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Simple Summary: Polymicrobial infections, infections that are caused by more than one pathogen,
are known to be responsible associated with high mortality rates. The bacterial organisms involved in
these infections favor each other, resulting in pathogens’ success. Our work examined the behavioral
response of Acinetobacter baumannii after exposure to cell-free conditioned media of Staphylococcus
aureus, two pathogens responsible for severe infections. We focus on the effect of α-toxin, the primary
cytotoxic agent released by S. aureus, on A. baumannii’s behavior. Results indicated that α-toxin
contributes to the proliferation and survival of A. baumannii. One or more soluble molecules secreted
by S. aureus can be sensed by A. baumannii and trigger diverse responses to adapt to environmental
changes. The coexistence between bacteria can result in modifications in their general biology.

Abstract: Polymicrobial infections are more challenging to treat and are recognized as responsible for
significant morbidity and mortality. It has been demonstrated that multiple Gram-negative organisms
take advantage of the effects of Staphylococcus aureus α-toxin on mucosal host defense, resulting
in proliferation and dissemination of the co-infecting pathogens. Through phenotypic approaches,
we observed a decrease in the motility of A. baumannii A118 after exposure to cell-free conditioned
media (CFCM) of S. aureus strains, USA300 and LS1. However, the motility of A. baumannii A118
was increased after exposure to the CFCM of S. aureus strains USA300 ∆hla and S. aureus LSI ∆agrA.
Hemolytic activity was seen in A118, in the presence of CFCM of S. aureus LS1. Further, A. baumannii
A118 showed an increase in biofilm formation and antibiotic resistance to tetracycline, in the presence
of CFCM of S. aureus USA300. Transcriptomic analysis of A. baumannii A118, with the addition of
CFCM from S. aureus USA300, was carried out to study A. baumannii response to S. aureus’ released
molecules. The RNA-seq data analysis showed a total of 463 differentially expressed genes, associated
with a wide variety of functions, such as biofilm formation, virulence, and antibiotic susceptibility,
among others. The present results showed that A. baumannii can sense and respond to molecules
secreted by S. aureus. These findings demonstrate that A. baumannii may perceive and respond to
changes in its environment; specifically, when in the presence of CFCM from S. aureus.
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1. Introduction

Gene expression, affecting virulence traits and metabolic responses, can occur when
two or more different species are present in the same environment [1]. During polymicrobial
infection, the interaction between the organisms present at the site of infection might
significantly contribute to the spread, cause a synergistic interaction, affect antibiotic
resistance, and delay the outcome of infections [2–4]. This can, in part, explain why
polymicrobial infections are more challenging to treat and are also recognized as responsible
for significant morbidity and mortality [5]. Co-infection between Staphylococcus aureus and
Pseudomonas aeruginosa, mainly in a cystic fibrosis respiratory infection, has been widely
reported [6]. However, co-infections between S. aureus and other Gram-negative bacilli
have been scarcely reported [7,8]. In our previous work, where we studied the two clinical
strains of S. aureus and A. baumannii recovered from the same site of infection, we observed
that there was no significant decrease in the growth of either strain, which indicated that
both strains can co-exist at the same site of infection [9]. It has also been reported that
during infection, S. aureus produces virulence factors, such as cytotoxins, altering the
host’s immune response and increasing its survival. Among them, alpha (α)-toxin is the
major cytotoxic agent utilized by S. aureus [10]. α-toxin is encoded by the gene hla, under
the regulation of the agr, sarA and sae genes [11]. It has also been shown that S. aureus
α-toxin potentiates Gram-negative bacterial proliferation, systemic spread, and lethality by
preventing acidification of bacteria-containing macrophage phagosomes, thereby reducing
the effective killing of both S. aureus and Gram-negative bacteria [12]. Considering this
evidence, we aimed to explore the effect of this α-toxin on A. baumannii’s behavior.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

