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Mycobacterium bovis, a bacterial zoonotic pathogen responsible for the 

economically and agriculturally important livestock disease bovine tuberculosis 

(bTB), infects a broad mammalian host range worldwide. This characteristic 

has led to bidirectional transmission events between livestock and wildlife 

species as well as the formation of wildlife reservoirs, impacting the success 

of bTB control measures. Next Generation Sequencing (NGS) has transformed 

our ability to understand disease transmission events by tracking variant sites, 

however the genomic signatures related to host adaptation following spillover, 

alongside the role of other genomic factors in the M. bovis transmission process 

are understudied problems. We  analyzed publicly available M. bovis datasets 

collected from 700 hosts across three countries with bTB endemic regions (United 

Kingdom, United  States, and New  Zealand) to investigate if genomic regions 

with high SNP density and/or selective sweep sites play a role in Mycobacterium 

bovis adaptation to new environments (e.g., at the host-species, geographical, 

and/or sub-population levels). A simulated M. bovis alignment was created to 

generate null distributions for defining genomic regions with high SNP counts 

and regions with selective sweeps evidence. Random Forest (RF) models were 

used to investigate evolutionary metrics within the genomic regions of interest to 

determine which genomic processes were the best for classifying M. bovis across 

ecological scales. We identified in the M. bovis genomes 14 and 132 high SNP 

density and selective sweep regions, respectively. Selective sweep regions were 

ranked as the most important in classifying M. bovis across the different scales  

in all RF models. SNP dense regions were found to have high importance in 

the badger and cattle specific RF models in classifying badger derived isolates 

from livestock derived ones. Additionally, the genes detected within these 

genomic regions harbor various pathogenic functions such as virulence and 

immunogenicity, membrane structure, host survival, and mycobactin production. 

The results of this study demonstrate how comparative genomics alongside 

machine learning approaches are useful to investigate further the nature of  

M. bovis host-pathogen interactions.
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Introduction

Bovine tuberculosis (bTB) is a livestock disease caused by the 
transmission of the bacterial pathogen Mycobacterium bovis 
(M. bovis), and has wide ranging impacts on agriculture, 
economics, and human health (Palmer et al., 2012; Palmer, 2013). 
M. bovis is a member of the Mycobacterium tuberculosis complex 
(MTBC), which is a genetically related group (99% similarity) of 
Mycobacterium species that can cause tuberculosis within 
vertebrate host-species, including humans (Brosch et al., 2002). 
Mycobacterium tuberculosis is the main causative agent of human 
associated tuberculosis, while other lineages are defined in 
vertebrate hosts such as M. africanum, M. canettii, M. microti, 
M. bovis, M. caprae, M. pinnipedii, M. mungi, M. orygis, and 
M. suricattae (Patané et al., 2017; Lekko et al., 2020). The wide 
range of MTBC members is hypothesized to be mainly due to the 
divergence of certain lineages from an ancestral species 
Mycobacterium canettii through multiple insertion or deletion 
mutations (Gutierrez et al., 2005; Patané et al., 2017).

Mycobacterium bovis has been identified as having the widest 
mammalian host range to date compared to other members of the 
MTBC (Palmer, 2013). This allows M. bovis to transmit between 
species much more easily, such that if close spatial proximity 
between wild and domestic animals can occur through direct 
contact (infected individuals and/or carcasses) or indirect contact 
(contaminated soil or water resources), frequent spillover events 
to and/or from wildlife can occur (Palmer, 2013; Gormley and 
Corner, 2018). Certain regions in the United States of America 
(USA), New Zealand (NZ), and the United Kingdom (UK) are 
endemic for bTB, in which certain wildlife species have 
transitioned from novel spillover hosts to reservoirs of infection, 
defined as populations that can maintain a pathogen and transmit 
it to a target population (Haydon et al., 2002; Viana et al., 2014; 
Hallmaier-Wacker et al., 2017). The consistent contact between a 
wildlife reservoir and livestock can lead to frequent spillback of 
M. bovis into livestock populations, jeopardizing existing control 
measures to mitigate the disease. These dynamics exacerbate the 
agricultural and economic impacts bTB has on society, with 
contemporary estimates of 50 million cattle worldwide infected 
and costing farmers $3 billion annually (Palmer, 2013). However, 
only a few species have successfully transitioned from novel 
spillover host to reservoir of infection, suggesting that there exist 
certain factors that limit the ability of M. bovis to adapt to specific 
hosts. Understanding how these fundamental processes occur in 
order for hosts to transition from spillover to adapted host 
populations would contribute to our understanding of pathogen-
host interactions and inform disease control measures in order to 
mitigate the impacts of M. bovis transmission.

The use of next-generation sequencing (NGS) to study 
pathogen genomics has revolutionized the field of M. bovis 
molecular epidemiology. Detection of genomic variations among 
multiple samples have allowed researchers to characterize M. bovis 
population structure (Müller et al., 2009; Berg et al., 2011; Smith 
et al., 2011; Rodriguez-Campos et al., 2012; Reis and Cunha, 2021; 

Rodrigues et  al., 2021), sources and chains of transmission 
(McCluskey et al., 2014; Milian-Suazo et al., 2016; Orloski et al., 
2018; Loiseau et al., 2020; Zimpel et al., 2020; Tonder et al., 2021; 
Rossi et al., 2022), and the role of host-species in the transmission 
process (Biek et al., 2012; Crispell et al., 2017, 2019, 2020; Salvador 
et al., 2019; Akhmetova et al., 2021). Authors from Fuente et al. 
(2015) studied how single nucleotide polymorphisms (SNPs) and 
gene presence/absence contributed to lesion scores on three 
M. bovis isolates in an attempt to associate genomic changes with 
phenotype differences in M. bovis. The results highlighted that 
there were key differences between the presence and absence of 
genes that were associated with host–pathogen interactions and 
resulting virulence among hosts. However, it is still unclear if there 
are M. bovis genomic variations across different environments 
(e.g., host-associated populations of M. bovis or geographical 
locations) and if they play a specific role in the adaptation process 
to those environments. Genomic analyses like these would unravel 
specific evolutionary forces responsible for M. bovis adaptation to 
particular environments (Allen, 2017; Patané et  al., 2017; 
Sheppard et al., 2018) and improve our understanding of M. bovis 
evolution across different ecological scales.

