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Abstract

Land-use change and climate change are recognized as two main drivers of the current bio-

diversity decline. Protected areas help safeguard the landscape from additional anthropo-

genic disturbances and, when properly designed, can help species cope with climate

change impacts. When designed to protect the regional biodiversity rather than to conserve

focal species or landscape elements, protected areas need to cover a representative sam-

ple of the regional biodiversity and be functionally connected, facilitating individual move-

ments among protected areas in a network to maximize their effectiveness. We developed a

methodology to define effective protected areas to implement in a regional network using

ecological representativeness and functional connectivity as criteria. We illustrated this

methodology in the Gaspésie region of Québec, Canada. We simulated movements for the

endangered Atlantic-Gaspésie caribou population (Rangifer tarandus caribou), using an

individual-based model, to determine functional connectivity based on this large mammal.

We created multiple protected areas network scenarios and evaluated their ecological rep-

resentativeness and functional connectivity for the current and future conditions. We

selected a subset of the most effective network scenarios and extracted the protected areas

included in them. There was a tradeoff between ecological representativeness and func-

tional connectivity for the created networks. Only a few protected areas among those avail-

able were repeatedly chosen in the most effective networks. Protected areas maximizing

both ecological representativeness and functional connectivity represented suitable areas

to implement in an effective protected areas network. These areas ensured that a represen-

tative sample of the regional biodiversity was covered by the network, as well as maximizing

the movement over time between and inside the protected areas for the focal population.
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Introduction

Habitat change is recognized as the main driver of the current declines of terrestrial species

[1–3]. Securing habitats by creating or expanding protected areas networks is part of the solu-

tion to counter biodiversity loss [4]. A regional protected areas network could be considered

ultimately effective insofar as it can sustain the region’s biodiversity into some reasonably fore-

seeable future. Such effectiveness is not guaranteed [5, 6] and could be limited by many factors

[7]. We consider three such factors: ecological representativeness [8], functional connectivity

among protected areas within the network [9] and resilience to climate change [10].

Ecological representativeness measures the degree to which the various non-anthropogenic

habitats or ecosystem types (sensu [11]) within a focal region are available within a protected

areas network in proportion to their regional abundance [12, 13]. When protected area loca-

tions are skewed towards certain habitats [14, 15], usually for economic or social reasons, eco-

logical representativeness will be low, and habitats considered to be of high-value for some

species may be underrepresented [8]. Conversely, when ecological representativeness is high,

it is reasonable to assume that the habitat requirements for many species will be satisfied

within the protected areas network. This assumption is usual in conservation, and representa-

tiveness is one of the core concepts in systematic conservation planning [13, 16].

A high degree of ecological representativeness may be a necessary condition for an effective

protected areas network, but it is not sufficient. There are species whose requirements are not

automatically satisfied by ecological representative networks, such as endemic or threatened

species [17]. Another exception, which we explore here, would be wide-ranging species with

habitat requirements varying among seasons or life history stages. Functional connectivity is

“the degree to which the landscape facilitates or impedes movement among resource patches”
[18] or, in this case, among protected areas within a protected areas network. Functional con-

nectivity is species- or population-specific [19, 20]. A protected areas network with high func-

tional connectivity facilitates the movement between different protected areas for individuals

of a given species, increasing their access to resources and, ultimately, the rates of recruitment

or survivorship [21]. Increasing functional connectivity may thus increase population size and

decrease extinction risk for the vulnerable species [21]. These effects would increase the effec-

tiveness of a protected areas network.

Climate change is a major driver of ecosystem change and its negative impacts on biodiver-

sity have increased rapidly over the past century [1, 3, 22, 23]. Climate change disrupts envi-

ronmental patterns and species’ habitats globally [24, 25]. As a result, species distributions and

individual movement patterns are impacted [26, 27]. Because of the “cost of waiting,” manag-

ers should proactively account for future climate change effects when implementing new pro-

tected areas networks [28] or expanding existing networks. The effectiveness of a fixed

protected areas network designed for current conditions may decrease in the future if ecologi-

cal representativeness or functional connectivity decline. Enhancing or maintaining functional

connectivity inside protected areas networks is thus one approach to helping species cope with

climate change [10, 29]; individuals would be better able to access resources available in distant

protected areas, or even to migrate from less to more favorable areas. Therefore, the ability of a

protected areas network to sustain functional connectivity under climate change is another

dimension of effectiveness.