A. baumannii strains A118 (highly susceptible strain), A42 (intermediately suscepti-
ble strain) and AB5075 (strong resistance and highly virulent) were used in the present
study [13–19]. For the generation of the cell-free conditioned media (CFCM) and the zone
of clearance (ZOC) assays, the following S. aureus wild-type strains and derivate mutants
were used: LS1 (MSSA), USA300 (MRSA), LS1 ∆agrA, USA300 ∆agrA, USA300 ∆hla and
USA300 ∆hla, harboring plasmid pAH5 expressing a wild-type copy of hla (USA300∆hla
comp) [20–23].

2.2. Cell-Free Conditioned Media (CFCM)

Bacterial strains were grown in several different media (LB, TSB and BHI) for 48 h at
37 ◦C under shaking conditions (200 rpm). Cultures were then centrifuged, the supernatant
was collected and then filtered (0.22 µm). Then, the resulting cell-free conditioned media
(CFCM) were stored at −80 ◦C, as previously described [24].

2.3. Motility Assays

Motility agar plates were prepared as previously described [25]. Briefly, A118, A42,
and AB5075 cells were cultured in LB broth in the absence or presence of CFCM (50%) and
incubated with agitation for 18 h at 37 ◦C. Then, 4 µL of the overnight culture was pipetted
onto the center of a motility agar plate and incubated at 37 ◦C for 24 h, and the diameter of
growth was measured and recorded. Experiments were performed in triplicate.

2.4. Hemolytic and Fibrinolytic Activity Assays

A. baumannii cells were cultured in LB, TSB and BHI broth with or without 50% CFCM
and incubated with agitation for 18 h at 37 ◦C. Then, for fibrinolytic activity assays, 5 µL of
culture was spot seeded on heated plasma agar plates (HPA) [26] and on Tryptic soy agar
(TSA) plates supplemented with 5% sheep’s blood (blood agar plates; Hardy Diagnostics,
Santa Maria, CA, USA) for hemolytic activity assays [27]. HPA and blood agar plates were
incubated for up to 72 h at 37 ◦C and observed for the presence of characteristic halos.
Experiments were performed in triplicate.
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2.5. Biofilm Formation

A. baumannii cells were cultured in LB and TSB broth with or without 50% CFCM
and incubated with agitation for 18 h at 37 ◦C. Quantification of biofilm production in
polystyrene wells was carried out using a protocol from previously described method [25].
Briefly, overnight cultures were centrifuged at 5000 rpm at 4 ◦C for 5 and cell pellets were
washed twice with 1X PBS and then re-suspended in 1X PBS. Following this, the optical
density at 600 nm (OD600) of each culture was adjusted to 0.9–1.1, vortexed, and diluted
1:100 in LB or TSB broth with or without 50% CFCM before being plated in technical
triplicate in a 96-well polystyrene microtiter plate and being incubated at 37 ◦C for 24 h
without agitation. The following day, the OD600 (ODG) was measured using a microplate
reader (SpectraMax M3 microplate/ cuvette reader with SoftMax Pro v6 software) to
determine the total biomass. Wells were emptied with a vacuum pipette, washed three
times with 1X phosphate-buffered saline (PBS), and stained with 1% crystal violet (CV) for
15 m. Excess CV was removed by washing three more times with 1X PBS and the biofilm
associated with the CV was solubilized in ethanol acetate (80:20) for 30 m. The OD580
(ODB) was measured using a microplate reader and the results were reported as the ratio
of biofilm to total biomass (ODB/ODG). Experiments were performed in triplicate.

2.6. Susceptibility Assays

Antibiotic susceptibility assays were performed following the procedures recom-
mended by the CLSI [28], with slight modifications as described by Ramirez et al. [29].
Briefly, Mueller–Hinton agar plates were inoculated with 100 µL of culture of each tested
condition (LB or LB with 50% CFCM) after OD adjustment. Then, antimicrobial commercial
minimum inhibitory test strips were placed on the plates and the plates were incubated at
37 ◦C for 18 h. The assays were performed in triplicate.