One avenue to explore the genomic factors that impact 
M. bovis adaptation is to investigate genomic regions of interest 
that potentially harbor signatures of M. bovis evolution. For 
instance, within different biological populations of organisms, a 
highly beneficial mutation that is introduced into the population 
can quickly become the most common allele, leading to a lack of 
variation at that location (Stephan, 2019). The site of this beneficial 
mutation can be in linkage disequilibrium with neutral flanking 
SNPs, meaning that the variation at these neighboring SNP sites 
would be non-random and correlated to the variation up and 
downstream of a beneficial site (Alachiotis et  al., 2012). This 
signature, defined as a ‘selective sweep’ can highlight important 
genes linked with M. bovis adaptation to new environments. 
Additionally, bacterial genomes can possess regions with a higher 
number of mutations than expected if analyzed genome wide. 
Regions of high SNP density might indicate sites of elevated 
mutation rates that provide short term fitness advantages when 
adapting to a new ecological niche. This phenomena, often defined 
as hypermutation, is common in pathogenic bacteria that must 
adapt to newly encountered stressors such as antibiotic resistance 
and novel hosts (Swings et al., 2017; Mehta et al., 2019). A deeper 
investigation into M. bovis genomic regions from isolates extracted 
from multiple hosts and geographic locations can provide an 
opportunity to determine M. bovis evolutionary processes that 
might confer adaptive advantages. In this study, we conduct a 
comparative genomic study of M. bovis isolates collected from 
livestock and wildlife host-species from three bTB endemic 
regions around the world. We use WGS data to create a high-
resolution genomic dataset with spatial and host phenotypic 
information. Our objectives for this study are to: (a) identify 
M. bovis genomic signatures; (b) investigate the relationship of 
these genomic signatures across different scales (geographical, 
host-species and sub-populations scales); and (c) determine sets 
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of genes associated with the M. bovis genomic regions of interest 
and/or the different scales.

Materials and methods

Data description

In this study, we downloaded a total of 700 Mycobacterium 
bovis whole-genomes from the National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (SRA). These isolates 
originated from three previous studies focusing on M. bovis 
evolutionary dynamics and cross-species transmission in NZ 
(PRJNA363037; Crispell et al., 2017), UK—Woodchester Park 
(PRJNA523164; Crispell et al., 2019), and in the USA—Michigan 
(PRJNA251692; Salvador et  al., 2019), respectively. Metadata 
associated with these isolates included geographic location and 
host species from which M. bovis samples were extracted (11 in 
total): six in NZ [stoat, Mustela erminea; porcine, Sus scrofa; 
cervine (various NZ cervine species unknown); cattle, Bos taurus; 
brushtail possum, Trichosurus vulpecula; and ferret, Mustela furo], 
two in the UK (cattle, Bos taurus and the Eurasian badger, Meles 
meles), and three in the USA (white-tailed deer, Odocoileus 
virginianus; elk, Cervus canadensis; and cattle, Bos taurus). 
Although there was only one M. bovis isolate from a stoat host, it 
was kept in the dataset to assist in further analyses of geographic 
and subpopulation structure. Bioinformatic statistics associated 
with the isolates are shown in Supplementary Table 1.

Data processing

To improve the quality from the paired-end sequences, 
we  used fastp v0.22 (Chen et  al., 2018) to remove adapter 
sequences and low-quality ends. We  used a sliding window 
approach (size 4 bp) to trim reads with window average quality 
below 30. Additionally, we filtered out all reads less than 15 bp. 
Once all the reads were processed, we mapped them against the 
M. bovis reference genome AF2122/97 (NC_002945.4, Genbank 
accession code PRJNA89) using the Burrows-Wheeler Aligner 
(BWA) software (Li and Durbin, 2009). We removed duplicated 
reads using Picard v2.0.1 (Broadinstitute/Picard, 2021/2014) to 
limit the impact of non-unique or erroneous reads on the SNP 
calling process. We performed Variant calling using Freebayes 
v1.3.5 (Garrison and Marth, 2012), and we kept detected SNPs for 
the downstream analysis if they possessed (i) a phred-quality score 
(QUAL) above 20, (ii) a mapping quality (MQ) above 59, (iii) did 
not fall within gene regions that coded for pe, pe/PGRS and ppe 
genes (a family of redundant sequence genes that are difficult to 
work with in-silico; Sampson, 2011; Delogu et al., 2017), and (iv) 
were more than 500 bp from insertion or deletion mutation 
(INDEL) regions (this is an extra measure to reduce impacts in the 
alignment that can lead to false positive detections). Furthermore, 
the isolates used in this study were sequenced either on a HiSeq 

or MiseqIllumina platform, and we  compared specific 
bioinformatic metrics (read depth, number of SNPs, SNP depth, 
and bp depth) between isolates to check if the choice of sequencing 
platform played a role in SNP detection and quality. A SNP 
alignment was created using BCFtools v1.13 (Li, 2011) ‘consensus’ 
command and snp-sites v2.5.1 (Page et al., 2016) to integrate the 
detected SNPs into a copy of the M. bovis reference genome.

