic the hydroxamic acid group, but few
exhibited higher potency24. The disadvantages of hydroxamic acid
group as ZBG in HDACIs are also obvious. The selectivity of
hydroxamic acid group is often questioned in the drug design,
because of its high binding affinity to the zinc and other ions25.
Undesirable side effects can also result from the binding of
hydroxamic acid group to other zinc-dependent enzymes such as
aminopeptidases, matrix metalloproteinases, and carbonic anhy-
drase. The common approaches to improve the selectivity of
HDACIs with hydroxamic acid group are structural modifications in
the linker and cap regions. Poor pharmacokinetics (rapid degrad-
ation and clearance in vivo) were also associated with HDACIs with
hydroxamic acid as ZBG26.

Benzamide

Benzamide derivatives are a big class of HDACIs with superior class
I selectivity compared with hydroxamic acid HDACIs. The crystal
structure analysis revealed chelation of the zinc ion by the amino
group in the benzamide. Additionally, the distance between the
carbonyl oxygen and zinc is more than 2.5 Å, indicating weak
interactions. Chidamide (Epidaza)27 is a benzamide HDACI
approved by Chinese Food and Drug Administration (CFDA) for
the treatment of relapsed or refractory PTCL (Figure 4). MS-
27528–31 (HDAC1 selective) and MGCD010332–36 (HDAC1, 2 select-
ive) are two benzamide HDACIs designed for the treatment of
both hematologic malignancies and solid cancers, which are cur-
rently in clinical trial as mono therapies or in combination with
other drugs. Good performances in clinical trials were also
observed for another benzamide derivative, CI99437–40.

The most significant feature of benzamide as ZBG in HDACIs is
class I selectivity or individual HDAC isoform selectivity. Side
effects of HDACIs are supposed to be reduced with the improve-
ment of selectivity. The highly selective HDACIs could also serve
as probe molecules in the diagnosis and pathogenetic research of
diseases involving only a specific isoform of HDACs. The major dis-
advantage of benzamide derivatives is relatively compromised
therapeutic benefits in clinical trials, which might explain the fact
that, none of the benzamide HDACIs has been approved by the
US FDA yet. Although high selectivity implies safety in clinical
application, the exposed amino group in the benzamide structure
could potentially induce in vivo toxicity41. Furthermore, tumour
cells are more likely to develop drug resistance against highly
selective inhibitors, which might compromise the therapeutic
effects of benzamide HDACIs in long-term therapies42.

Figure 3. The binding pattern of TSA in the active site of HDAC8 (PDB entry:
1T64).

Figure 1. Structures of HDACIs approved by the US FDA.

Figure 2. Pharmacophore of HDACIs.
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Carboxylic acid

Carboxylic acid derivatives are a small group of HDACIs. Due to
their weak zinc ion binding abilities, carboxylic acid HDACIs have
not attracted as much attention as HDACIs with hydroxamic acid
or benzamide ZBGs. The short chain fatty acids in clinical trials,
such as valproic acid43,44, butyric acid45, and phenylbutyrate46,
only exhibited IC50 in the magnitude of mM, as revealed by the in
vitro enzymatic inhibitory assay (Figure 5). Nonetheless, the mar-
keting potential of compounds in this group is still under evalu-
ation. Current activity data derived from the clinical trials indicated
the potential of application of these fatty acids in tumour
treatment.

Thiols

Thiol group is commonly used for metal binding in the drug
design, with the most famous example of Captopril. The first

natural HDACI approved by US FDA, FK228, was regarded as a
pro-drug, which can be metabolised to its active form via glutathi-
one conjugation. The thiol group exposed in this process was sup-
posed to chelate the zinc ion. Many thiol derivatives have been
reported by structural modification of SAHA47 and potent natural
products48 or by de novo design49–53. However, none of them has
been gained access to the clinical research so far.

Since sulfydryl group is a strong ZBG which makes few contri-
butions to the selectivity of HDACIs, the selectivity can be
adjusted by structural modifications in the linkers and caps of
HDACIs. Introduction of thiol group to HDACIs also increases the
risk of side effects caused by binding to other metal-dependent
targets in vivo.

Novel ZBGs

Since classic ZBGs possess both obvious advantages and
disadvantages, efforts have been made in discovery of more ideal

Figure 4. Structures of the benzamide HDACIs.