2.7. Zone of Clearance (ZOC) Assays

To generate seeded plates, A. baumannii cells were resuspended into 0.2 mL 0.9% NaCl.
Then, 15 mL of BHI agar was inoculated with 8 µL of cell suspension and poured into
a plate. The plates were then cooled for 30 min and then 25 µL of S. aureus strain cell
suspensions was spotted onto the seeded plates and allowed to dry for 40 min. The plates
were incubated at 28 ◦C and were examined every 24 h for 120 h. Every 24 h interval, images
were recorded and the zones of clearance were measured. The assays were performed in
triplicate.

2.8. RNA Extraction, Sequencing and Analysis

Overnight cultures of A118 were diluted 1:10 in either fresh LB broth or in 100%
CFCMUSA300 and incubated with agitation for 7 h at 37 ◦C. RNA was immediately extracted
using the TRI REAGENT® Kit (Molecular Research Center, Inc., Cincinnati, OH, USA).
Quantification of RNA was performed using a DeNovix DS-11+ Spectrophotometer and
qualification was assessed on a 1.2% agarose gel via gel electrophoresis. DNase treat-
ment was performed following the manufacturer’s instructions (Thermo Fisher Scientific,
Waltham, MA, USA) and results were quantified as previously described [14]. To confirm
sample were free of DNA contamination, PCR amplification of the 16S rDNA gene was
performed. Extractions were performed in triplicate with controls performed in parallel.
RNA sequencing was outsourced to Otogenetics (Otogenetics Corporation, Atlanta, GA,
USA) where they performed ribosomal RNA-depletion using the Ribo-Zero kit (Illumina,
San Diego, CA, USA). Construction of the cDNA library was performed with the TruSeq
Stranded Total RNA Library Prep kit (Illumina) from three independent replicates per
sample. Data collected generated an average of 19.5 million paired-end reads per sam-
ple with an average of 19.8 and 18.8 total reads for LB (5 replicates) and CFCMUSA300
(3 replicates), respectively. Next, 3′-end adapter contaminant trimming was conducted
using scythe (available online: github.com/vsbuffalo/scythe (accessed on 18 February
2022). Then, reads were trimmed based on quality using sickle software (available online:

github.com/vsbuffalo/scythe
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github.com/najoshi/sickle (accessed on 18 February 2022) [30] and a phred score of 35
was used as threshold. Reads were mapped against the annotated draft genome of A118
with the function “align” from the R subread package [31]. Mapped reads (averaged 90%)
were counted based on the available annotation data using the function “feature Counts”,
also from the Rsubread package [31]. Finally, differential expression analysis was carried
out with the DESeq 2 package [32]. Genes with an FDR-adjusted p-value of <0.05 were
considered statistically significantly differentially expressed and subject to further analysis
by Artemis Version 16.0.0 (Sanger, Hinxton, UK), Blast2Go Version 4.1.5 (Biobam, Valencia,
Spain), NCBI BLAST (National Center for Biotechnology Information, Bethesda, MD, USA),
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kyoto Encyclopedia of Genes
and Genomes, Kyoto, Japan). RNA-seq data generated as a result of this work has been
deposited in SRA with the accession PRJNA791320.

2.9. Statistical Analysis

Statistical analysis t test or ANOVA followed by Tukey’s multiple comparison test (as
appropriate) was performed using GraphPad Prism (GraphPad software, San Diego, CA,
USA), and a p-value < 0.05 was considered significant.