Phylogenetic inference

Evolutionary relationships among M. bovis isolates were 
investigated using the Maximum Likelihood software IQtree 
v2.1.4 (Minh et al., 2020) with the M. bovis SNP alignment used 
as input. IQTree uses the ModelFinder approach to determine the 
nucleotide substitution model that best fits the data based on the 
Bayesian Information Criteria (BIC) comparison between 
substitution models (Kalyaanamoorthy et  al., 2017). After 
inferring the substitution model, IQtree ran 1,000 bootstrap 
iterations in order to provide a measure of internal node support 
ranging from 0 to 100 (Hoang et al., 2018).

To determine if the existence of potential regions with elevated 
densities of base substitutions in the M. bovis genomes has any 
effect on the resolution of their phylogeny and nodal support, 
we  compared a phylogeny produced with the original SNP 
alignment data with the one generated by the Gubbins software 
(Croucher et al., 2015). Each phylogeny was assessed based on the 
proportion of highly supported internal nodes (nodal support). 
After choosing the phylogeny with the best nodal support, 
additional comparisons between phylogenies were made based on 
different rooting strategies such as using the M. bovis reference 
(AF2122/97, NC_002945.4, Genbank accession code PRJNA89) 
as an outgroup, Minimal Ancestor Deviation (Tria et al., 2017), 
and Midpoint rooting (Kinene et  al., 2016). The best rooting 
strategy was based on comparisons of Robinson Foulds distance 
between the different rooted phylogenies, which is a popular 
metric to ascertain the number of operations required to convert 
the topology of one tree to another (Pattengale et al., 2007). If this 
value was large, then the two trees being compared are highly 
dissimilar. After assessing which phylogeny was more 
representative of the evolutionary history between isolates, that 
phylogeny was used to simulate an M. bovis alignment that will 
be used to generate null distributions of SNP density and selective 
sweep regions (sections below).

Population structure

In order to determine M. bovis population structure, we used 
fastBAPS v1.0.4 (Tonkin-Hill et  al., 2019), a model-based 
clustering approach, to determine clusters of related sequences 
present in the genetic alignment. This software utilizes a Bayesian 
hierarchical clustering approach that handles large alignments and 
quickly discerns sub-populations. As input, fastBAPS received the 
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SNP only alignment and utilized the optimized symmetric prior 
with the assumption that all allele frequencies at a SNP site are 
equivalent (making it analogous to a uniform-like prior). The 
sub-population clusters were extracted directly from the output 
of fastBAPS.

Simulated Mycobacterium bovis 
alignment

To investigate if certain regions in the M. bovis genome have 
significantly higher values of either SNP density or selective sweep 
sites, a probabilistic hypothesis test was used to find highly 
significant genomic regions. For that, we produced a simulated 
alignment from the original alignment with the tool Alisim using 
the same alignment length, nucleotide substitution model, and 
phylogenetic tree topology (created from the previously computed 
Maximum Likelihood tree; Ly-Trong et  al., 2022). Alisim next 
created a random sequence based on the previous specifications and 
then simulated nucleotide substitutions that were independently 
added while also conforming to the phylogenetic topology, resulting 
in a simulated alignment output. From the simulated alignment, 
we performed two separate sliding window analyses for calculating 
SNP dense regions and Selective Sweep regions, respectively. 
We captured the number of SNPs for the SNP density analysis and 
the support for selective sweep events in the selective sweep analysis. 
The data generated from the two separate sliding window analyses 
were then used to create two null distributions that were used to 
perform hypothesis testing for the SNP dense and selective sweep 
regions in the original data. Significance was determined by 
performing a hypothesis test on each window, where the probability 
of calculating a certain metric in the sliding window from the 
original data was compared to the probability of seeing the same 
metric in the null distribution (Figure 1A).

SNP dense regions

To find SNP dense regions in the genome alignment, 
we implemented a SNP counting approach that used a sliding 
window to find regions with significantly higher SNP counts than 
what would be expected by chance (Figure 1B). A combination of 
sliding window size (w) and step size (s) values, where w = {100, 
500, 1,000, 2,500, 5,000}, s = {50, 100, 300, 500, 1,000}, and w > s, 
was used to determine the best combination of parameters to the 
highest number of SNPs in windows that were found to 
be significant (Tajima, 1991). Once the optimal window and step 
lengths were inferred, we used those lengths for each region in the 
genome to identify high SNP counts. Significance was determined 
by performing a hypothesis test on each window, where the 
probability of finding a certain number of SNPs in a window was 
based on the simulated alignment null distribution. The higher the 
number of SNPs present in a window, the lower the probability 
that this window evolved due to conventional means. Our 

implemented approach was simpler than other tools that are 
meant to find regions with high SNP density. For example, 
pre-existing software tools, such as Gubbins, detect regions with 
high SNP counts by first allowing a sliding window to take lengths 
between 0.1 to 10 kb to identify regions with at least 10 SNPs. 
Gubbins methodology also incorporates additional hypothesis 
tests to find both regions with high SNP counts and putative 
regions of homologous recombination. Our implementation of 
high SNP regions ensured that we  were extracting all of the 
genomic regions with high SNP counts and not only regions that 
had high SNP counts and putative support for homologous 
recombination (which would make us miss some of the high SNP 
counts regions).