Many methods exist for designing protected areas networks to achieve ecological represen-

tativeness. In the systematic conservation planning literature [13], variations of the site selec-

tion problem are posed, where one seeks a subset of available sites that, in aggregate, achieve

some measure of ecological representativeness at a near-minimum of total area or cost. Varia-

tions of these approaches exist that can also partially satisfy other conservation objectives such
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as topological connectivity, where selected sites are spatially aggregated to some degree [e.g.

30].

The aim of our paper is to present a new method to include functional connectivity in the

design process, while also accounting for its persistence under climate change. Our method

applies individual-based movement models to simulate maps of habitat use by a population,

under present conditions and under hypothetical future conditions reflecting climate change

scenarios. From these maps, we derive numerical indices of functional connectivity that allow

alternate protected areas network designs to be compared. These are coupled with a novel vari-

ant of the site-selection algorithm that constructs protected areas networks of specified total

area that can achieve a high degree of ecological representativeness while also satisfying sec-

ondary constraints on hydrological connectivity and intactness; the variant is detailed in

Schmiegelow et al. [31] and an example of application can be consulted in Saucier [32].

Our goal was to identify protected areas network designs that simultaneously achieve high

degrees of ecological representation and functional connectivity under present conditions and

future climates. Achieving this is a multi-objective optimization problem [33, 34] that does not

admit a unique solution. Instead, one may define a tradeoff surface by those points or “feasible

solutions” where no single objective can be increased without decreasing at least one other.

Such points are said to be Pareto optimal; points on the interior of this surface are suboptimal

in that other solutions exist that are better in terms of all the dimensions considered [35]. Our

design methodology used randomization to generate a large sample of feasible solutions for a

given protected areas network design problem. Using these samples, we could approximately

define the tradeoff-surface and identified a set of feasible, near-equivalent solutions in the

vicinity of any specified point on that surface.

We illustrated our method in the Gaspésie region (Québec, Canada) using the endangered

Atlantic-Gaspésie population of woodland caribou (Rangifer tarandus caribou) as our focal

population. This isolated herd, which has been identified as one of 12 Designatable Caribou

Units considered irreplaceable components of Canada’s biodiversity [36], has been declining

since the late 19th century and has reached a critical abundance level [37]. To measure func-

tional connectivity with respect to this population, we applied an individual-based model of

animal movement previously developed for this population [38]. The Québec government is

currently engaged in expanding the existing network of protected areas in this region to attain

a proportional area target of 12% [39]. To place our work in the context of this ongoing con-

servation planning exercise, we employed a variant of our design methodology that constructs

protected areas networks by adding new protected areas to the existing network. We identified

areas that were of high relative importance in achieving ecological representation in the Gaspé-

sie region and functional connectivity for the Atlantic-Gaspésie caribou under present condi-

tions and future climates.

Methods

Overview

We present a method to identify potential areas to prioritize to create an effective protected

areas network in a given region, conserving both the regional biodiversity, represented by bio-

physical surrogates as well as focal, highly mobile endangered species, while also accounting

for climate change. We illustrated this method in the Gaspésie region of Québec, Canada (Fig

1) using an individual-based model we developed previously [38] and for which we used

telemetry data collected on several individuals. We had an Animal Welfare certificate (#52-13-

112) for the capture and manipulation of these caribou, but for the current manuscript, no

additional capture session was conducted.
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We built candidate protected areas (hereafter referred to as CPAs) in the region and inte-

grated random subsets of these with the existing protected areas (Fig 1) to create a large sample

of candidate networks of the desired total area. Each candidate network was then evaluated for

effectiveness. High priority conservation areas were identified as the CPAs that occur most fre-

quently in the most effective networks. The complete workflow is summarized in Fig 2.

