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In recent years a major worldwide problem has arisen with regard to infectious diseases
caused by resistant bacteria. Resistant pathogens are related to high mortality and also to
enormous healthcare costs. In this field, cultured microorganisms have been commonly
focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial
compounds. Although this strategy has been successful in many cases, most of the
microbial diversity and related antimicrobial molecules have been completely lost. As an
alternative, metagenomics has been used as a reliable approach to reveal the prospective
reservoir of antimicrobial compounds and antibiotic resistance genes in the uncultured
microbial community that inhabits a number of environments. In this context, this review
will focus on resistance genes as well as on novel antibiotics revealed by a metagenomics
approach from the soil environment. Biotechnology prospects are also discussed, opening
new frontiers for antibiotic development.
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INTRODUCTION
Nowadays one of the most intractable worldwide health problems
involves treating infections that are resistant to antibiotics. Resis-
tant pathogens are able to cause high mortality and consequently
impose huge healthcare costs (Carlet et al., 2011). Until recently,
antibiotics were used only for treating human infections. Now,
however, antibiotics are being extensively used in agriculture, food
industries, or veterinary practices, causing a high impact on natu-
ral environments and consequently on human health (Radhouani
et al., 2014). This situation of bacterial gene resistance created
by widespread and imprudent use of antibiotics has triggered a
more energetic search for alternative compounds with deleterious
activities against microbial infectious diseases, as well as the iden-
tification of pathways or genes related to resistance to traditional
antibiotics.

In this regard, over the last decade, the developments of culture-
independent approaches have allowed additional insights into the
diversity of antimicrobial compounds and antibiotic resistance
genes from different environments. Basically, culture-independent
analyses are based on molecular methods, including the extrac-
tion, amplification, sequencing, and analysis of nucleic acids
from environmental samples. Among these, the metagenomics
approach has revolutionized knowledge about the vast majority
of not-yet-culturable microbial communities. This idea, coined
by Handelsman et al. (1998), briefly consists of direct or indirect
DNA extraction from a microbial community in its natural habitat,
bypassing microbial isolation, and traditional culturing methods.

In recent decades, cultured microorganisms were the exclu-
sive source from which to isolate and clone antibiotic resistance

genes or identify antimicrobial activity, since most of the micro-
bial diversity was lost when researchers tried to grow them in
standard laboratory culture medium (Hugenholtz et al., 1998).
For this reason, metagenomics is a reliable alternative approach
to reveal the potential reservoir of antimicrobial compounds and
antibiotic resistance genes in the uncultured microbial community
that inhabits the environments (Figure 1).

Metagenomics has also been considered a promising approach
for the isolation of unusual antibiotics from environmental sam-
ples, as well as in identifying the mechanisms of bacterial resistance
in the in situ microbial community. The combination of metage-
nomics with next-generation deep sequencing has brought great
progress to the field of antimicrobial resistance and compounds,
giving a more feasible representation of the origins and mecha-
nisms of resistance genes (Forsberg et al., 2012; McGarvey et al.,
2012). Although the metagenomic approach has many applica-
tions in biological sciences, this approach has several limitations,
especially for data analysis through a homology-based approach
(Prakash and Taylor, 2012). Usually, the functional annotations
from metagenomic sequences are reached by homology-based
approaches to a publicly available reference sequence (Prakash and
Taylor, 2012). Although there are numerous pipelines dedicated to
functional analysis of metagenomic data, these pipelines can only
detect previously characterized genes that are similar to the newly
identified genes, and therefore unknown novel bioactive molecules
are missed. For this reason, activity-based functional screening
of metagenomic libraries is sometimes still the most appropriate
way to identify and characterize resistance genes and antimicro-
bial compounds (Su et al., 2014) rather than searching for genes
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FIGURE 1 | Schematic depiction of the typical screening for novel

antimicrobial compounds and antibiotic resistance genes from the soil

environment through metagenomics. After collecting soil samples, the
metagenomic DNA is extracted and sequenced from a microbial community
in its natural habitat, bypassing microbial isolation and traditional cultivation
methods, generating several million reads. Once coding sequences have

been obtained, their corresponding antimicrobial compounds can be sought
through conserved domain search or novel gene discovery in the reference
functional databases by in silico analysis. Complementary methods
reconstruct the identification of the biomolecules of interest. Large-scale
production of the target molecule is then carried out for various
biotechnological applications including agribusiness and human health.