The null distribution should have had characteristics of a 
Poisson distribution since we were counting the number of SNPs 
in a certain window size. Therefore, Poisson distribution 
parameters for this null distribution were estimated using the R 
package fitdistrplus based on a maximum likelihood method  
(R Core Team, 2022; Delignette-Muller and Dutang, 2015). For 
each window that was analyzed, we  performed a statistical 
hypothesis test to determine the probability that the number of 
SNPs in a window came from the null distribution. Since multiple 
tests were required for the alignment, to reduce the number of 

A

B C

FIGURE 1

Workflow to detect SNP Dense Regions and Selective Sweep 
Regions in the Mycobacterium bovis genome. (A) The inferred 
phylogeny created using the original data is used as the input for 
Alisim to simulate an alignment based on the topology of the M. 
bovis maximum likelihood trees. This simulated alignment will 
differ from the original alignment since the SNP positions 
(symbolized by red ‘X’s) will be included randomly and 
independently. (B) After obtaining the simulated alignment, a 
sliding window approach is used to identify SNPs present in each 
window. The window starts at the beginning of the alignment, 
and moves across the entire genome by a defined step size. (C) A 
window approach was also used to investigate regions of 
selective sweeps. The window was centered on a predetermined 
nucleotide coordinate, and the amount of linkage disequilibrium 
was compared upstream and downstream of the coordinate.
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false-positive regions, we used a Bonferroni corrected p-value 
(Dunn, 1961). If the probability of the number of SNPs based on 
the null distribution was lower than the Bonferroni corrected 
p-value {p-value/(the number of tests)}, then that window was 
recorded as having a significantly higher number of SNPs than 
expected by chance. The combination of w and s that produced the 
highest number of significant results was used for subsequent 
analyses. We  merged the overlapping windows to highlight 
regions that had high numbers of SNPs throughout using 
BEDtools (Quinlan and Hall, 2010). These discrete regions were 
then labelled as SNP dense regions (SDRs).

Selective sweep regions

To identify the sites that were the center of the selective sweep 
regions, we used the tool OmegaPlus v3.03 (Alachiotis et al., 2012) 
to determine the value omega, which summarizes the extent of 
linkage disequilibrium (LD) upstream and downstream of a 
pre-determined genomic position in the M. bovis genome 
alignment (Figure 1C). The higher the omega value, the higher the 
possibility that the genomic position is within the proximity of a 
selective sweep. We  computed the omega values for 5,000 
equidistant positions within the simulated alignment. Similar to 
the protocol employed for detecting SNP dense regions, we first 
characterized the null distribution of omega values as a gamma 
distribution since the values started at zero, were continuous, and 
theoretically could have been unbounded. After filtering out the 
positions that had the value of zero, we again used the fitdistrplus 
package to estimate the gamma distribution parameters based on 
the maximum likelihood method. For each window that was 
analyzed, we  performed a statistical hypothesis test with 
Bonferroni corrected p-values to determine the probability that 
the evidence for a selective sweep coming from that region was 
from the null distribution. To determine the appropriate 
maximum window size, we computed the number of significant 
results (n) using multiple window sizes w = {150, 300, 500, 750, 
1,000, 1,500, 3,000, 5,000, and 10,000}, and divided the number of 
significant results by w. Since the calculation of the omega statistic 
consistently increases as w increases, dividing the number of 
successful regions by w provided a way to find window sizes that 
did not add extra significant results to the analysis. The maximum 
value of w was determined by finding the window size that 
maximized the calculation (number of significant windows)/
(window size length). We merged the overlapping windows to 
highlight genomic regions that possessed high evidence for 
selective sweep events using BEDtools. These discrete regions 
were then labelled as selective sweep regions (SSRs).

Random forest modeling

After finding the genomic regions with statistical support for 
increased SNP occurrence and selective sweeps, we measured 

the impact that evolution in these regions has on being able to 
differentiate isolates based on their ecological grouping. Random 
Forest models supported by the random Forest package, were 
used to perform classification of isolates based on evolutionary 
metrics to elucidate if SDRs and/or SSRs were important 
individual predictors in correctly classifying the M. bovis data 
(Figure 2; Breiman, 2001). Specifically, we used the following 
data as predictors in our models: (i) SDR number of SNPs, (ii) 
SDR number of INDELs, and (iii) SSR number of SNPs. To 
measure how the genomic regions we found compare to general 
characteristics of the M. bovis genomes, we also included other 
genomic metrics of the isolates in our analysis. GC content was 
calculated directly from the full M. bovis alignment, whereas 
number of non-coding SNPs, number of coding SNPs, number 
of non-coding INDELs, and number of coding INDELs were 