Study area

The Gaspésie natural region (latitude extent: 47.98 to 49.20º N, longitude extent: 64.11 to

67.57º W; Fig 1) is a physiographically defined area of approximately 25,000 km2 at the eastern

end of the Gaspésie Peninsula, in eastern Québec [39]. Except for narrow coastal bands, it

belongs to the balsam fir–white birch bioclimatic domain [40]. The climate is maritime with

abundant precipitation. Wildfire is infrequent; the main natural disturbance is spruce bud-

worm (Choristoneura fumiferana) outbreaks [40]. Approximately 90% of the region is covered

Fig 1. The Gaspésie natural region with existing protected areas (black) and additions (grey) proposed by the Québec government [39]. The Gaspésie National

Park (i.e. the black area designated by a white star) encompass most of the range and all the breeding habitats used by the Atlantic-Gaspésie caribou population. Right

inset: Province of Québec (Canada) with study area outlined.

https://doi.org/10.1371/journal.pone.0238821.g001
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Fig 2. Schematic of workflow for assembling candidate protected areas networks (bottom panel) from candidate protected areas (middle panel), which are

constructed as hydrologically connected groups of intact hydrological catchments (top panel) rooted at the headwaters (shown in blue).

https://doi.org/10.1371/journal.pone.0238821.g002
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by forests and 80% of these are on public lands [39]. Forest harvesting and the associated

extensive road network are the main proximate human disturbances to date. Only 34% of the

Gaspésie natural region is free of measurable human footprint [39].

An existing protected areas network covers 5.5% (1371 km2) of the region (Fig 1). This falls

short of the target of an ecologically representative 12%, set by the government of Québec [41].

A scenario proposed by the Ministère du Développement Durable, de l’Environnement et de

la Lutte aux Changements Climatiques (“the Ministry”, henceforth) defined 20 new protected

areas that would increase the percentage of area protected to 12.3% (3080 km2) [39; Fig 1].

The Gaspésie National Park (802 km2) is the largest protected area in the region [42]. This

park helps conserve 42 endangered and vulnerable species of plants and animals [39], includ-

ing the Atlantic-Gaspésie caribou population. Because of its designated status as endangered

[43], its capacity to move widely [44] and the vulnerability of its habitat [45], we chose this car-

ibou population as our focal population to define functional connectivity. The population is

designated because of its small size (currently ~70 individuals [37]) and the observed long-

term decline [46]. These caribou rely on alpine tundra [47, 48] as a predator-free refuge against

coyotes (Canis latrans) and black bears (Ursus americanus) [49], a habitat possibly threatened

by climate change [50, 51]. Caribou also use mid-elevation, old fir forests during winter

[47,48]. The fir forests around the park are affected by forest harvesting, and also possibly by

climate change [52].

Building protected areas networks

We adapted the BEACONs (Boreal Ecosystems Analysis for Conservation Networks) approach

to create protected areas networks by adding new protected areas to the existing ones [31, 32].

This approach uses mapped hydrological catchments as spatial units, rather than using the

cells of an arbitrary grid or other tessellation (Fig 2). This allows the design of protected areas

that simultaneously achieve terrestrial and hydrological connectivity [53, 54]. Although func-

tional connectivity for aquatic species was not a major concern in our study area [39], it is

increasingly recognized as a desirable goal in general [55]. The use of hydrological catchments

does impose some limits on the shape and size of protected areas, due to the size of catchments

and the method of stream network traversal; however, the size of the catchments was small,

implying high spatial resolution to the design. CPAs are assembled as contiguous, hydrologi-

cally connected sets of catchments satisfying minimum size and intactness criteria (Fig 2).

Using an initial “seed” catchment as starting point, a modified breadth-first traversal of the

stream network is carried out. Catchments are added as they are encountered, provided they

satisfy a catchment-level intactness criteria. The process continues until the target size is

achieved, or all pathways are blocked by headwater or non-intact catchments.

We used a custom 1:50,000 catchment layer for Gaspésie [56] (Fig 2). The catchment’s aver-

age size was 2.3 km2 (SD = 1.3 km2). We defined catchment intactness using existing 250 x

250m raster maps of the human footprint in Gaspésie [39]. These maps defined six disturbance

types: forestry activities, roads and trails, agriculture, power-line rights-of-way, urban areas,

and “other”. Only the first two of these disturbance types were widespread in our study area.

From the six disturbance rasters, we derived a 250 x 250m raster of cell-level intactness, using

a value of 0 for cells where no disturbance of any type was present, and a value of 1 otherwise.

Catchment-level intactness was then calculated as the mean cell-level intactness over all cells

within a catchment, or equivalently, as the proportion of non-intact cells. We defined our

catchment-level intactness criteria as the median catchment intactness over all catchments on

public lands, outside of existing protected areas (median value = 0.026) (Fig 2). In order to cre-

ate feasible designs given land ownership in Gaspésie, we set the intactness of catchments
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completely overlapping private lands [39] to zero so that they would be excluded from the

CPA construction (Fig 2).