in public sequence bases. Nevertheless, using this activity-based
approach, the genes that have been discovered are evolutionarily
distant from known resistance genes in the public databases (Su
et al., 2014).

This review will focus on soil samples, which are character-
ized as a complex and dynamic environmental system, comprising
higher microbial diversity of bacteria, archaea, fungi, viruses,
and protozoa (Young and Crawford, 2004), when compared to
other natural environments such as freshwater or extreme habitats
(Sleator et al., 2008).

The ecology and activity of soil microbial communities depend
on biotic or/and abiotic factors such as soil pH, nutrient availabil-
ity, water availability, and vegetation cover aboveground (Fierer
et al., 2007).

In this context, the present review will attempt a broad lit-
erature investigation into diversity and abundance of resistance
genes as well as novel antimicrobial compounds, as revealed by
the metagenomics approach in the soil microbial community.

SOIL ANTIBIOTIC RESISTANCE GENES
Although the origin of the genes associated with resistance is con-
sidered a mystery, there is a link between antibiotic resistance genes

in human pathogens and those found in commensal microor-
ganisms, with several common bacteria resistance taxa such as
Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella
pneumoniae coming from the natural environment (Wright,2010).
Generally, bacterial resistance to antibiotics can be acquired by
horizontal gene transfer (HGT) or by spontaneous mutation in
target gene (Hassan et al., 2012). In fact, antibiotic resistance genes
could be associated with a transposable element. The mobility
of antibiotic resistance genes involves the transference of genetic
material to other bacteria of the same or different species (Thomas
and Nielsen, 2005).

It has previously been reported that antibiotic resistance is
everywhere, and consequently efforts are being devoted to under-
standing the origin of resistance genes, particularly among the
vast majority of not-yet-culturable environmental bacteria. For
instance, the close association between people, animals, and the
environment can be responsible for the evolution and spread of
antibiotic resistance. For more details, see references (Gautam and
Morten, 2014) for an extensive and intense review.

In this context, the environment is constantly exposed to bioac-
tive chemicals produced by a high genetic diversity of plants,
protists, bacteria, or fungi. For this reason, it is not unexpected
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that their microbial community possesses specialized mechanisms
to respond to and metabolize small molecules, including antibi-
otics (Knapp et al., 2010), indicating that the environment is a
massive reservoir in which to search for novel resistant organ-
isms (Allen et al., 2010). Indeed, the concept of the resistome on a
global scale consists of antibiotic resistance genes detected either
free living or as commensals in the environment (D’Costa et al.,
2006).

Recently, there have been many investigations into resistant
microorganisms in natural environments. These environments
include deep sea sediments (Song et al., 2005), pristine cave ecosys-
tems (Bhullar et al., 2012), permafrost soil at depths from 2
to 40 m (Mindlin et al., 2008), urban sewage and wastewater
(Graham et al., 2011; Novo et al., 2013), and mainly in the human
habitat such as the oral cavity (Xie et al., 2010) or gut microbiota
(Schjorring and Krogfelt, 2011).

Although a range of environments have been focused, in this
review, special attention will be paid to the soil environment
because it has been discussed with more detail in the litera-
ture. Some recent studies have demonstrated that soil microbial
communities serve as a reservoir for understanding the diver-
sity, abundance, and origins of resistance genes (Knapp et al.,
2010, 2011; Ma et al., 2014; Su et al., 2014) and that the bacterial
community is characterized as opportunistic pathogens, includ-
ing members of the genera Escherichia, Klebsiella, Pseudomonas,
and Streptomyces, which are known to be multi-drug resistant and
ubiquitous in soil samples worldwide (D’Costa et al., 2007).