A

CB

FIGURE 2

Workflow to determine evolutionary predictors for M. bovis across 
scales. (A) Here the dataset is divided based on a binary trait of 
‘yes’ or ‘no’ with accompanying predictor variables that may 
provide support in making classifications on the trait. In this study, 
these predictors are as follows: the number of SNPs in a SNP 
dense region, the number of INDELs in a SNP dense region, the 
number of SNPs in a selective sweep region, the number of SNPs 
in coding regions, the number of SNPs in non-coding regions, the 
number of INDELs in coding regions, the number of INDELs in 
non-coding regions, and the genome wide GC%. (B) Random 
Forest models use multiple, uncorrelated decision trees created 
from randomly subset predictors of the original data. Due to the 
individual trees being unrelated to each other, their combined 
predictive ability leads to excellent classification ability. (C) Since 
each individual decision tree is created from random subsets of 
the predictors, the accuracy of individual trees will vary greatly 
(red and blue represent low and high accuracy, respectively). The 
amount of increase and/or decrease in model accuracy when a 
specific predictor is included is determined by tracking which 
predictors are included in the simple decision trees.
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extracted directly from each isolate’s variant calling format 
(VCF) file. Prior to model fitting, predictors with a high amount 
of correlation with other predictors were removed in order to 
limit redundant data using the R caret package (see 
Supplementary File 3; Kuhn, 2008). Model performance was 
calculated based on the overall accuracy in predicting the correct 
M. bovis isolate membership for particular groupings. A 
predictor’s importance was measured through its mean decrease 
in accuracy (MDA), with higher values indicating that models 
which did not incorporate the predictor suffered by the indicated 
number of accuracy points. For each random forest analysis, 
we ordered predictors based on their MDA and recorded the 
top  20 most important ones. Certain analyses called for 
predictors to be  compared across different models, such as 
comparing predictor importance across ecological scales, global 
versus local cattle hosts, and wildlife reservoir versus livestock 
hosts. For these analyses, Venn diagrams were constructed to 
observe which predictors were shared or unique amongst the 
models. Additionally, predictors that saw sharp increases or 
decreases in importance when compared across models 
were recorded.

Gene functions associated with models

After key genomic regions were identified from each random 
forest model, we used BEDtools to identify sets of genes that were 
present within important SDRs and SSRs. In particular, 
we highlight genes that have been catalogued in previous research 
as playing a role in host pathogen interactions in mycobacterial  
pathogens.

Results

Phylogenetic reconstruction of 
Mycobacterium bovis isolates

Whole-genome sequencing of the 700 M. bovis isolates from 
studies implemented in NZ, UK, and the USA identified a total 
of 6,847 SNPs (Supplementary Table 1). Even though the genomes 
were sequenced on different platforms, in the 692 samples that 
were sequenced on Illumina HiSeq  2500 (197) and Illumina 
MiSeq (495), the number of SNPs, depth per base pair, and 
average depth per genome did not deviate much across platforms 
(Supplementary Figure 1). Additionally, the number of SNPs that 
were detected in coding versus non-coding regions of the genome 
shared similar distributions between all isolates sequenced on the 
differing platforms (Supplementary Figure 2), suggesting that the 
choice of sequencing technology did not influence the 
downstream results. Isolates sequenced on a NextSeq platform 
(8) were not included in the violin plots constructed for 
Supplementary Figures S1, S2 due to an insufficient number of 
isolates characterized with this platform.

When comparing the phylogenetic trees created from the 
original alignment and the one outputted by Gubbins, we found 
that there was a Robinson Foulds distance of 592 between the two 
trees, meaning that one tree would need 592 changes to 
be  converted to the other. The Gubbins phylogeny possessed 
better nodal support (75.7% of internal nodes with bootstrap 
value of 75 or above) than the phylogeny produced from the 
original alignment (70.1% of internal nodes with bootstrap value 
of 75 or above; Supplementary Table 2), which suggests that it 
provides a better approximation of the evolutionary history 
between the M. bovis isolates in this dataset, and therefore, was 
used both for the rooting method comparison and for simulating 
the M. bovis alignment. The best rooting strategy for the phylogeny 
was the Outgroup rooting method [using the reference AF2122/97 
(NC002945.4)], since it led to fewer changes in the topology (12 
and 14) when compared to the Midpoint and MAD rooting 
strategies (Supplementary Figure 3, Supplementary Table 3). The 
substitution model that best fit the data was the TPM2+F+R4. The 
M. bovis phylogeny produced clustering patterns that were 
distinguishable based on geographic region (Figure  3). The 
population clustering analysis identified eight distinct clusters that 
matched closely with geographical locations. For instance, Cluster 
1 had the same isolates as the USA group. Clusters 6 and 7 were 
subpopulations of the UK group, and NZ isolates contained the 
remaining population clusters (Clusters 2, 3, 4, 5, and 8). The 
population clusters did not show a visible pattern based on host 
species, indicating that the estimated M. bovis population clusters 
are determined mostly by geographical location.

SNP density and selective sweep region 
identification

The simulated M. bovis alignment was produced using the 
TPM2+F+R4 model, which was also the best supported model. 
For the SNP Density analysis, we determined that the combination 
of a window size of 1,000 bp and a step size of 50 bp were the 
parameters that identified the most significant windows 
(Figure 4A). In each window, we counted the number of SNPs that 
were within that window and represented that data as a Poisson 
distribution. We estimated the Poisson distribution parameter 
lambda to be 2.84, which suggests that in our simulated alignment, 
we can expect to have 2.84 SNPs in a window on average with a 
variance of 2.84 (Figure  4B). For the selective sweep analysis, 
we  identified that a window size of 5,000 bp was needed to 
maximize the number of significant results (Figure  4C), and 
similarly we  estimated the parameters of the Gamma null 
distribution to be 0.944 (the shape parameter estimates the typical 
omega value in a window), and 0.202 (the scale parameter estimate 
that variance of the omega value), respectively. Based on the 
inferred parameter values for both null distributions, the genome-
wide hypothesis tests computed the probability of finding the 
amount of SNPs/evidence of a selective sweep within the tested 
window. After we merged the overlapping significant windows, 
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we  determined 14 unique SDRs and 132 unique SSRs 
(Supplementary Tables 4, 5). A few SDRs and SSRs overlapped 
regions with regions containging pe or ppe genes, but since the 
SNPs falling within these genes were removed from the analysis, 
these genes did not contribute to the identification of SDRs 
or SSRs.

