
Marfan syndrome (MFS) is an inherited, autosomal 
dominant, systemic disorder of connective tissue. Estimated 
incidence of this disease is 1/5,000–1/10,000 [1] with over 
25% sporadic cases [2]. It has been well documented that 
the ocular, skeletal, and cardiovascular systems are the three 
major systems affected by the disease. The clinical criteria 
for MFS require involvement of at least two organ systems 
to establish the diagnosis if the patient has no family history. 
Ocular manifestations of MFS mainly involve ectopia lentis, 
characteristic of the dislocation of the lens, and high-myopic 
eyes [3,4]. Strabismus is a condition that the eyes cannot be 
properly aligned with each other due to a lack of coordination 
between the extraocular muscles [5]. Strabismus is a minor 
feature in patients with reported MFS [3,4]. Genetic screening 
can be applied to help the diagnosis. A major clinical mani-
festation in one organ system is enough to make the diagnosis 
of MFS with the presence of a mutation in the fibrillin-1 
(FBN1; OMIM 134797) gene [6]. FBN1 has been identified 
as a major disease-causing gene of MFS [2], indicating that 
genetic factors play a critical role in the pathogenesis of MFS.

FBN1, located at chromosome 15q-21.1 with 65 exons 
[7,8], encodes 2871-aa structural protein fibrillin-1, a 
350-kDa glycoprotein with a modular structure comprising 

47 epidermal growth factor-like (EGF) domains and seven 
transforming growth factor-β1 binding protein-like (TB) 
domains. Fibrillin-1 is the major component of extracellular 
microfibrils and regulates microfibril stability and assembly 
[9]. Fibrillin-1 mutations disrupt microfibril formation, result 
in fibrillin protein abnormalities, and eventually weaken the 
connective tissue. Nearly 3,000 mutations including 1,745 
missense mutations in the FBN1 gene have been documented 
in the Universal Mutation Database [10]. Most mutations are 
unique for specific families with MFS, and only approxi-
mately 15% of the mutations recur in different families [11]. 
In this study, we report that a missense mutation in exon 14 
of FBN1 (c.1786T>G), resulting in the substitution of cysteine 
by glycine at codon 596 (p.C596G), is associated with patients 
with MFS from a four-generation, non-consanguineous 
Chinese family. Our data further confirm the important role 
of FBN1 in the pathogenesis of MFS.

METHODS

Patients and clinical data: This study was approved by 
the First Affiliated Hospital, Henan University of Science 
and Technology Joint Committee on Clinical Investigation 
and performed according to the tenets of the Declaration 
of Helsinki for Human Subjects. After we had obtained 
informed consent from each participant, all participants 
underwent complete physical, cardiovascular, and ophthalmo-
logic examinations, and patients with MFS were diagnosed 
according to revised Ghent criteria [12]. Clinical data were 
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collected from 11 family members (six patients: II:1, II:6, 
III:7, III:9, III:11, and III:12; five unaffected: II:2, II:7, III:4, 
III:5, and IV:2). One hundred healthy and ethnically unrelated 
Chinese controls were also recruited.

DNA sample collection and mutation screening of FBN1: To 
identify constitutional mutations, 5 ml of peripheral blood 
was obtained by venipuncture from a Bai Chinese family 
with MFS, and genomic DNA was extracted from peripheral 
blood cells according to standard protocols (Roche Diag-
nostics Corporation, Indianapolis, IN). The entire coding 
region of FBN1 was amplified with PCR from genomic DNA. 
Primers for 65 exons and exon-intron boundaries of FBN1 
were designed with the Primer 3 program. PCR reactions 
were each performed in a 50 µl reaction solution containing 
5 µl 10 × PCR buffer, 1 μl dNTP (10 μM), 1 µl DNA template, 
1 µL primer-F (10 µM), 1 µl primer-R (10 µM)), 0.5 µl rTaq 
(2 U/µl), and 40.5 µl ddH2O. Amplification was performed 
with initial denaturation for 5 min at 95 °C, followed by 40 
cycles of denaturation at 95 °C for 30 s, annealing at 55 °C 
for 30 s, extension at 72 °C for 1 min, and a final extension 
at 72 °C for 5 min (ABI Gene AmpPCR System 9700, Life 
Technologies, Grand Island, NY). For direct sequencing, the 
PCR products were purified (DNA TIANgel Midi Purifica-
tion Kit, Beijing, China), and the purified PCR products 
were sequenced using a DNA capillary tube sequencer (ABI 
3730×l). The sequencing results were assembled and analyzed 
using a Genetic Analyzer (Applied Biosystem, Foster City, 