3. Results
3.1. Effect on Motility and Biofilm Formation

To evaluate the effect of S. aureus-released molecules on A. baumannii’s behavior,
different phenotypic assays were performed. We began with conducting motility exper-
iments, where it was observed that the addition of CFCMUSA300, CFCMUSA300 ∆hla and
CFCMUSA300 ∆hla comp, obtained from LB, TSB and BHI, caused a marked decrease in A118
motility, with respect to the control without CFCM (Figure 1A). Moreover, the diameter of
motility of A118 also decreased when exposed to CFCMLS1 ∆agrA (BHI) (Figure 1A). The
agr operon is known to directly play a role in the virulence of S. aureus [33]. Figure 1A,
furthermore, shows that the A42 strain exhibited a decrease in the diameter of motility with
the addition of CFCMUSA300 and CFCMUSA300 ∆hla comp, whereas an increase was observed
with the addition of CFCMUSA300 ∆hla obtained from LB. In contrast, a slight decrease was
observed with the addition of these three CFCM acquired from TSB and BHI (Figure 1A).

Moreover, A. baumannii was exposed to CFCM of the methicillin-sensitive S. aureus
LS1 strain and its derivate mutant, ∆agrA. For the A. baumannii A118 strain, a significantly
decreased motility diameter was observed in the presence of CFCMLS1 and CFCMLS1 ∆agrA
obtained from the three media analyzed, in comparison to the control condition (Figure 1B).
The A42 strain showed a reduction in motility under CFCMLS1 and enhanced motility
under the CFCMLS1 ∆agrA treatment, obtained from LB and TSB (Figure 1B). Finally, changes
in motility were not observed for the A. baumannii AB5075 strain, supplemented with
different analyzed CFCM (Figure 1A,B).

The analysis of the A. baumannii genome sequence has revealed the absence of genes
required for flagellar biosynthesis, necessary for swarming motility [34,35]. However, A.
baumannii exhibits flagellum-independent motility, such as twitching motility and surface-
associated motility. To analyze the expression of genes related to motility, twenty-six genes
were evaluated by RNA-seq; as a result, five genes related to motility were DEG when A.
baumannii A118 was grown in the presence of CFCM from S. aureus USA300 (Figure 1C).

Biofilm formation is found in various environmental niches and commonly comprises
two or more bacterial species [36]. In this work, A. baumannii biofilm formation assay
was performed in the presence of CFCM obtained from LB and TSB. The results for A118
and A42 strains showed that under CFCMUSA300 and CFCMUSA300 ∆hla treatments, major
biofilm formation was observed, while differences were not observed for AB5075 strains
under these CFCM. Lastly, a significant decrease in biofilm formation, in the presence of
CFCMUSA300 ∆hla comp, was obtained for the three A. baumannii strains analyzed (Figure 2A).

github.com/najoshi/sickle
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Figure 1. Phenotypic and transcriptomic analysis of associated motility coding genes. Diameter
of motility (mm) of A. baumannii A118, A42 and AB5075 under CFCMUSA300, CFCMUSA300 ∆hla,
CFCMUSA300 ∆hla comp or CFCMUSA300 ∆agr (only in BHI medium) (A) or CFCMLS1 and CFCMLS1 ∆agr

treatments (B) obtained from LB, TSB and BHI broth. Experiments were performed in triplicate, with
at least three technical replicates per biological replicate. The control condition corresponds to LB,
TSB, or BHI supplemented with CFCM, without inoculating with A. baumannii strains. Statistical
analysis for each strain (ANOVA followed by Tukey’s multiple comparison test) was performed using
GraphPad Prism (GraphPad software, San Diego, CA, USA), and a p-value < 0.05 was considered sig-
nificant, one asterisk: p-value < 0.05; two asterisks: p-value < 0.01 and three asterisks: p-value < 0.001.
The asterisks observed in the graphs indicate significant differences between the condition with one
or more asterisks and the rest of the conditions, except when it is indicated with brackets between
these conditions. (C) Heatmap showing the differential expression of genes associated with fimbriae
biogenesis, structural organization of T4P and motility, and type I pilus. Significantly differentially
expressed genes (DEG) are indicated with an asterisk (FDR < 0.05).
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Figure 2. Phenotypic and transcriptomic analysis of associated biofilm formation coding genes. (A)
Biofilm assays performed with and without CFCMUSA300, CFCMUSA300 ∆hla, or CFCMUSA300 ∆hla comp