In this context, the pioneering study carried out by Riesenfeld
et al. (2004) was one of the first to use metagenomics to reveal the
potential of soil microorganisms in relation to antibiotic resis-
tance genes. This analysis was based on the construction of a
metagenomic library from Wisconsin remnant oak savannah soil.
Among the gigabase of cloned DNA, nine clones were confirmed to
have resistance against aminoglycoside and tetracycline antibiotics
(Riesenfeld et al., 2004). Importantly, all DNA sequences from
antibiotic resistance genes were significantly different from those
previously reported in the database sequences, demonstrating that
there was a higher and unexplored bacterial genetic diversity in the
soil environment.

The same methodology was used in undisturbed Alaskan soil
to search for genes that mainly mediate resistance to β-lactam
antibiotics (Allen et al., 2009). This analysis was important for
future conclusions because the soil that was collected had no pre-
vious exposure to antibiotic compounds, never having undergone
anthropic pollution. Their results showed that β-lactamases char-
acterized from soil in Alaska were divergent from those isolated
in a clinical environment, indicating that they are more related to
β-lactamases ancestral homologs (Allen et al., 2009). This finding
was attributed to the uncontaminated nature of the sampling site.
Although phylogenetic analysis indicated that the β-lactamases
sequences from Alaskan soil metagenomic libraries are not related
to β-lactamases sequences from the clinical environment, they
were still capable of conferring resistance on Escherichia coli strains
(Allen et al., 2009).

Another example of the characterization of resistance genes in
the soil environment was found by Torres-Cortes et al. (2011).
Their results showed a high number of clones that conferred

resistance to various types of antibiotics. Nevertheless, only one
clone screened codified a dihydrofolate reductase denominated
Tm8-3 with approximately 26.8 kDa, which conferred resistance
to a synthetic antibiotic such as trimethoprim. In this regard, it
was established that the Tm8-3 enzyme had similar dihydrofo-
late reductase activity, but with low amino acid identity (41%)
against dhfr genes, demonstrating an unassigned reductase tar-
geting trimethoprim resistance. The authors emphasize that a
functional metagenomics approach enabled them to discover
unassigned enzymes with unexpected activities without prior
knowledge about their resistance gene sequences (Torres-Cortes
et al., 2011).

Although there is no clear evidence if the resistance genes
flow from the soil environment to the clinical, or vice-versa, the
recent analysis provided by Forsberg et al. (2012) demonstrated
that seven resistance gene cassettes from non-pathogenic cultured
Proteo bacteria from soil conferred tolerance to five antibiotic
classes. Additionally these resistance genes had 100% nucleotide
identity in relation to those resistance genes detected in pathogens
from clinical isolates, suggesting that soil bacteria may share
antibiotic resistance genes with human pathogens (Forsberg et al.,
2012).

It is now becoming accepted that resistance genes are extremely
abundant, diverse, and widely distributed in the soil environ-
ment, and that they also show clear similarities to those found
in common pathogens. All of the studies mentioned above have
recovered multidrug resistance cassettes with formerly unknown
functions, based on the entries in the GenBank database. There-
fore, the vast majority of them were previously identified as
antibiotic gene resistance targeting multiple classes of antibiotics,
including bacteriocins, β-lactams, aminoglycosides, vancomycin,
chloramphenicol, or tetracyclines.