Random forest analysis

Shared and unique regions across scales
Three random forest models were computed for each 

individual scale present in our data: country of origin, 
sub-population, and host-species. Models presented different 
accuracy depending on the scale in focus. For the host species 
model, the model accuracy to classify M. bovis hosts was low for 
the majority of the host species represented in the data, especially 
within phylogenetic clades where multiple host species were 
present (low host-species structure). However, the model achieved 
high accuracy in classifying isolates from the UK as being either 
from cattle or badger hosts, with accuracies of 94.5 and 94.6%, 
respectively.

For each model, SSRs achieved the highest importance 
rankings for model classification, with a few SDRs ranking as 
some of the top 20 predictors for each model. As for the other 
genomic evolutionary metrics (such as INDELS and GC content), 
which were included in the model to determine how important 

SSRs or SDRs were, they were not included amongst the top 20 
predictors (Figures 5A–C).

Out of all the regions used in the random forest analysis, only 
16 SSRs and one SDR were shared as the top 20 most important 
variables across all the models (Figure 5D). It was rare for the top 
SSRs and SDRs of the three random forest models to be shared by 
two models only. For instance, country-of-origin and population 
cluster, as well as population cluster and host species, shared one 
region amongst their top 20 predictors, but zero regions were 
shared between the country of origin and species models. Each 
individual model also had at least two SSRs/SDRs that were 
uniquely important for correct classification (Figure 5).

Amongst all predictors in our models, only four SSRs and one 
SDR helped improve the model accuracy as the scales went from 
being general (country-of-origin) to more specific (host-species). 
Conversely, only two SSRs were found to be  of decreased 
importance (Figure 6). SSR53 was an important region regardless 
of the model, with MDAs for country of origin, population 
clustering, and species being 27.8, 38.8, and 44.9%, respectively. 
Additionally, three regions, SSR71, SSR6, and SDR10 were 
observed to be  of lower importance in the country-of-origin 
model (SSR71: 13.2%, SSR6: 13.8%, and SDR10: 10.0%) but 
jumped in importance within the host-species models (SSR71: 
25.3%, SSR6: 31.4%, and SDR10: 24.9%). SSR28 and SSR85 were 
the sole predictors to decrease in importance as the scale narrowed 
between the models, but this decrease was modest, especially for 
SSR28 (29.3 to 27.2%; Figure 6).

FIGURE 3

Mycobacterium bovis maximum likelihood phylogenetic tree. This tree was inferred from the 6,847 SNPs of 700 Mycobacterium bovis isolates 
extracted from three independent studies in endemic regions: New Zealand, United Kingdom, and the United States of America. The TPM2+F+R4 
substitution model was the one with best statistical support (by Bayesian Information Criteria). Ultrafast bootstrap support for the internal nodes is 
indicated by a black circle, its presence indicating that the node has support of >75%. The phylogeny is further annotated by the taxa’s 
membership in a population cluster (left), country of origin (middle), and host species (right). The tree was rooted using the M. bovis reference 
genome AF2122/97 as an outgroup.
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Gene functions across the geographic, 
sub-population, and host-species models

We observed that the genes within genomic regions that 
increased (SSR53, SSR42, SSR6, SSR71, SDR10) or decreased in 
importance (SSR28, SSR85) across the different scales contained 
general functions that impact virulence and immunogenicity 
(phoP and phoR), anaerobic survival through nitrate reduction 
(narG, narH, narJ, and narI), membrane structure (pks5, papA4, 
and fadD25), and ESX-3 secretion (ecca3, eccb3, eccc3, esxG, esxH, 
espg3, and eccd3). Of particular interest, the ESX-1 Type VII 
secretion system was identified as a unique selective sweep target 
in the sub-population model (esxB, esxA, and espI; 
Supplementary Table 6).

Regions impacted by geographic stratification 
of species

The models for determining the segregation between 
worldwide cattle and wildlife both possessed adequate accuracy, 
with the aggregated cattle model being 88% accurate in 
differentiating cattle from wildlife, while the stratified cattle model 
was 70, 83, and 94% accurate when classifying cattle from the 
USA, NZ, and UK, respectively, (Figures 7A,B). Between the two 

models, a total of 18 regions were shared as being the top  20 
predictors of isolates originating in cattle versus wildlife 
(Figure 7C). Only two regions were found to be unique for each 
model. We recorded the top predictors with an absolute MDA 
change between the two models of at least 10 and found that all 
three predictors increased in importance from the aggregated 
cattle model compared to the stratified cattle model (Figure 7D). 
Of the predictors, the majority (2 out of 3) were SSRs. The only 
SDR noted with an absolute MDA change was SDR11. SSR24 was 
recorded as having the highest difference between the models with 
a 13.6% increase in importance (11% in the aggregated cattle 
model versus 24.7% in the stratified cattle model; 
Supplementary Table 6).