obtained from LB and TSB represented by OD580/OD600. Experiments were performed in triplicate,
with at least three technical replicates per biological replicate. The control condition corresponds
to LB or TSB supplemented with CFCM, without inoculating with A. baumannii strains. Statistical
analysis for each strain (ANOVA followed by Tukey’s multiple comparison test) was performed using
GraphPad Prism (GraphPad software, San Diego, CA, USA), and a p-value < 0.05 was considered
significant, one asterisk: p-value < 0.05; two asterisks: p-value < 0.01 and three asterisks: p-value <
0.001. The asterisks observed in the graphs indicate significant differences between the condition
with one or more asterisks and the rest of the conditions, except when it is indicated with brackets
between these conditions. (B) Heatmap showing the differential expression of genes associated with
biofilm formation. DEG are indicated with an asterisk (FDR < 0.05).

3.2. Effect of S. aureus-Released Molecules on Other Phenotypes

We also studied other important phenotypes that can be affected by the presence of
S. aureus and the impact it can have on the pathobiology of A. baumannii, such as hemolytic
activity and antimicrobial resistance.

The A. baumannii strains studied in this work are characterized as not hemolytic.
However, hemolytic activity was observed when A. baumannii cells were cultivated in the
presence of S. aureus-released molecules contained in CFCMLS1, cultured in LB and BHI
(Figure 3A). In contrast, CFCMLS1 ∆agrA did not induce hemolytic activity in the A. baumannii
strain. This result could be expected, as the Agr regulator is the major coordinator of the
hlA expression in S. aureus [37].
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Hemolytic activity was performed for A. baumannii A118, A42 and AB5075 strains in presence or
absence of different CFCM obtained from LB or BHI broth. The control condition corresponds to LB
or BHI supplemented with CFCM, without A. baumannii cells. (B) Heatmap showing the differential
expression of genes associated with iron acquisition and metabolism. DEG are indicated with an
asterisk (FDR < 0.05).

Since the A. baumannii TU04 strain was reported to have fibrinolytic activity [38], we
carried out fibrinolytic activity assays [26]. However, fibrinolytic activity was not observed,
either for the A. baumannii strain utilized in this study grown in LB or in CFCM tested
conditions (data not shown).

S. aureus’s effect on antibiotic susceptibility phenotypes revealed no change in the MIC
for tetracycline, in any of the CFCM tested conditions for A118. In A42, an increase in tetra-
cycline MIC was observed with CFCMUSA300 (Table S1). In addition, in AB5075, changes
in the MIC for tetracycline were observed under CFCMUSA300 and CFCMUSA300 ∆hla comp
treatments (Figure 4A and Table S1) and for imipenem, in the presence of CFCMUSA300 ∆hla
and CFCMUSA300 ∆hla comp (Table S1).
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Figure 4. Phenotypic and transcriptomic analysis of antibiotic resistance coding genes. (A) Minimum
inhibitory concentration (MIC) was performed by E-test (Liofilchem, Italy) following CLSI recommen-
dations for A. baumannii AB5075 in presence or absence of different CFCM. (B) Heatmap showing
the differential expression of genes associated with antibiotic resistance. DEG are indicated with an
asterisk (FDR < 0.05).

We also tested S. aureus and its isogenic mutants for bactericidal activity against
A. baumannii. ZOC assays for A118 showed an increase in the zone of clearance in the
presence of USA300∆hla comp and LS1, after two days, while, after four days, an increase was
observed for LS1∆agr. In addition, bactericidal activity was found in A42, when challenged
with LS1 after day one and with USA300∆hla and USA300∆hla comp after day two, while in
AB5075, after day one, a zone of clearance was seen when exposed to USA300, USA300 ∆hla
comp and LS1∆agr. After day four, an effect was also seen when USA300∆hla and LS1 were
present (Figure S1).