In fact, the main targets of antibiotic molecules are DNA repli-
cation, protein synthesis and cell-wall biosynthesis (Walsh, 2000).
The knowledge of antibiotic mechanisms of action is extremely
valuable for antibiotic resistance prediction. In this context, func-
tional metagenomics investigations have provided a direction
for researchers to prospect not only genes that are functionally
active against multiple classes of antibiotics in the non-clinical
environments, but also to look for genes with unrelated func-
tions that in some circumstances may confer resistance functions
(Pehrsson et al., 2013). For example, in the first instance, a metage-
nomic library derived from South Korean wetland was screened
for esterase activity using tributyrin agar plates, which are usu-
ally used for detection of lipolytic microorganisms (Jeon et al.,
2011). Using functional screening, one clone of the 6912 cos-
mid clones had previously been screened with esterase activity
revealing the presence of an open reading frame (ORF; estU1).
Although the activity-based functional screening of metagenomic
libraries is one quick approach to identify clones with a target
of interest, it is important to note that a main limitation of
this approach is that it requires expression of the function of
interest in the host cell (Schloss and Handelsman, 2003), and
for this reason, the frequency of active clones could be quite
low.

Despite the low frequency of positive clones, the only positive
clone identified in the metagenomic library derived from South
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Korean wetland was overexpressed in E. coli, and the amino acid
sequence analysis of EstU1 demonstrated the conserved S-X-X-K
motif that is typical of family VIII carboxylesterases.

Furthermore, it had previously been reported that family VIII
carboxylesterases and class C β-lactamases are phylogenetically
related and both are involved in cleaving the lactamic acid ring,
conferring bacterial resistance. (Wagner et al., 2002). For this rea-
son, more detailed analysis of purified EstU1 protein showed that
this single enzyme has both esterase and β-lactamase activities
(Jeon et al., 2011) indicating that EstU1 was the first case of a sin-
gle enzyme that exhibited notable catalytic features, cleaving the
β-lactam ring of antibiotics as well as ester substrates.

In particular, functional metagenomic studies offer alternative
opportunities to identify new genes and pathways that produce
bioactive molecules. However, there are several technical diffi-
culties in the construction of metagenomic libraries, including
bias in the DNA extraction, size of inserts and choice of vectors
(Delmont et al., 2011a). In fact, direct or indirect techniques used
to extract DNA from soils are not completely efficient, due to the
fact that different DNA extraction protocols can yield substantially
contrast results with respect to purity, quantity, and high-quality
DNA recovery (Delmont et al., 2011b). In relation to the size of
the inserts, the metagenomic library can be classified into large-
insert (>40 kb) or small-insert (<15 kb) depending on higher
molecular weight of DNA. The advantages and disadvantages for
each method were discussed in (Rajendhran and Gunasekaran,
2008).

Although the use of bacterial host has enabled great progress
in biological activities from natural environments, the DNA frag-
ments from other microorganisms such as fungi can be challenging
to express in a bacterial host (Rondon et al., 1999). This problem
is caused by incompatibilities between fungal and host molecular
biology, such as the presence of introns in fungal genes and the
need for protein glycosylation, which is important for visualizing
the target activity. However, in order to overcome these obstacles,
extensive efforts have been made to use Streptomyces lividans and
P. putida as alternative hosts (Martinez, 2004).

NGS AND AMP/ANTIBIOTIC RESISTANCE GENES
PROSPECTION
Since the price of sequencing has fallen with the advances in
sequencing technologies, researchers have sought to discover
alternatives for analyzing such a large amount of available data.
Sequencing of the whole metagenome provides information about
the functional potential in the environment and intraspecific
variations (Schloissnig et al., 2013). Venter suggested sequences
assembly as an alternative to identify new genomes in environmen-
tal samples (Rusch et al., 2007). Metagenome assembly is a critical
step, since researchers are dealing with an unknown number of
different genomes, and the possibility of assembling a chimeric
sequence is real. It is well known that NGS platforms produce
shorter reads than traditional dideoxynucletide sequencing, and
short reads are more difficult to assemble, especially for metage-
nomics (Raes et al., 2007; Kunin et al., 2008). In order to minimize
the effect of this sequence mosaic, bioinformaticians have been
dedicated to discovering new assembly algorithms and pipelines,
which will now be discussed.