Figure 5. Carboxylic HDACIs in clinical trials.
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ZBGs for HDACIs. Classes of HDACIs with novel ZBGs featured with
high selectivity, potency, and stability have been designed and
synthesised19. Although none of the HDACIs with novel ZBG has
gained access to clinical trial currently, such investigations guaran-
teed the rise of new generations of HDACIs with improved
pharmacological and pharmacokinetic profiles.

An imidazole thione containing molecule (12), which showed
HDAC8 selectivity over HDAC1 and HDAC3, was discovered by an
enzyme based screening approach (Figure 6)54. The imidazole thi-
one group supposedly could bind to the zinc ion, thus could serve

as a candidate ZBG for the further design of selective HDACIs.
Molecules with pyrimido[1,2-c][1,3]benzothiazin-6-imine scaffold
were also discovered to selectively target HDAC855.

A series of tropolone derivatives were reported by Wright and
co-workers as HDAC2 selective inhibitors56. Molecule 13 displayed
high levels of selectivity for HDAC2 (Ki¼ 0.06 nM) comparing with
HDAC1 (not active), HDAC4 (Ki¼ 10860 nM), HDAC5 (not active),
HDAC6 (not active), and HDAC8 (Ki¼ 1.47 nM). It can also potently
inhibit the growth of several tumour cell lines in the antiprolifera-
tive assay. In the molecular docking analysis, simulation results

Figure 6. HDACIs with novel ZBGs.
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revealed that the tropolone group is capable of zinc ion binding.
These investigations into tropolone-based HDACIs could give rise
to a new chemotype of HDACIs with high potency and selectivity.

Oyelere and co-workers identified 3-hydroxypyridin-2-thione
(3-HPT) as a novel ZBG, and the 3-HPT derivatives were HDAC6
selective inhibitors with no inhibition of HDAC157. In this series,
molecule 14 exhibited HDAC6 selectivity with inhibitory IC50 value
of 300 nM compared with HDAC8 (IC50 value of 3100 nM). Docking
studies revealed that the 3-HPT group functions as ZBG. It is valu-
able for the 3-HPT derivatives in the development of specifically
selective HDACIs for the treatment of tumour and other diseases
without interference with HDAC1.

Several hydroxamic acid substitutes have been designed and
synthesised as ZBGs by Attenni and co-workers, and the inhibitory
activities were evaluated58. Primary amide containing molecules
exhibited good performance in the enzymatic inhibition and anti-
tumor assays. Molecule 15 with primary carboxamide moiety func-
tioned as ZBG showed selective inhibitory pattern for HDAC1, and
demonstrated antitumor efficacy in a xenograft model comparable
to vorinostat. These findings revealed that primary carboxamide
group could be used as an alternative ZBG for further HDACI
design.

Chelidamic derivatives have been reported as novel HDACIs by
Mai and co-workers59. Molecules with chelidamic scaffold repre-
sented as the zinc binding group (16) exhibited inhibitory effects
on both HDAC1 and HDAC4. Multiple analyses, including cell cycle
analysis, apoptosis induction, and granulocytic differentiation ana-
lysis, have revealed that the representative molecules have the
potential to serve as leading compounds in the cancer treatment.
Chelidamic group as ZBG is considered as a promising candidate
in the development of selective HDACIs by further structural
modification.

Liao and co-workers discovered a class of HDACIs with benzoyl-
hydrazide scaffold as the ZBGs60. Molecule 17 exhibited class I
selectivity, especially effective against HDAC3 (IC50 value of
0.06lM). Subsequent in vitro assays with molecule 17 revealed
potent anti-proliferative activities along with less overt cytotoxicity
comparing with both SAHA and MS-275. Other in vitro evaluations
emphasised the potential of benzoylhydrazide as new chemotype
of HDACIs as well. Recently, Chou and co-workers also reported a
series of hydrazide derivatives as potent class I HDACIs61. The SAR
(structure–activity relationship) analysis revealed that a 3-carbon-
length b-nitrogen alkyl substituent chain provides ideal activity.
One of the most potent molecule, 18, exhibited HDAC3 inhibitory
activity of 0.95 nM (IC50 value), and EC50 values of 36.37, 76.64,
and 151.7 nM against MV4–11, Molm14, and RS4–11 cell lines,
respectively.