Our measures of cell and catchment-level intactness give equal weight to each disturbance

type. This was not applied, in general, at the species level. The response to different disturbance

types is known to differ among species, as shown by Toews et al. ([57]) in Alberta for wolves

(C. lupus), meso-carnivores and large ungulates, or more precisely within our study area for

caribou, coyotes and bears that respond differently to recent harvesting, forest roads and hik-

ing trails [58]. However catchment intactness as a design criteria was intended to be relevant

to biodiversity more broadly, not to any particular species. Equal weighting of disturbance

types reflects different responses to disturbances across species, and is thus a conservative

assumption.

We prioritized the inclusion of headwater catchments in protected areas, because of their

hydrological importance and to reduce the potential for upstream river contamination inside

protected areas [59]. Accordingly, we used all intact headwater catchments as seeds. We used

the mean size of the new protected areas proposed by the Ministry (Fig 1; mean = 85.5 km2,

SD = 61. 4 km2; [39]) as the target size. We then applied the construction process to each seed

catchment, with target size and catchment intactness criteria as defined above. The procedure

returns a list of the catchments selected and their total area. If this total area satisfied the target

size, the result was accepted as a candidate protected area. The construction adds entire catch-

ments one at a time, so target sizes are generally exceeded rather than satisfied exactly (Fig 2).

Because the mean catchment area (2.3 km2) was small relative to the target size, we consider

such discrepancies negligible. The minimum size of the Ministry’s proposed new protected

areas was 31.2 km2 [39], which is only 36.5% of our target size. To make our size criteria more

comparable to theirs, we also accepted, as candidate protected areas, constructions smaller

than the target size but larger than this minimum. Candidate protected areas satisfy, by con-

struction, the criteria of size, intactness and hydrological connectivity [31]. They are not

designed to satisfy ecological representativeness or functional connectivity criteria. These cri-

teria pertain to networks of protected areas, not to individual protected areas.

We used the set of selected candidate protected areas to generate a sample of 500,000 candi-

date protected areas networks (Fig 2). Each candidate network was constructed by adding a

random sequence of candidate protected areas to the existing network, until the summed area

of unique catchments exceeded the Ministry’s area target of 3080 km2 (Fig 2). The candidate

protected areas included within a given candidate network may overlap with each other or

with elements of the existing network, but this does not affect the candidate network area. It is

easy to show that the properties of hydrological connectivity and intactness are conserved by

aggregating overlapping candidate protected areas. Thus, the only material consequence of

such overlap is that spatially disjunct network elements may exceed the minimum size criteria,

and may be fewer than expected based on the number of candidate protected areas that were

added. However, other things being equal, larger protected areas are preferred [60], and the

number of spatially separated components is not one of our network design criteria, so we do

not consider this overlap of relevance to the present study.

Network ecological representativeness

Ecological representativeness is measured at the candidate network level [31], in terms of four

environmental attributes: elevation, surficial deposit, drainage class and potential vegetation

type [39] (Fig 2). Potential vegetation was defined by the Ministère des Forêts, de la Faune et

des Parcs du Québec (MFFP) as the vegetation present on a site or potentially present, in the

absence of disturbance [41]. Surficial deposit, drainage class and potential vegetation type had

PLOS ONE Balancing functional connectivity and ecological representativeness in protected areas networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0238821 September 30, 2020 7 / 19

https://doi.org/10.1371/journal.pone.0238821


been used for a gap analysis conducted to inform the proposed expansion of the existing pro-

tected areas network [39]. The four attributes define habitats independent of human activities

such as harvesting history. All four attributes were available for the entire study and were pro-

vided by the Ministry. Catchment-level attributes were calculated by intersecting a shapefile of

the catchment layers with the various raster grids and taking means for continuous attributes

and frequency tables for categorical attributes.

We measured candidate network representativeness using nonparametric, two-sample uni-

variate dissimilarity measures. For each attribute, we obtained its distributions over all catch-

ments within the candidate network, and over all other catchments within the study region.

For continuous attributes (e.g., elevation), we calculated a two-sample Kolmogorov-Smirnov

statistic. For categorical attributes (e.g. surficial deposit, drainage class, and potential vegeta-

tion type), we calculated the Bray-Curtis statistic. These statistics ranged from 0 to 1, measur-

ing a candidate network’s deviation from perfect representation with respect to an attribute,

and were equal to 0 only when the two distributions are identical. The univariate statistics for

multiple attributes were combined into a univariate distance metric by calculating a Euclidean

norm [31, 32]. We took the inverse of this distance metric as the ecological representativeness

score for each candidate network, so that a larger score indicates a greater degree of

representativeness.