MetaVelvet (Namiki et al., 2012) is an extension of the Vel-
vet de novo assembler (Zerbino and Birney, 2008), which uses
de Bruijn graphs to connect short reads in a high coverage to
construct the contigs. The extension decomposes the graph built
by Velvet into individual subgraphs and then assembles each of
them separately. Using this approach, the tools can build longer
scaffolds and improve the gene prediction. At a species level,
MetaVelvet can cover 94.56% the total metagenome size. This is
an improvement when compared to the regular Velvet coverage
(60.29%) and SOAPdenovo (84.62%). The assembly procedure
also leads to better gene prediction: 81842 genes predicted from
MetaVelvet scaffolds, 38445 and 65176 predicted genes from Vel-
vet, and SOAPdenovo scaffolds, respectively, (Namiki et al., 2012).
Recently, new powerful pipelines to perform the full analysis
have been released. Among them we highlight MOCAT (Kultima
et al., 2012) and MetAMOS (Treangen et al., 2013). MOCAT is
a modular pipeline developed for the processing, assembly, and
gene prediction of metagenomics NGS reads. The first step –
quality filtering – is essential to avoid assembly errors related
to low quality reads. The scaffolds are built using SOAPden-
ovo (Li et al., 2010), and in the next step the reads are mapped
to the assembled sequences. This remapping procedure resolves
the chimeric regions and improves gene prediction. MetAMOS
has a similar approach, allowing the user to choose from 20
different analysis tools. This tool also provides a functional anno-
tation step that uses BLAST (Altschul et al., 1997) to annotate the
predicted ORFs.

Gene prediction is an important step for metagenomics anal-
ysis. Identifying ORFs in mixed environment sequences can be
a challenge. New prediction tools have been released to help
bioinformaticians to identify genes accurately: MetaGUN (Liu
et al., 2013) based on Support Vector Machine; MetaGeneMark
(Zhu et al., 2010) uses Hidden Markov Models; Glimmer-MG
(Kelley et al., 2012) with Interpolated Markov Models. The use
of different approaches to reach consisent results increases the
accuracy of gene prediction. Gene prediction will provide a set of
candidates that can be tested to identify compounds of biotech-
nological interest. This procedure was used to describe the human
gut microbial gene catalog with 3.3 billion different genes (Qin
et al., 2010). Among all these predicted genes we can scan for a
specific activity.

The characterization of the predicted genes is the most impor-
tant step toward identifying new antimicrobial peptides and
antibiotic resistance genes. To achieve this goal it is essential to
use a good reference database for the annotation process. Gene
sequences can be retrieved from databases such as NCBI Ref-
Seq (Tatusova et al., 2014) or from secondary databases such as
Antibiotic Resistance Genes Database (ARDB; Liu and Pop, 2009).
ARDB is a manually curated database that collects information
about antibiotic resistance from most of the public databases. The
database organizes the information about 23137 genes into 380
different types (e.g., Beta Lactamases, Multi Drug Transporters).
Each gene is also related to at least one of 249 antibiotics described
in the ARDB and linked to 1737 species. ARDB comprises data
about mechanism of action, ontology, orthology groups, and con-
served domains. The gene sequence is provided as well, and this
information can be used as a reference for sequence similarity
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searches to infer homology to genes predicted in the metagenomic
sample. Besides the characterization of the resistance genes, it is
also important to identify nucleotides or amino acid variations
and link them to the resistance profile.

Among the metagenomics sequences the identification of genes
codifying antimicrobial peptides could also be performed. This
identification follows two steps: a sequence similarity search using
a reference database, and discovery of novel peptides. A secondary
database containing curated peptides with antimicrobial activity
can be used for a search using BLAST (Altschul et al., 1997). A
profile search can also be performed using HMMR (Eddy, 2011)
and the reference database. An example of a database that can be
used is APD2 (Wang et al., 2009), which organizes known antimi-
crobial peptides according to families, sources, and targets. The
database contains more than 2400 identified compounds: 1986
have antibacterial, 890 antifungal, and 148 antiviral activities.
These data can be used as a reference to assign antimicrobial
activity to a predicted gene.