Gene functions that define core cattle 
classification

Our results of the differences in genomic region importance 
for the aggregated cattle vs. stratified cattle models highlighted 
that for global identification of cattle vs. wildlife, evolution in 
genes impacting the mce4 operon, which influences cholesterol 
utilization and intracellular survival were unique to the aggregated 
cattle model (mce4D, mce4C, mce4B, mce4A, yrbE4B, and 

A B

C D

FIGURE 4

The process of creating the null distributions used for SNP Dense Regions (SDRs) and Selective Sweep Regions identification (SSRs). (A) Multiple sliding 
window analyses were conducted to find the window size and step size whose combination maximized the number of significant windows. The 
white to blue gradient represent the indicated increased number of significant results. (B) The genome wide hypothesis test for SDRs relied on a 
window size of 1,000 bp and a step size of 50 bp to generate a Poisson null distribution for subsequent tests. (C) Multiple selective sweep analyses 
were conducted by varying the window size to find the size that maximized the number of significant results normalized by the window length. 
(D) The genome wide hypothesis test for SSRs relied on the window size of 5,000 bp to generate a Gamma null distribution for subsequent tests.
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yrbE4A). When isolates were classified to identify the 
geographically separated cattle vs. wildlife, toxin-antitoxin system 
functions appeared to be  uniquely important to make the 
distinction (vapc12 and vapb12). Additionally, it was observed that 
mycobactin biosynthesis function (mbtH, mbtG, mbtF, mbtE, and 
mbtD), as well as toxin-antitoxin function (vapc7, vapb7, vapb8, 
and vapc8) increased in importance when differentiating global 
cattle vs. geographically stratified cattle.

Regions that differentiate a wildlife badger 
from a cattle host

In the random forest model differentiating M. bovis isolated 
from UK Badger vs. UK Cattle, the model was accurate in 
classifying isolates extracted from badgers at 94.6% and isolates 
extracted from cattle at 94.5% (Table 1). The top predictor of host 
in the wildlife badger and cattle random forest model was SSR53, 
and the other predictors were dominated by SSRs with very few 
SDRs (Figure 8). However, SDR10 was found to be the second 
highest important predictor in this model, and compared to every 
other computed random forest model, was the highest SDR model 
importance seen yet (Supplementary Table 6).

Discussion

This analysis presents one of the first studies in Mycobacterium 
bovis research that uses comparative genomics and machine 
learning approaches to identify putative genomic factors that 
contribute to across-scale evolution of M. bovis isolates. Using 
publicly available M. bovis sequences from well characterized 
molecular epidemiological studies, we  investigated specific 
genomic signatures across ecological scales such as geographical 
locations, host-species, and pathogen population structure. To 
best identify these genomic signatures, we used a probabilistic 
framework to identify regions possessing high SNP counts and/or 

A B

C D

FIGURE 5

The top 20 predictors across the different scales. The predictors were presented for the Country of origin (A), Population cluster (B), and Host 
species (C) random forest models. A Venn diagram was used to identify predictive genomic regions that were shared and unique across  
models (D).

FIGURE 6

Factors that affect model accuracy across scales. The seven 
regions between the ‘across-scales model’ that increase or 
decrease the model accuracy as the scales move from general 
(Country of origin) to less specific (Host species).
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regions with high evidence for selective sweeps. After, we used 
random forest models to assess the importance of these genomic 
regions and other genomic variables such as GC content and the 
number of INDELS in classifying the M. bovis genomics across the 
three different scales. The combined application of machine 
learning and comparative genomics of pathogenic organisms to 
better understand connections between evolution and molecular 
epidemiology is still in its early stages. For M. bovis research, 
machine learning techniques were first explored in the work by 
Crispell et al. (2019), where epidemiological metrics were used to 
investigate their contribution to the genomic similarity of isolates 
during an M. bovis outbreak in cattle and badger populations. 
Likewise, there have been numerous other studies that determined 
specific M. bovis evolutionary targets that coincide with various 
lineages (Patané et al., 2017; Zimpel et al., 2020).

The random forest models we  developed were helpful in 
investigating which genomic regions became more important as 
ecological scales changed. In both the Across-Scales model 
comparison and the Aggregated vs. Stratified cattle model, 
pathogenic genes were harbored within the genomic regions that 
had sharp increases or decreases when the predictor importance 
was compared between models. While the genomic regions 
importance is not an assertion of being directly related to host 
adaptation, it provides an early in-silico examination of genes that 
possibly could play a role in adaptation to new environments. 
We hope that by identifying and reporting these genes, researchers 
that study M. bovis pathogenesis can further elucidate how the 

functions we highlighted impact M. bovis transmission in the very 
common multi-host environments.

Across every single model, SSRs were the most consistently 
important predictor in differentiating isolates from different 
geographic, sub-population, or host species groupings. Amongst 
the top 20 predictors in every individual model, SSRs had very 
high MDAs and achieved high levels of importance, despite the 
presence of SDRs in the full data. This indicated that evolution in 
selective sweep regions play a major role in differentiating isolates 
across the different scales. This would match what is observed in 
other pathogenic bacteria that maintain multiple host-associated 
clonal lineages such as Campylobacter jejuni, Staphylococcus 
aureus and Salmonella enterica (Sheppard et  al., 2018). Since 
M. bovis evolution is also described as evolving clonally, the main 
avenue of adapting to new host populations would likely 
be achieved predominantly through mutations that confer high 
selective advantage within a particular niche. Monitoring the 
genomic regions with SNPs in high linkage disequilibrium could 
be  leveraged to identify genes that are essential for M. bovis 
transmission between different ecological scales and perhaps 
provide a signal that M. bovis is being maintained within a 
new population.