We also calculated the representativeness score of the Ministry’s proposed network. To do

this, the protected areas within this network were approximated to the resolution of hydrologi-

cal catchments. Because these catchments were relatively small, we assumed approximation

errors to be negligible. We note that this measure of ecological representativeness does not

depend on the specific choice of ecological attributes or on the specifics of our design method-

ology; it can be applied to any existing protected areas network using whatever ecological attri-

butes are of interest.

Network functional connectivity

We defined candidate network functional connectivity for the Atlantic-Gaspésie caribou pop-

ulation using a spatially explicit individual-based movement model (IBM) adapted from Bau-

duin et al. [38, 61] (Fig 2). This model simulates caribou movement as a two-state behavioral

model process with a habitat-mediated random walk in habitats of high quality and a foray

loop movement in habitats of low quality. The IBM includes the attraction of individuals’ mat-

ing areas during mating season. Habitat quality is modeled using a Resource Selection Func-

tion (RSF; [62, 63]) model developed for this specific population of caribou [58] and based on

four habitat types relevant to this population (i.e., alpine tundra, mature fir stands, regenerat-

ing stands and stands of other tree species, primarily broad-leaved species) as well as three clas-

ses of transportation routes (paved roads, gravel/secondary roads, and hiking trails). These

landscape components represent resources or barriers for the caribou (e.g., alpine tundra and

mature fir stands for food resources and shelter from predators, paved roads as movement bar-

riers) or proxies for the presence of their predators (e.g., regenerating stands where bears and

coyotes frequently occur).

The original model was re-estimated from newly available GPS locations [44, 64]. Model

movement behavior is partially driven by spatial variation in habitats as described by the RSF.

Following Bauduin et al. [38, 61], we generated five different habitat maps to represent the cur-

rent landscape and four landscapes for 2080 forecast under different climate change scenarios.

The current landscape was derived from the ecoforestry maps from Québec’s 4th decennial for-

est inventory program (source: MFFP). The future landscapes represented a range of potential

climate change impacts (none: CC0; minimum: CCMin; moderate: CCMed; high: CCHigh) on
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vegetation dynamics and natural disturbances, combined with predicted cumulative timber

management for 2080. Primary impacts were reduced areas of tundra [50, 65] and of fir forest

[52], and a decreased severity of spruce budworm outbreaks [66, 67] leading to less area with

young fir stands. A complete description of the four climate scenarios and of the construction

of the corresponding 2080 landscapes is given in Bauduin et al. [61] (and in the S1 Material). A

fifth scenario represented current conditions.

For each landscape, we created 20 individuals in each of the three caribou subpopulations

(see [38]; current population estimates are 20, 35 and 15, [37]) and ran 10,000 replicates of

four-year model simulations. For each scenario and replicate, we calculated and mapped the

number of caribou visits per 1-ha landscape cell (see S2 Material). For each candidate network,

under each scenario, we measured network functional connectivity by taking the mean, over

replicates, of the number of caribou visits in cells within the network’s protected areas. This

represented the simulated movement patterns within and between the protected areas. The

differences in results between climate scenarios were relatively small. We considered evaluat-

ing differences between them to be unimportant relative to our core message concerning the

inclusion of functional connectivity in a protected areas network design. Accordingly, and

because no climate change scenario was defined as more likely than another, we used the

mean functional connectivity over the four climate change scenarios as an index of network

connectivity under future conditions (S2 Material). We calculated the functional connectivity

of the Ministry’s network under current and future conditions in the same way.

Identifying priority conservation areas

By plotting the distributions of indicators (i.e., ecological representativeness, current and

future functional connectivity), the outlines of the tradeoff surface may be visualized. To iden-

tify one specific location on this surface, we incrementally decreased a quantile threshold Q

from 1 to 0 by steps of 0.001 to find the maximum Q for which at least 500 networks had indi-

cator values above the Q-th quantile for each of the three indicators. This identified a subsam-

ple of 0.1% of the candidate networks that were highly ranked under all three criteria. This

represents a level of tradeoff which, informally, values all three attributes equally. We then

identified the candidate protected areas included in the network subsample, calculated their

selection frequencies, and mapped their locations color-coded by selection frequency. These

selection frequencies may be interpreted as priorities for including candidate protected areas

within a new or expanded protected areas network [30]. Similarly, spatial clusters of high pri-

ority areas may highlight regions of high importance relative to network conservation goals.