In the soil environment there is much information to be discov-
ered. Due to the lack of reference genomes and curated sequences
in databases it will not be possible to classify all the predicted
genes using similarity searches. Models generated by support vec-
tor machines can be used to classify antimicrobial peptides that are
not present in reference databases. AMPPred (Porto et al., 2012) is
a software that uses five features to predict novel antimicrobial
activity from the translated gene sequences. Using the combi-
nation of described tools it is possible to extract the maximum
information from one’s data, and characterize antibiotic resistance
mechanisms and antimicrobial peptides.

ANTIMICROBIAL COMPOUNDS FROM SOIL
In addition to the efforts of metagenomics to identify resistance
genes that are functionally active against multiple classes of antibi-
otic, another important attribute of this methodology is the ability
to identify several small molecules with antimicrobial activities
(MacNeil et al., 2001; Gillespie et al., 2002; Lim et al., 2005). The
discovery and screening of novel antibiotics has been an enormous
and essential task in recent years. Nowadays, antibiotic resis-
tance poses a global threat to public health (Civljak et al., 2014).
On the one hand, bacteria have become more resistant to tradi-
tional antibiotic compounds, while on the other, various research
groups have selected antimicrobials from different sources includ-
ing microorganisms, plants, and animals (Roy et al., 2013; de Souza
Candido et al., 2014). Among them, the microbial community
seems to be the most effective, being the source of many antimi-
crobial molecules that enable them to live in a very competitive
microenvironment. Nevertheless, so far only some microorgan-
isms can be easily detected and cultivated. Metagenomics is a
remarkable approach to discover novel entities that could act as a
repository of unusual antibiotics in complete environments, such
as soil, as focused here.

In most habitats, only a small fraction of all existing prokary-
otes are acquiescent to cultivation and chemical study. Moreover,
there is a strong body of evidence that uncultivated soil diver-
sity characterizes a massive resource of novel biomolecules with
biotechnological potential (Wilson and Piel, 2013). In this con-
text, soil bacteria seem to be an important source of bioactive

natural products for anti-infective discovery. To select such
compounds, several cutting-edge technologies have been applied,
including metagenomic library construction, heterologous expres-
sion, sequencing of soil microbial communities and single-cell
methods (Piel, 2011). Indeed, this workflow starts with DNA
isolation, which is typically used for DNA library construction
in a suitable host such as E. coli (Brady et al., 2009). Moreover,
screening efforts rise as insert size decreases, since a high num-
ber of clones are needed to cover the target genome. However,
the construction of large-insert libraries such as BAC (bacterial
artificial chromosome) vectors is frequently challenging, due to
the amount of DNA obtained and the insufficiency of clone
numbers (Piel, 2011). After library construction, the next stage
consists of clone identification by harboring genes of interest. The
most straightforward screens involve detection of clones exhibit-
ing modified phenotypes, which could be color or appearance
based, such as inhibition zones near clones growing on fungal
(Chung et al., 2008) or bacterial (Rondon et al., 2000) development
plates.

An alternative method to phenotypic screens could be based
on DNA sequence detection. In spite of higher sequencing costs,
one significant advantage over the previous strategy is that nat-
ural product pathways can be recognized even in the absence
of expression in the library host. This strategy was successfully
used for identifying giant multimodular polyketide synthase (PKS)
and nonribosomal peptide synthetase (NRPS) clusters (Cane
and Walsh, 1999). After phenotype identification a large scale
sequencing of enriched bacteria and metagenomes for eDNA
gene discovery was applied. Additionally, single-cell analysis
has emerged as a powerful strategy to investigate environmen-
tal bacteria (Wang and Bodovitz, 2010). Isolation of individual
cells may be attained by micromanipulation (Frolich and Konig,
1999), flow cytometry (Muller and Nebe-von-Caron, 2010) or
microfluidic devices (Weibel et al., 2007). One distinct single
cell approach benefit is that genes can be associated with tax-
onomic information, which is habitually challenging to achieve
with metagenomics. This knowledge is of essential importance,
since it might lead to the detection of productive taxa and can
be valuable for selecting a suitable expression host for cloned
genes.