While SSRs were predominant amongst the models, a few SDRs 
did rank as the top 20 most important predictors (SDR3, SDR9, 
SDR10, SDR11, and SDR14). In the UK badger and cattle model, 
SDR10 was the second highest predictor of wildlife badger status 
and additionally had the highest importance rank amongst all the 

A B

C D

FIGURE 7

The 20 top predictors for cattle related random forest models. The 20 top predictors were shown for the (A) aggregated cattle and (B) stratified 
cattle random forest models. (C) A Venn diagram to identify regions that were shared and unique across models. (D) Three genomic regions 
between the cattle vs. wildlife models that increase or decrease model accuracy as the scales move from aggregated to stratified.
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SDRs. SDR10 contains genes that are implicated in mycobacterial 
adaptation (vapb18 and vapc18) as well as lipoproteins that affect 
lipid modifications (lppA, lppB, and lprR). Elevated mutation rates 
in these genes could have a direct impact on adaptation to the 
immunological pressures present within the UK wildlife reservoir 
through changes in membrane structure. Additionally, since genes 
within the SDR10 region gained high importance in the badger and 
cattle model, genomic regions of high SNP density might play a 
larger role in classifying local isolates than global ones. Altogether, 
this provides some indication that while selective sweep sites are 
important genomic signatures to investigate M. bovis evolution, the 
contribution of genomic regions that undergo excessive mutation 
should be further investigated. The accuracy of the random forest 
models to classify country-of-origin and sub-population groups was 
consistently high, but in the case of the host-species model, the 
model failed in classifying correctly all the host-species, having just 
a few adequately classified. The reasons for the poor performance 
of the host-species model in certain host-species groups could 
be due to lack of host species structure along the phylogeny. When 

compared to the number of SNPs within key SSRs, the SNP  
count metric correlated poorly with host species 
(Supplementary Figures  4–6). We  analyzed the top three SSRs 
(SSR53, SSR85, and SSR11) that were used to classify host species 
and Supplementary Figures 4–6 show that in clades with low host-
population structure, the number of SNPs in these regions did not 
have enough resolution to distinguish host-species within clades. 
Despite this poor accuracy, the utilization of sub-populations, first 
described by Rodrigues et al. (2021) to define M. bovis in Brazil, 
sub-divided into eight distinct population clusters, showed 
remarkable accuracy for correctly identifying the proper 
sub-population. The inferred population clusters encompassed 
M. bovis genomic similarity isolated from multiple host species, so 
this method is most likely overcoming the accuracy problem found 
in the host species model by defining communities of hosts that 
share a similar evolutionary history. Since our results show high 
accuracy in differentiating the samples based on their fastBAPS 
derived clusters rather than host species, future studies should 
further explore the relationship between population clusters, 
transmission, and selective sweeps in order to dissect M. bovis 
adaptation. Furthermore, these results suggest that when researchers 
investigate the genomic factors that contribute to M. bovis 
adaptation, it is more suitable to conduct these comparative analyses 
at local scales rather than global scales (where evolution occurred 
separately for a prolonged time between distinct regions). 
Otherwise, comparisons made between isolates based solely on 
geographic distance has the potential to mask biologically relevant 
results that are contributing to putative adaptation.

One limitation of this study was the amount of data available 
for each host-species in the different geographical locations. The 
data were sparse regarding certain host-species populations, 
making it difficult to draw conclusions about the model’s ability to 
differentiate host species populations. In terms of accuracy, 
we noticed that low accuracy classes typically were not heavily 
sampled, but exceptions also existed. For example, 5 USA elk were 
never predicted accurately in our species model, while 13 USA 
cattle were correctly classified 80%. It appears that sub-population 
inference might be the best approach to mitigate the classification 
issue and identify variation occurring amongst M. bovis isolates, 
but without proper sampling of particular host-species it will 
be difficult to conclude if the low accuracy in classifying species is 
due to factors other than sample size. Additionally, we focused on 
selective sweep sites and SNP dense regions as the main genomic 
signatures of interest, and while our analyses produced insights 
regarding the relationship between M. bovis genomic evolution and 
ecological niche membership, there are other genomic signatures 
that could be investigated further. The data for this analysis was 
based on the number of SNPs within a SDR or SSR, but information 
about the exact SNPs that provided statistical support to 
differentiate M. bovis amongst various niches was not investigated. 
In future work, specialized bacterial genome-wide association 
studies (bacGWAS) would be useful to find influential SNPs, and 
furthermore answer the question of how these mutations impact 
the structure of particular genes (Lees et al., 2018).

TABLE 1 Summary of the random forest classification accuracy for 
each developed model.

Model Grouping Accuracy

Country of origin United States of America 1

United Kingdom 0.996

New Zealand 0.996

Population cluster Cluster 1 1

Cluster 2 1

Cluster 3 0.972

Cluster 4 1

Cluster 5 1

Cluster 6 1

Cluster 7 1

Cluster 8 0.989

Host species UK Badger 0.946

UK Cattle 0.945

USA Cattle 0.8

USA Elk 0

USA White tailed Deer 1

New Zealand Ferret 0.05

New Zealand Porcine 0

New Zealand Possum 0.11

New Zealand Cattle 0.894

New Zealand Cervine 0

Aggregated cattle Bovine 0.868

Wildlife 0.739

Stratified cattle UK Bovine 0.937

USA Bovine 0.7

New Zealand Bovine 0.830

Wildlife 0.772

UK Badger and Cattle Badger 0.946

Cattle 0.945

Accuracy is defined as the proportion of correct classifications of a grouping over the 
total number of attempts. Values can range from 0 to 1.
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FIGURE 8

The 20 top predictors for the United Kingdom badger versus cattle random forest models. SNP evolution occurring in SSR53 is the top predictor in 
differentiating the species in the United Kingdom. SDR10 increased substantially in model importance, indicating its ability to differentiate badger from cattle.
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