3.3. RNA Sequencing Analysis

In total, 463 significantly differentially expressed genes (DEG) were identified (FDR < 0.05).
Among them, 244 were down-regulated and 219 were up-regulated when A. baumannii
A118 was exposed to CFCMUSA300 (Table S2).

From the 244 down-regulated DEGs, 192 were analyzed. The remaining 52 down-
regulated DEGs produced hypothetical proteins, protein of unknown functions, uncharacter-
ized proteins, and putative protein-coding genes. The 192 repressed DEGs were categorized
into different functions; for example, 89 were related to metabolism, 62 were involved in
transport of bio-materials and 18 were related to antibiotic resistance (Figure 4B). As shown
in Figure 1C, the pilP, pilM, pilQ, pilB and fimV genes, related with motility, were also
down-regulated. This result was consistent with a reduction in motility observed for the
A118 strain in the presence of CFCMUSA300 (Figure 1A). Moreover, other down-regulated
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coding genes were related to DNA binding and repair, detoxification, oxidative stress
response, acetoin metabolism and transformation.

Within the 219 DEGs up-regulated, 14 were hypothetical proteins and were not further
discussed. Important biofilm formation-related genes, such as csuA/B, csuC and ompA,
were found (Figure 2B). This result was consistent with a major biofilm formation under
CFCMUSA300 treatment, with respect to the control without CFCM (Figure 2). In addi-
tion, it was reported that the action of iron-uptake systems contributes to A. baumannii
virulence and pathobiology [39]. Transcriptomic analysis of A. baumannii A118 showed
that the expression of 17 genes related with iron acquisition and metabolic functions was
significantly up-regulated in the presence of CFCMUSA300 (Figure 3B). Furthermore, among
other positively regulated coding genes, we identified virulence and Phenylacetic acid
metabolism-related functional terms.

4. Discussion

A. baumannii and S. aureus are pathogenic bacteria belonging to the ESKAPE group.
They generate different types of infections that are usually difficult to treat [40]. Often, these
infections are polymicrobial and pathogens, such as A. baumannii, S. aureus, Pseudomonas
spp., Escherichia spp., Klebsiella pneumonia, among others, can coexist [41,42]. Different
pathogens may act synergistically or in succession to mediate polymicrobial infections [9].

Epidemiologic studies identified a transition from S. aureus to Gram-negative or-
ganisms as the primary pathogens in early- to late-onset ventilator-associated pneumo-
nia [43,44], as well as in cystic fibrosis patients [45]. These results indicate that S. aureus col-
onization could stimulate infection by other bacterial species. In addition, Cohen et al. [12]
demonstrated that multiple Gram-negative organisms take advantage of the effects of S.
aureus α-toxin on mucosal host defense, resulting in proliferation and dissemination of
the co-infecting Gram-negative pathogens. In that work, utilizing a murine lung infection
model, it was demonstrated that α-toxin enhanced the growth and dissemination of P.
aeruginosa, K. pneumonia and A. baumanni, by preventing acidification of bacteria containing
macrophage phagosomes [12]. Furthermore, S. aureus is the most frequently co-isolated
pathogen in diabetic foot ulcer, ranging from soft tissue to bone infections [46]. In our
previous report, we analyzed a strain of A. baumannii and a strain of S. aureus that were
both recovered from skin and soft tissues of a diabetic patient [9], and showed that these
two pathogens can be causative agents of diabetic foot ulcer and can co-exist in the site. In
addition, we found that both strains do not have an effect on one another, whether benefi-
cial or detrimental, showing a state of commensalism between the two. This relationship
has been previously observed where both strains have been co-cultured together, with no
significant decrease in growth in either clinical strain, and without experiencing statistically
significant changes in susceptibility [9].