Among the multiple antimicrobial compounds that may
be found in nature, a key subject of antibiotic screening
from soil samples is polyketides, which are natural prod-
ucts containing multiple β-hydroxyketone or β-hydroxyaldehyde
[−H2C( = O)CH2CH(OH)CH2C( = O)−] functional groups.
These natural metabolites include the basic chemical structure
of multiple compounds with numerous functions such as antic-
holesteremic and anticancer agents, parasiticides, immunomodu-
lators, and antibiotics (Weissman, 2009).

Since antimicrobial polyketides were discovered, pharmaceu-
tical companies have invested millions of dollars in the search
for potent and selective molecules, which have already included
geldanamycin, doxycycline, azithromycin, and erythromycin
(Figure 2; Robinson, 1991). Polyketides are regularly biosynthe-
sized through the decarboxylative condensation of malonyl-CoA
derivative extender units in a comparable fatty acid synthesis pro-
cess. The polyketide chains synthesized by a PKS are frequently
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FIGURE 2 | Prototypes of different antibiotics isolated from soil environments using metagenomic technology.

modified into the final version of bioactive natural compounds
(Gomes et al., 2013).

The potential of polyketides was immediately associated with
metagenomic techniques in order to explore uncultivable soil
microorganisms as a remarkable polyketide reservoir (Feng et al.,
2011). In order to find novel compounds with biotechnological
compounds, (Owen et al., 2013) focused their efforts on a soil
sample from the Chihuahuan Desert in southwestern New Mex-
ico. With this aim, conserved regions of PKS and also NRPS
biosynthetic machinery were selected to be the target sequences
in an experimental framework. By using a combination of PCR
amplifications and multiple bioinformatics tools, including Anti-
SMASH (Antibiotics and Secondary Metabolite Analysis Shell),
the authors were able to identify the gene clusters of biosynthetic
pathways encoding novel derivatives of therapeutically applica-
ble bacterial natural products (Owen et al., 2013). Amongst those
with antitumoral action are thiocoraline-like and tallysomycin-
like compounds, as well as several antibiotics including two forms
of teicoplanin-like, azinomycin-like, two forms of friumilicin-like
and a rapamycin-like product. Moreover, in the same report, one

glycopeptide yielded from analyses was expressed in order to com-
plete the process of drug production, clearly showing that soil
samples could be evaluated by an efficient data-generation pipeline
associated with software tool analysis.

Similar analyses were performed in soils sampled from 96
locations throughout the southwestern and northeastern USA,
considered the most biologically diverse regions in that country
(Charlop-Powers et al., 2014). Once more, PKS were focused and
a wide range of antibiotic gene clusters was also found. In this
case, not only were the compounds focused but also a chemical
biogeographic distribution map of medically valuable groups of
natural biocompounds, demonstrating once more the potential of
metagenome technology (Charlop-Powers et al., 2014).

Additionally, soil DNA isolated from the Anza-Borrego Desert
in California was used to select an indolotryptoline-base for a
biosynthetic gene cluster, encoding borregomycins (Figure 2;
Chang and Brady, 2013). A similar approach was also applied
to an antitumor substance BE-54017, also from an indolotryp-
toline gene cluster (Chang and Brady, 2011). Borregomycins
may be yielded from a branched tryptophan dimer biosynthetic
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metabolic pathway, in which one branch generates borregomycin
A, an indolotryptoline antiproliferative agent with the capability to
inhibit kinase, and a second branch leading to borregomycins B–D
(2–4), which are dihydroxyindolocarbazole agents with anticancer
and bactericidal activities. Moreover, BorR clusters were cloned in
Stryptomyces albus and borregomycins were produced and func-
tionally characterized, clearly showing the complete viability of
the metagenome for antibiotic screenings.