We set a selection frequency threshold for high priority catchments by plotting the selection

frequencies in decreasing rank order, and identifying an inflection point on this curve. We

then added the locations of high priority catchments to the above-mentioned map. To evaluate

the sensitivity of the priority conservation areas selection to the choice of conservation goals,

we applied the preceding analysis to two alternate rankings of the same set of 500,000 candi-

date networks. In the first instance, we ranked the networks by ecological representation

alone. Then, we ranked them according to their joint functional connectivity under current

and future conditions.

Results

Protected areas networks

We constructed 690 unique candidate protected areas satisfying our size and intactness crite-

ria. Their mean size was 86.8 km2 (SD = 4.0 km2), only very slightly larger than the target size

of 85.5 km2. The 500,000 candidate protected areas networks (candidate networks) included a
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mean of 25 (SD = 2.2) candidate protected areas added to the 62 existing protected areas. The

mean candidate network area was 3138.5 km2 (SD = 24.6 km2), again slightly larger than the

target of 3080 km2. Network ecological representativeness scores ranged from 2.76 to 7.63

(mean = 4.71, SD = 0.64) (Fig 3). Network functional connectivity ranged from 4.21e+05 to

4.79e+05 (mean = 4.38e+05, SD = 9.42e+03) under current conditions (Fig 3A), and from

4.41e+05 to 5.00e+05 (mean = 4.58e+05, SD = 9.51e+03) under mean future conditions (Fig 3B).

There was a negative relationship between ecological representativeness and functional con-

nectivity, under both current (slope = -3922, p< 0.001, Fig 3A) and mean future conditions

(slope = -3779, p< 0.001, Fig 3B).

The Ministry’s proposed network (Fig 1) had an ecological representativeness score of 4.65

(Fig 3A), which was slightly lower than our sample mean. Its current and future functional

connectivity were 4.59e+05 and 4.76e+05, respectively, both above our sample means (Fig 3A

and 3B). However, our methodology yields many candidate networks that surpass the Minis-

try’s proposed design in both representativeness and functional connectivity (Fig 3A and 3B).

We conclude that the Ministry’s design is suboptimal with respect to these three indicators of

network effectiveness.

Priority conservation areas

The quantile Q = 0.925 (92.5%-ile) yielded a subsample of 501 candidate protected areas scor-

ing above the corresponding sample quantiles of all three indicators simultaneously (Fig 3).

The ecological representativeness quantile was 5.68. The quantiles for current and future func-

tional connectivity were 4.53 x 105 and 4.73 x 105, respectively. All 501 selected designs had

higher ecological representativeness scores than did the Ministry’s. Most of these 501 designs

did not exceed the Ministry’s functional connectivity scores, but some did (Fig 3): 78/501

designs had higher functional connectivity under both current and future conditions. That is

to say, we identified some designs for the given tradeoff that outperformed the Ministry’s

design with respect to all three indicators.

All but one of the 690 candidate protected areas were included in at least one of the 501

selected networks. Selection frequencies were highly skewed (Fig 4). At the inflection point

(32,35) on the graph, 32/689 candidate protected areas were included in at least 35/501 selected

networks (Fig 4). These 32 priority candidate protected areas were fairly widely distributed

over the study region (Fig 5), with some spatial clustering in the southwest of the Gaspésie

National Park, and in the areas adjacent to the extreme west of the park (Fig 1), which includes

the important high elevation caribou breeding habitats. The spatial distributions of high prior-

ity catchments under alternate conservation objectives were markedly different (S3 Material).

In designs emphasizing ecological representation, priority areas were more widely distributed,

but mostly in the south of the Gaspésie National Park, and none were adjacent to the Park

(S3.1 Fig in S3 Material). In designs emphasizing only functional connectivity for caribou, all

priority areas were adjacent to the Park (S3.2 Fig in S3 Material).