In this work, we demonstrate that one or more soluble molecules secreted by S.
aureus can be sensed by A. baumannii and trigger different pathogenic responses to adapt
to environmental changes. Future research should be carried out to further investigate
potential molecular responses in A. baumannii. We showed that recognized virulence
responses, such as motility and biofilm formation, of A. baumannii were variable, depending
on the CFCM with which LB broth was supplemented. Using mutant strains in α-toxin
and in the master regulator Agr, a decrease in motility was observed for the A118 strain,
while the opposite effect was observed for the A42 strain, indicating that the molecular
mechanisms that regulate motility are strain-dependent. When A. baumannii cells were
exposed to the CFCM of α-toxin mutant, a decrease in biofilm formation was observed in
both A. baumannii strains. These results agree with the observations of Cohen et al. [12],
indicating that α-toxin contributes to the proliferation and survival of A. baumannii.

The A. baumannii strains analyzed in this work are characterized by not having
hemolytic activity; however, in the presence of CFCMLS1, the hemolytic activity was trig-
gered in A. baumannii, which adds a novel aspect of the virulence of polymicrobial infections.
It should be noted that agr-deficient S. aureus did not potentiate the hemolytic activity of A.
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baumannii, as the Agr system plays a role in the enhanced hemolytic activity in S. aureus [37].
Like this, our previous report showed that extracellular products from non-hemolytic S.
aureus LS1 potentiate the hemolysis of Burkholderia cepacia complex strains [24].

To increase our understanding of relevant aspects of the CFCM of S. aureus with A.
baumannii interactions, we carried out a transcriptomic analysis comparing A. baumannii
grown in LB versus A. baumannii grown in the presence of CFCMUSA300. Our results
indicated that 463 genes were differentially expressed under CFCM treatment. A. baumannii
may be tuning its transcriptional response to survive in this condition, a trait that has been
documented previously. For instance, quorum sensing allows bacteria to maintain cell–
cell communication and regulate the expression of specific genes, in response to changes
in cell population density [47]. There are two quorum-sensing processes described for
bacteria. The type-1 auto-inducers are species-specific and are engaged for intraspecies
communication, while the type-2 auto-inducers are not species-specific and are used for
interspecies communication [47]. In this study, an interspecies communication system
was described. The extracellular products of S. aureus could modify different aspects of
A. baumannii, specifically behavior such as motility, biofilm formation, hemolytic activity,
antibiotic resistance profiles and expression of virulence factors. However, we recognize
that the present study possesses some limitations, such as the lack of the in vivo effect of
the co-existence of S. aureus and A. baumannii. In addition, the direct role of the α-toxin or
specific secondary metabolites released by S. aureus need to be further studied. Importantly,
the present study sets the stage for further studies, which can further evidence that A.
baumannii can perceive and respond to effectors released by S. aureus.

5. Conclusions

The present results revealed that the coexistence between bacteria can result in modifi-
cations in their general biology. A. baumannii can respond to soluble molecules secreted
by S. aureus, which is in line with previous studies that show strain effects and responses.
The versatility of A. baumannii to sense and respond to S. aureus‘ molecules demonstrates
evidence of its exceptional ability to adapt to different conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11040570/s1. Figure S1. Zone of clearance (ZOC) assays
between A. baumannii and S. aureus strains after 120 h of incubation. Statistical analysis for each
strain (ANOVA followed by Tukey’s multiple comparison test) was performed using GraphPad
Prism (GraphPad software, San Diego, CA, USA), and a p-value < 0.05 was considered significant,
one asterisk: p-value < 0.05; two asterisks: p-value < 0.01 and three asterisks: p-value < 0.001. The
asterisks observed in the graphs indicate significant differences between the condition with one or
more asterisks and the rest of the conditions, except when it is indicated with brackets between these
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