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Old Habits Die Hard
Can AI Help Bring Coronary Angiography Into the 21st Century?
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C oronary angiography (CAG) was pioneered in
the 1950s by Eduardo Coelho (who per-
formed the first nonselective in vivo CAG

in 1952 at the Santa Marta Hospital in Lisbon,
Portugal) and Frank Mason Sones Jr (who performed
the first selective CAG in vivo in 1958 at the Cleveland
Clinic in Ohio, USA). Sones further developed the
technique by contributing to the development of the
C-arm, enabling multiangular views and a compre-
hensive assessment of coronary artery anatomy and
disease. This approach remains essentially the same
today.

When interpreting CAG images, an essential step is
the assessment of the severity/significance of coro-
nary lesions, paramount for considering revasculari-
zation. Furthermore, the presence of significant
lesions increases the risk of cardiovascular events and
symptoms, rendering optimal medical therapy
mandatory for addressing both.

In everyday practice, when interpreting CAG im-
ages, the severity of a lesion is primarily assessed by
operators as the percentage diameter stenosis (DS),
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by comparing the diameter in a stenosed region with
a normal reference segment, by visual estimation.
This “age-old” method has also been adopted in
clinical trials for decades. Indeed, from the seminal
CASS (Coronary Artery Surgery Study) trial,1 con-
ducted during the late 1970s and early 1980s (which
defined a lesion as significant if DS $70% in any main
vessel and 50% if left main), to the more contempo-
rary ISCHEMIA (International Study of Comparative
Health Effectiveness with Medical and Invasive Ap-
proaches) trial2 (used a DS $50% cutoff) and in virtual
every major revascularization trial, visual estimation
of percentage DS has remained the cornerstone of
initial lesion severity assessment, either as the crite-
rion for proceeding with revascularization or consid-
ering it (with the additional presence of symptoms or
demonstration of ischemia by either invasive or
noninvasive methods), regardless of the revasculari-
zation modality (percutaneous coronary intervention
or coronary artery bypass surgery) or clinical context
(acute vs chronic coronary syndromes), clearly illus-
trating the ubiquity of this approach.

Consequentially, current guidelines follow suit,
adopting the visual estimation of percentage DS as
the first step for either considering revascularization
or proceed with further testing, despite recognizing
its limitations.3 A DS $70% ($50% if left main)
threshold is suggested for considering revasculariza-
tion, especially in contexts where further testing may
be limited (such as valvular heart disease). Guidelines
also define intermediate lesions based on visual DS
estimation (U.S. revascularization guidelines
consider a DS of 50%-70%3).

All of the above considerations clearly reflect how
widespread and persistent the use of visual
percentage DS estimation remains, in both clinical
practice and research. This method is, however, not
without problems. Because no exact measurement is
https://doi.org/10.1016/j.jacadv.2024.101093
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actually undertaken, it is prone to interoperator
variability. Both interventional and noninterven-
tional cardiologists often find themselves in
disagreement with regard to how severe a lesion is
when reviewing CAG images. In fact, studies from as
early as the 1970s to relatively recent ones have
consistently confirmed not only that there is signifi-
cant heterogeneity in the visual assessment of per-
centage DS but also that operators mostly tend to
overestimate the severity of lesions. The term
“occulostenotic reflex,” as coined by Eric Topol, is
often used to describe this phenomenon.

Given these limitations, other methods for assess-
ing the severity of the disease emerged. Quantitative
Coronary Analysis (QCA) software was developed,
enabling effective measurement of percentage DS
based on angiographic images. Coronary physiology,
namely fractional flow reserve (FFR), was also
developed. Intracoronary imaging, either with ultra-
sound (IVUS) or optical coherence tomography, was
also an important innovation. But while multiple
randomized trials have shown that both physiology
and imaging can improve patient outcomes, the same
cannot be said of QCA, as no meaningful trials have
shown that its use has a major clinical impact.
Furthermore, QCA is semiautomatic but not fully
automatic, as it still requires some level of manual
input with existing software. Hence, it is not often
used routinely in clinical practice. And despite the
benefits of physiology and imaging, both require
additional invasive steps (using a guide-catheter,
wiring the target vessel) as well as costs, and are
therefore persistently underused.

Thus, it is no surprise that the primary method of
asserting the severity of coronary artery disease
based on invasive CAG images—visual estimation—
has hardly changed since its inception in the 1950s,
despite its well-recognized limitations. Is it not time
this persistent conundrum is finally overcome? We
believe artificial intelligence (AI) can and should be a
game changer in this setting.

The application of AI to CAG interpretation can be
conceptualized in several forms. Arguably, the first
step would be to correctly separate the coronary tree
from noise (ie background). This might be achieved
by means of exact demarcation of the arteries (se-
mantic segmentation) or more broadly by lesion
identification (a bounding box object detection
method). The second step would be to assist in
interpreting the findings and, especially, improve the
ability of operators to assess the severity of lesions,
be it by objectively measuring the percentage DS or,
perhaps more interestingly, directly deriving physi-
ology or other insights from CAG images alone.
The majority of published papers regarding the
application of AI to CAG are technical and come from
engineering repositories, focusing primarily on seg-
mentation. There have been, however, some notable
publications in medical journals. Tianming Du et al4

developed an AI segmentation model trained with
large data set of 13,373 images. Using pixel overlap as
reference, the authors reported a segmentation ac-
curacy of 98,4%. The models were also able to
correctly identify thrombus, calcium, and lesion
location, by using bounding boxes, adding to the
array of potential uses of an AI model in assisting with
CAG interpretation. Notwithstanding, lesion severity
was not addressed by this algorithm. Furthermore, no
evaluation regarding the quality of the segmentation,
from a clinical perspective, was employed. Indeed, if
the system missed a critical part of the coronary tree,
such as incorrectly segmenting a left main or prox-
imal left anterior descending, very high overlap ac-
curacy would still be achieved, yet a major flaw, from
a clinical point of view, would occur.