Discussion

We present a methodology to define an effective protected areas network based on the tradeoff

between ecological representativeness and functional connectivity over time, including the

potential impacts of climate change. Our methodology yields a proposed subset of protected

areas that may be close to ideal from an environmental or conservation point of view, but

which does not fully respect all constraints of the use of public lands. For example, the Gaspésie

region is highly disturbed by human activities. Considering all the social and economic con-

straints would have reduced too much the area for potential new protected area
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implementations, giving little space for designing different network scenarios or exploring the

limits of what is possible. However, this methodology could easily include more features in the

choice of the best network scenarios, and the proposed top protected areas would then be rep-

resented as the best tradeoff between all selected features. It would be possible, given data avail-

ability, to add constraints in the choice of the networks with, for example, the ecological

representativeness of the future landscape under climate change, the functional connectivity of

several species important for the ecosystem [68], the economic cost of excluding human activi-

ties from the proposed areas, the potential benefit with tourism if protected areas act as parks

[69], or any of the other factors affecting the Ministry’s design. Target features and constraints

Fig 3. Scatter plots of ecological representativeness against functional connectivity defined for (a) the current time

period and (b) the future average conditions for the 500,000 created networks. The solid lines represent the feature

values at quantile Q = 0.925 (5.68 for ecological representativeness, 4.53e+05 and 4.73e+05 for current and future

functional connectivity, respectively). The dashed lines represent fitted linear regression models of ecological

representativeness against the functional connectivity measure plotted. The white dot represents the network proposed

by the Québec government.

https://doi.org/10.1371/journal.pone.0238821.g003

Fig 4. A subsample of 501 candidate protected areas networks selected from near one point on the tradeoff curve

(Fig 3). These candidate networks included 689 of the 690 candidate protected areas (CPAs). The selection frequencies

(y-axis) of these 689 CPAs are plotted in decreasing rank order (x-axis). Only 32/689 CPAs were included in more than

35/501 selected networks. This inflection point of the curve is indicated by the light grey lines perpendicular to the

axes.

https://doi.org/10.1371/journal.pone.0238821.g004
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can be defined by local managers to help meet local biodiversity goals, and could easily be

implemented in our method to improve the design of regional protected areas networks.

Network ecological representativeness

Gap analyses are a common tool to quantify ecological representativeness of extant networks

and to identify underrepresented features [e.g. 8, 70]. Here, we adapted an alternate two-stage

approach that was recently developed in Canada [31, 32] to support systematic conservation

planning in the boreal region. The first stage of that method used geospatial analysis tools to

construct potential or candidate protected areas, which were then assembled into networks. A

multivariate distribution matching methodology identified networks that minimized gaps.

Gaps were quantified as dissimilarities, with respect to the distributions of a chosen set of envi-

ronmental covariates, between the network and the rest of the study region.

Network functional connectivity

Many studies have included connectivity in conservation planning using measures of distance

or the cost of movement between protected areas [71] or applying graph and circuit theory

Fig 5. The 689 Candidate Protected Areas (CPAs) included in the subsample of 501 near-Pareto-optimal networks are shown in orange scale, coloured by

selection frequency, from low (light orange) to high (dark orange). The 32 CPAs included in more than 35/501 networks (Fig 4) are outlined with a thick line. The

existing protected areas are shown in black.

https://doi.org/10.1371/journal.pone.0238821.g005
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techniques [72, 73]. A novel feature of this study was that we derived network functional con-

nectivity measures from movement simulations using an individual-based model [38, 61] that

reproduced known characteristics of the focal population within the study region. The model

accounted for process-based complex movement behaviors (e.g., seasonal site fidelity, foray

loop movement) that would be difficult to represent in static habitat-based models. Being pro-

cess-based, the models reflect behavioral responses to environmental conditions and should be

preferred to make predictions under future conditions compared to models based on only

observed habitat where the suppositions underlying current empirical relationships may no

longer hold [74].