CA ) with the published DNA sequence for FBN1 (GenBank 
accession number NC-000015.9). The novelty of the variant 
was searched in the following databases: 1000 Genomes; 
NHLBI Exome Variant Server, Human Gene Mutation Data-
base, the Genome Database, dbSNP, Human Genome Varia-
tion Database, KMDB/Mutation View, and the Universal 
Mutation Database.

RESULTS

Clinical findings: A four-generation family, including nine 
men and 11 women, in Henan province, China, was identified 
and diagnosed with MFS (Figure 1). The inheritance pattern 
in this family appeared to be autosomal dominant. In 2008, 
six individuals of this pedigree were found to have MFS 
based on clinical examinations and hospital records. The 
median onset age of these patients was 29 years, ranging from 
22 to 62 years old. All six patients in the family manifested 
similar clinical symptoms, mainly in the ocular and skel-
etal systems (Table 1), and the unaffected family members 
appeared normal. Ocular symptoms included bilateral lens 
dislocation, high myopia, and exotropia, a form of strabismus 
in which the eyes deviate outward. Abnormalities of the skel-
etal system in MFS such as joint laxity, dolichostenomelia, 
pectus excavatum or pectus carinatum, and arachnodactyly 
were observed. Cardiovascular abnormalities were noted only 
in patient II:1, who had an aortic aneurysm and mitral valve 
prolapse, in this family. The proband had exotropia of both 

Figure 1. The pedigree of the 
family. Squares and circles repre-
sent men and women, respectively. 
The darkened symbols indicate 
the affected members. The patient 
above the arrow is the proband. 
Slashes denote deceased members. 
I to IV represent generations; 1 
to 12 represent members in each 
generation.
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eyes (Figure 2A), bilateral lens dislocation (Figure 2B), and 
arachnodactyly (Figure 2C). The proband underwent removal 
of ectopia lentis and reattachment of the retina in both eyes. 
Patient II:1 did not receive treatment and died of a dissecting 
aneurysm before the age of 62. Patient III:11 underwent squint 
correction of exotropia.

Mutation analysis: Direct sequencing of the 65 exons of 
FBN1 revealed a heterozygous missense mutation in exon 14, 
c.1786T>G (Figure 3A), which resulted in the substitution of 
cysteine by glycine at codon 596 (p.C596G). The mutation 
was detected in all six patients. No mutation was observed 
in the unaffected family members or in any of the 100 ethni-
cally unrelated and healthy controls (Figure 3B and data not 
shown). Therefore, the c.1786T>G mutation was linked to the 
disease phenotype in all patients.

DISCUSSION

Mutations of the FBN1 gene cause MFS [2] or Marfan-
related diseases [8,13]. FBN1 was the first disease-causing 
gene identified for MFS [14], and mutation of this gene is 
associated with the majority of the patients with MFS [15,16]. 
Thus far, almost 3,000 mutations have been reported [10]. 
FBN1 is widely expressed in zonules, the cardiovascular 
system, cartilage, tendon, cornea, and other tissues, and is 
an important element of microfibrils. FBN1 is secreted by 
non-pigmented cells from ciliary bodies and is involved in 
the formation of zonules [8,17]. FBN1 is comprised mainly 
of repeated modules such as EGF domains and TB domains 
[18] and plays an important role in maintaining an ordered 
arrangement of microfibers [8,19]. Most mutations of FBN1 
occur in the EGF domains [18,20] that disrupt microfibril 
formation, which result in fibrillin protein abnormalities and 
subsequently weaken the connective tissue [7,15,18,21,22]. 