HDACIs with hydrazide motif are of significant importance as a
new generation. Without the dependence on the zinc binding
interactions, these molecules are supposed to exert less off-target
effects. Moreover, the reported hydrazide derivatives showed class
I selectivity (especially HDAC3), indicating the potential of success-
ful disease treatment without serious adverse reactions. However,
long-term use safety is yet to be confirmed for those HDACIs with
hydrazide group.

A distinct class of HDACIs using trifluoromethyloxadiazolyl
(TFMO) moiety as ZBG was reported by Nolan and co-workers62.
Binding patterns of these molecules were elucidated to be a non-
chelating manner by crystallographic approaches. Zinc binding of
TFMO derivatives is mediated by a fluorine atom in the trifluoro-
methyl group and aided by an oxygen atom in the oxadiazole het-
erocycle. In the enzymatic inhibition assay, these TFMO containing
HDACIs exhibited high selectivity for HDAC class IIa. Molecule 19
displayed Ki values of 0.126, 0.080, 0.036, and 0.019 lM against

HDAC4, 5, 7, and 9, respectively. In contrast, the Ki values of mol-
ecule 19 against HDAC6, HDAC8, and the rest HDACs (HDAC1, 2,
3, 10, 11) are 2.32, 3.57, and >10 lM, respectively. These class IIa
selective HDACIs were further utilised to reveal the gene regula-
tion mechanisms of class IIa HDACs. The discovery of TFMO-based
HDACIs supports the design of selective HDACIs being of import-
ance in treatment of a specific disease, and exploration of underly-
ing mechanisms as probe molecules.

Woster and co-workers reported the 2-(oxazol-2-yl)phenol moi-
ety as a novel ZBG that can be used for the design of potent
HDACIs63. A series of 2-(oxazol-2-yl)phenol derivatives were syn-
thesised and tested in the activity assay. The derived molecules
exhibited potent HDAC1, HDAC6 and HDAC10 inhibitory activ-
ities. Among these compounds, molecule 20 (IC50 7.5lM against
MV-4–11 leukemia cell line) could efficiently induce the acetyl-
ation of histone 3 lysine 9 (H3K9) and p21Waf1/CIP1 compared
with SAHA. Molecular modelling analysis revealed that 2-(oxazol-
2-yl)phenol group shows a similar zinc-binding pattern as the
benzamide group in the ligand of a crystal structure (PDB entry:
4LY1). Although no remarkable selectivity was observed, the
2-(oxazol-2-yl)phenol derivatives are considered promising candi-
dates as ZBG in the development of novel and potent HDAC
inhibitory drugs.

Hydroxypyrimidines (21) without contribution to the selectivity
of HDACs were discovered to be a new ZBG64. The hydroxyl group
and the pyrimidine group in the ZBG are both critical for activity,
as revealed by SAR studies. Park and co-workers have identified
N-[1,3,4]thiadiazol-2-yl and N-thiazol-2-yl sulfonamide groups as
promising ZBG (21) with probably better physicochemical proper-
ties than hydroxamic acids, as demonstrated by the clinical stud-
ies65. The oxygen atoms of the sulfonamide group and the
nitrogen atom of the thiadiazol or thiazol rings were predicted to
bind to the zinc ion as revealed by the molecular modelling stud-
ies. Dallavallea and co-worker reported phenyl-4-yl-acrylohydroxa-
mic acid derivatives as potent HDACIs with cinnamic-based
hydrazones and amino or hydroxyureas as ZBGs (23)66. In the
activity studies, the derived molecules were discovered to be less
effective than the parent hydroxamic acid derivatives. Wu and co-
worker designed HDAC2 selective inhibitor b-hydroxymethyl chal-
cone (24), which exhibited about 20-fold isoform selectivity of
HDAC2 (IC50 0.17lM) over HDAC1 (IC50 2.74 lM)67. A reaction-
mechanism-based pattern was proposed in the binding of the
derived inhibitor to zinc ion by intramolecular cyclisation which
was catalysed by the zinc atom.