Accounting for climate change

It is more efficient to take future climate change impacts into account now instead of reacting

to them only once changes occur [28]. To account for climate change, we defined the future

functional connectivity criteria using simulated movements on hypothetical landscapes result-

ing from different climate change scenarios. Network effectiveness will likely depend on the

realized landscape outcome which is presently unknown. Therefore, networks selected using

an average functional connectivity over a wide range of climate change impacts would be sub-

optimal for any particular climate change scenario. However, they might perform reasonably

well under a large range of possible future environmental conditions. The differences in move-

ment predicted for the different climate change scenarios resulted from the assumptions made

about the future environmental conditions. We used this relatively simple approach as the

functional connectivity differences among the scenarios were not particularly large. This sug-

gests that using coupled climate change and vegetation change dynamic models may not dra-

matically improve the choice of protected areas in this region. Furthermore, since no climate-

sensitive model of vegetation dynamics was available for Gaspésie natural region, using the

scenario approach with averaging of results seemed to be a reasonable compromise to account

for uncertainty in future conditions. Our approach could readily be adapted to cases with

much greater divergence among expected future conditions, at the price of increasing the

dimensionality of the tradeoff surface. Management decisions in that case would ideally be

based on weighting the relative costs of possible solutions and the probabilities associated with

each alternate outcome.

Case study

The lack of functional connectivity during the last 20 years between the different major moun-

tain summits of the Gaspésie National Park has led to a division of the caribou population into

two genetically distinct sub-populations and is now jeopardizing the persistence of this isolated

population [75]. Consequently, using an approach that could identify key elements to preserve

in order to maintain functional connectivity could benefit the conservation of an endangered

caribou population, especially under a changing climate.

In the Gaspésie region, there is only one caribou population occurring primarily inside the

Gaspésie National Park [37, 48]. Consequently, in our analyses, networks with high functional

connectivity tended to include many protected areas adjacent to or near this park. On the

other hand, to achieve high ecological representativeness, protected areas needed to be more

or less evenly distributed over the entire region to capture habitat diversity. There was there-

fore a negative relationship between representation and connectivity in our case study, as oth-

ers have found [e.g. 76]. It is, in general, not possible to simultaneously optimize for multiple

design criteria. Our sampling-based design methodology allows us to approximate a multidi-

mensional tradeoff surface. Given the management decision about the choice of tradeoff, we
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can identify a large number of solutions that are close to this point. Our methodology showed

how to design new protected areas for a regional network that satisfy multiple, divergent crite-

ria to (nearly) the highest degree possible. Other tradeoffs between the two objectives of repre-

sentation and caribou conservation could be defined. The two extremes (S3 Material), in

which only one criterion is emphasised, produce very different spatial distributions of priority

candidate protected areas. Our chosen tradeoff produced an intermediate result, indicating

that new protected areas in the south of the study region are needed to improve ecological

representation, and that an expansion of Gaspésie National Park would best improve func-

tional connectivity for caribou. However, the designs considered in Fig 5 are not intended or

represented as optimal for caribou conservation per se.
The protected areas network expansion proposed by the Québec government to achieve the

12% coverage target that we used as a comparison was different than the sample of candidate

protected areas suggested from the selected best networks identified here (Figs 1 and 5). The

Ministry’s network achieved a lower ecological representativeness than our selected networks.

However, they had to respect design criteria and constraints, like socio-economic issues or the

inclusion of rare ecosystems that we did not consider. This could explain the suboptimal eco-

logical representativeness achieved by their network. Regarding functional connectivity, their

network seems well connected from the Atlantic-Gaspésie caribou point of view. The perfor-

mance of their scenario is surprisingly quite good for this feature, considering it was not

explicitly part of their design. The networks we selected may not achieve such a high functional

connectivity because our specific choice of intactness criteria resulted in some areas being

excluded from any of our network solutions. In particular, we excluded some non-intact areas

close to the Gaspésie National Park that were included in the Ministry’s design.
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https://corpus.ulaval.ca/jspui/handle/20.500.11794/22949.

33. Calkin DE, Montgomery CA, Schumaker NH, Polasky S, Arthur JL, Nalle DJ. Developing a production

possibility set of wildlife species persistence and timber harvest value. Can J For Res. 2002; 32

(8):1329–1342.

34. Arthur JL, Camm JD, Haight RG, Montgomery CA, Polasky S. Weighing conservation objectives: maxi-

mum expected coverage versus endangered species protection. Ecol Appl. 2004; 14(6):1936–1945.

35. Kennedy MC, Ford ED, Singleton P, Finney M, Agee JK. Informed multi-objective decision-making in

environmental management using Pareto optimality. J Appl Ecol. 2008; 45(1):181–192.

36. COSEWIC. Designatable units for caribou (Rangifer tarandus) in Canada. Ottawa, Canada: Commit-

tee on the Status of Endangered Wildlife in Canada; 2011.
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noir et du coyote en Gaspésie. MSc Thesis, Université du Québec à Rimouski; 2013.
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