We too have successfully developed an AI model
capable of accurate CAG segmentation ourselves. In
the process, we also developed and validated a
method, the Global Segmentation Score, to assess
how well CAG segmentation is performed from a
clinical perspective, ensuring that in addition to a
high pixel overlap, no such major flaws in the coro-
nary tree segmentation are present. With external
validation with data from four different centers,
across a wide range of stenosis severity, target vessel,
operators, and equipment, we have shown that fully
automatic AI segmentation of CAG images is both
feasible and reliable.5

Considering the assessment of the severity of cor-
onary lesions, especially percentage DS, almost no AI
studies have also been published. Notwithstanding,
fully automatic auto-QCA systems have been
described, with reasonable correlation with state-of-
the-art systems (Pearson’s R ¼ 0.765).6 Other au-
thors have created models capable of identifying
lesions based on bounding boxes, with a percentage
DS $70% as assessed by QCA or of any severity.7

In addition to directly measuring the severity of
stenosis, AI-segmented images may also impact op-
erators’ visual estimation of percentage DS, by
enhancing or segmenting CAG images in fully auto-
matically (ie with zero human input other than the
image itself) fashion. We have recently demonstrated
that converting the gray-scale image to a black
(background) and white (artery) one with AI seg-
mentation models renders the interpretation more
objective, by very clearly demarcating the vessel
lumen. This simple approach significantly reduced



FIGURE 1 A Proposed Workflow for an AI-Assisted CAG System in the Future

AI ¼ artificial intelligence; CAG ¼ coronary angiography; QCA ¼ quantitative coronary analysis.
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interoperator variability, namely overestimation of
lesion severity.8

Another important issue would be the derivation of
physiology from CAG images alone. There already is
software with this capability, but it uses mostly non-
AI methods. Current systems have been developed to
derive FFR, as it remains the most consensual phys-
iology tool in clinical practice, with the largest evi-
dence base. While several studies (and even a large
clinical trial) have reported impressive results, very
few papers regarding the derivation of physiology
from CAG images using solely AI methods have been
published. Since AI has consistently outperformed
traditional computational methods in many areas,
one might argue than an AI approach to this particular
goal should at least be attempted.

Recently, one group developed an AI FFR deriva-
tion software (Autocath FFR). The authors published
a small pilot study with only 31 patients and, since
then, conducted a larger validation multicenter
study, with 304 vessels from 297 patients, reporting a
94% accuracy.9 The software is capable of deriving
the FFR value from images alone. The training data-
base, according to the authors, consisted of more than
13,000 invasive coronary angiogram procedures and
1500 FFR measurements, from centers in Israel, the
United States, Japan, and India. Labeling was made
with QCA and off-label FFR measurements were
excluded. No further details have been disclosed,
namely the exact details regarding the AI training
architecture or clinical data of the training data set.9

Another group has developed binary FFR classifier
(using the 0.80 FFR cutoff) with 82% accuracy using
solely AI methods as well.10

To our knowledge, no publications regarding AI
models capable of deriving other indexes are yet
available. Instantaneous wave-free ratio would be
particularly interesting, given its noninferiority to
FFR has been demonstrated in two major outcomes
randomized trials, as well as the fact that it is
commonly used in many catheterization laboratories
worldwide. However, one trial (REVEAL iFR [Radio-
graphic Imaging Validation and EvALuation for Angio
iFR]) has reportedly explored this approach—and
published results are awaited. We too have developed
AI models capable of binary instantaneous wave-free
ratio classification images which greatly outperform
human operators, the results of which will be pub-
lished soon as well (article in press).

The traditional limitations of AI will too, of course,
apply to this particular application as well. “Big data”
in Medicine is often constrained due to privacy and
medical privilege. Hence, training data sets are often
much smaller than in other contexts, potentially
limiting performance. Furthermore, data annotation
can be exceedingly cumbersome and time-
consuming, and physicians can sparingly take part
in such tasks. Also, the exact mechanism by which
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many AI systems function is not always entirely un-
derstood, raising ethical concerns as to its application
in clinical practice.

Given the ever-expanding capabilities of AI, which
is increasingly becoming multimodal, the use of AI in
Medicine is both exciting and daunting, as the risk of
overreliance in AI may paradoxically reduce human
capabilities of autonomous medical assessment and
decision-making. In spite of all this, the potential of
AI remains enormous, and a responsible pursue of
this technology is likely the most plausible and sen-
sible course of action, as the AI “train” seems
unstoppable at this point.

In conclusion, further research is necessary for
developing and deploying AI tools capable of effec-
tively assisting in the interpretation of CAG images.
Notwithstanding, it seems the persistent conundrum
of “eyeballing” CAG images may finally be brought to
an end, as the Digital Revolution and Artificial Intel-
ligence transport this seminal technique to the 21st
century. We believe a modern workflow in the cath
lab will consist of acquiring raw CAG images as usual,
which will then be fully automatically processed by
AI, including segmentation, QCA, and physiology
calculations (Figure 1). New, currently unknown, in-
sights may also be discovered by AI methods. This
approach may, hopefully, render CAG interpretation
and subsequent therapeutic decisions far more
objective, thereby improving outcomes and reducing
costs. Time will tell whether the promise of AI will
come true, but as active researchers in the field, we
remain both optimistic and committed to this
important endeavor.
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