Selectivity is considered to play important role in the safety
and potency of HDACIs. The novel ZBGs not only functioned as
zinc chelators in the structures of HDACIs, but also can influence
the selectivity of the enclosed molecules. The imidazole thione
and pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives exhibited
inhibitory selectivity of HDAC8, which is implicated in cancer,
schistosomiasis, and Cornelia de Lange syndrome68. The tropolone
derivatives can selectively inhibit the bioactivity of both HDAC2
and HDAC8. The primary amide derivatives showed inhibitory
selectivity of HDAC1, and the 3-HPT derivatives exhibited selectiv-
ity of HDAC6 over HDAC1. The chelidamic and hydrazide contain-
ing HDACIs featured selectivity of HDAC1, 4, and HDAC3,
respectively. Two chemotypes of HDACIs even exhibited group-
specific inhibitory selectivity of HDACs, such as the TFMO (with
selectivity of class IIa HDACs) and 2-(oxazol-2-yl)phenol (with
selectivity of HDAC1, 6, and 10) derivatives. The mentioned ZBGs
can be applied to the design of HDACIs for the treatment of dis-
eases or mechanistic studies by targeting a specific HDAC isoform
or a specific group of HDACs.
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Conclusion and discussion

Inhibition of HDACs has achieved rapid development in recent
years, and HDACIs have exhibited enormous therapeutic potential
in the treatment of cancer and other diseases. More than 15
HDACIs have been investigated in clinical trials, and four of them
have gained approval from the US FDA. As targeted antitumor
drugs, the efficacy and safety of HDACIs in tumour treatment had
been confirmed69. Therefore, development of HDACIs has
attracted extreme attentions in the field of drug discovery.
However, current development efforts focused on structural
reorganisation and modification in the cap and linker motifs, while
the ZBGs did not receive much attention, the classical ZBGs such
as hydroxamic acid and benzamide groups were usually directly
adopted into the new compounds.

Hydroxamic acid group is widely used as ZBGs due to its high
zinc chelating ability, and benzamide is chosen for its class I
HDACs selectivity. The application of carboxylic acid and thiol
groups were limited by the lack of potency and only found in a
small group of HDACIs. The potency and safety of HDACIs with
the above ZBGs have been evaluated by various studies including
different stages of clinical trials. Discovery of HDACIs with classic
ZBGs, and especially the hydroxamic acid and benzamide deriva-
tives, plays significant roles in the drug development by the inhib-
ition of HDACs. Substituting the hydroxamic acid and benzamide
groups with other groups usually resulted in reduction of activities
comparing to the current highly active HDACIs. Moreover, the
HDACIs designed with novel ZBGs from the beginning also have
difficulties to show improved activities than those with the clas-
sical hydroxamic acid group.

In spite of the difficulties mentioned above, introduction of
novel ZBGs is still necessary for the development of HDACIs
of new chemotypes so that the pharmacokinetic and safety issues
of current agents could be improved. Significant achievements
have been gained in the development of HDACIs with novel ZBGs.
Many have exhibited superior selectivity, such as the tropolone,
3-HPT, and TFMO derivatives. Some molecules also displayed sur-
prisingly high potency in the activity assay, such as the hydrazide
HDACIs discovered by Chou and co-worker (exhibited enzyme
inhibitory activity with IC50 in the pM range and antiproliferative
activity with IC50 in the nM range). Although none of the HDACIs
with novel ZBGs has been approved by FDA or even gained access
to the clinical trials, the future of these HDACIs as new genera-
tions is promising. The encouraging outcomes of these investiga-
tions also guaranteed further explorations on new ZBGs in HDACI
development. Wide application of novel ZBGs in the HDACIs
design will contribute to the emergence of new HDACIs.

Perspectives

Zinc binding groups play significant role in the potency of
HDACIs. The wide application of current ZBGs is restricted by the
poor pharmacokinetics or selectivity. Thus, it is necessary to
develop new types of ZBGs for the design of HDACIs with
improved druggability. In order to be selected in the design of
HDACIs, the new types of ZBGs should exhibit advantages in
potency, selectivity, pharmacokinetics, or safety compared with
the classic ZBGs. However, it is still a challenge for the new
designed ZBGs to show better performance than the classic ZBGs
in the design of HDACIs. Therefore, a vast amount of further
research work is needed in the discovery of novel ZBGs with
exploitable value. Structural derivatisation of current ZBGs, such as
hydroxamic acid and benzamide groups, is believed to be an effect-
ive way of rapid discovery of ZBGs with development potential.

Novel ZBGs can be efficiently derived by computing methods, ref-
erence to or modification of natural structures, screening of
molecular data base, isostere substitution, and de novo design.
Study on the metabolic patterns of current ZBGs also provides
valuable information for the design of new ZBGs.
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