Finally and no less importantly, efforts have been made
to isolate useful variants from plantaricins. In a study real-
ized by (Pal and Srivastava, 2014), gene-specific primers for
plantaricin was used, followed by PCR amplification to select
plnE, -F, -J, and -K structural gene amplicons from the soil
DNA metagenome. Plantaricin is a cationic, heat-stable peptide
belonging to the bacteriocin group (Moll et al., 1999), which
is considered a possible alternative to traditional antibiotics
against pathogen targets (Cotter et al., 2013). Thus, based on
the heterologous production of recombinant plantaricin pep-
tides, the work of (Pal and Srivastava, 2014) demonstrated that
plantaricin mature peptides have wide antimicrobial activity spec-
tra, being active against different pathogenic bacterial species
(Pal and Srivastava, 2014). Plantaricins are short AMPs with
the ability to permeate membranes, being extremely depen-
dent on membrane lipid composition. Plantaricins are capable
of controlling Gram-positive and -negative bacteria, as well
fungi and tumor cells, binding to zwitterionic monolayers and
liposomes without significantly penetrating their membranes.
Although cholesterol attenuates peptide activity, the association
of plantaricin and negatively charged lipid membrane is evident.
Furthermore, plantaricins were also able to lead to clear lipo-
some aggregation, suggesting a clear lipid binding mechanism
(Zhao et al., 2006). It is important to note that, in accordance
with this methodology, it is also possible to achieve a signif-
icantly enhanced yield of plantaricin peptides when compared
with the purified plantaricin peptides obtained from culturable
Lb. plantarum strain growth (Pal and Srivastava, 2014), indi-
cating that this methodology can offer an alternative strategy
for large-scale production of useful molecules from the natural
environment with potential applications in clinical biotechnology
research.

BIOTECHNOLOGICAL PROSPECTS AND CONCLUSIVE
REMARKS
The problem of bacterial resistance and the absence of novel
antibiotics are being felt on all the continents. Our age has been
described as a “post-antibiotic era,” where people die from rela-
tively simple infections that have been curable for decades. Such
resistant pathogens will have devastating implications unless sig-
nificant action is urgently taken. This situation calls for new
approaches to discovering novel antibiotics, and metagenome
technology seems to be a useful approach to shed some light on
bacterial resistance as well to help mine novel and unusual antimi-
crobial compounds. Nevertheless, metagenomics is a fledgling area
of research, and at the moment only a few reports have reached the
point of in vitro evaluation (Chang and Brady, 2013; Owen et al.,
2013). None have been in vivo evaluated in animal models so far,
but this is a question of time.

Another important question for the pharmaceutical industry
concerns production. Since most antibiotics in the pipeline today
have been produced by chemical synthesis, it is desirable to pro-
duce microorganisms with the ability to secrete such compounds
on a large scale and at low cost. However, several pitfalls have
been observed, such as folding posttranslational modifications in
the case of antimicrobial proteins and peptides, and the dosage
amount for antibiotics that at higher concentrations could kill the
bacterial-host (Parachin et al., 2012).

Indeed, efforts for the development of novel production sys-
tems and fermentation process designs are essential for the
establishment of a cost-effective methodology for large-scale pro-
duction of antibiotics associated with metagenome pipelines.
Finally, metagenome screening in soil and other environments
must also be performed in order to find unusual compounds and
not only molecules from known classes. Of course, this is a vast
challenge, but a metagenomic approach could allow us to control
the most dangerous resistant and infective bacteria. The contri-
bution of the soil metagenome to this field is clear and, along
with other under-explored environments, it might be the source
of ground-breaking therapeutic agents in the near future.
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