Table 1. Clinical features of affected family members.

Patient ID II:1          II:6             III:7      III:9        III:11      III:12  
Age (year) 62 54 30 28 24 22
Sex M             F                 F          F             F             M
Ocular system
Ectopia lentis + OCL* + + + +
Myopia + OCL* + + + +
Exotropia + + + + + +
Glacouma - + - - - -
Retinal detachment - + - - - -
Cardiovascular system
Aortic root dimension (mm) 30.2 29.3 28.5 27.8 27.6 28.4
Mitral valve prolapse + - - - - -
Aortic aneurysm + - - - - -
Skeletal system
Height (H: cm) 172 165 164 165 166 171
Arm span (AS: cm) 175 170 170 171 170 176
AS/H 1.02 1.03 1.04 1.04 1.02 1.03
Scoliosis - + - - - -
Arachnodactyly + + + + + +
Joint hypermobility - - - - - -
Pectus excavatum + + - - + +
Pectus carinatum - - + + - -

Other manifestations
Hyperextensible skin + + + + + +
Striae + + + + + +
Hernia - - - - - -

*OCL: Operated for ectopia lentis. II:1   The First of Second generation
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Four hypotheses have been proposed to explain the mecha-
nisms by which mutations of FBN1 lead to MFS: 1) The 
mutated monomer of FBN1 interferes polymerization of 
fibrillin and microfiber aggregation [7,23]. 2) FBN1 muta-
tions destroy the stability of elastic fibers [7,24]. 3) Mutations 
in calcium-binding EGF modules render FBN1 susceptible to 
proteolysis [7,25]. 4) The mutations lead to loss of function of 
transforming growth factor beta signal activity on extracel-
lular matrix formation, contributing to the pathogenesis of 
MFS [7,26,27].

Through the FBN1 mutation screening in a Bai Chinese 
family diagnosed with MFS, we identified a heterozygous 
missense mutation c.1786T>G (p.C596G) in the pedigree. The 
mutation c.1786T>G cosegregated with all patients with MFS 
because it was not detected in unaffected family members or 
100 ethnically unrelated and healthy controls. The main MFS 
symptoms in the family were ocular manifestations (ectopia 
lentis, high myopia, and exotropia) and skeletal manifesta-
tions (excessive development of extremities and arachnodac-
tyly) (Table 1). Cardiovascular abnormalities were observed 

Figure 2. Photographs of the 
proband. A: Exotropia. Exotropia 
of the proband with cataract 
extraction and retinal reattachment 
surgery. Exotropia was unchanged 
after surgery. B: Ectopia lentis. 
After pupil dilation, images were 
taken with a slit lamp. The lens was 
dislocated downward with laxity of 
the upper suspensory ligaments in 
both eyes. C: Arachnodactyly.

http://www.molvis.org/molvis/v21/194


Molecular Vision 2015; 21:194-200 <http://www.molvis.org/molvis/v21/194> © 2015 Molecular Vision 

198

only in patient II:1. These symptoms are consistent with the 
diagnostic criteria for MFS [12]. Intriguingly, exotropia was 
observed in all six patients with MFS but not in 14 unaffected 
family members in the Bai Chinese family. This observation 
is in contrast to other MFS families in whom strabismus is 
a minor feature [3,4]. The occurrence rate of exotropia in 
patients with MS has been estimated at 11.7% (67 out of total 
573 patients with MS) [28]. Thus, the mutation c.1786T>G 
might be uniquely associated with the higher prevalence of 
exotropia. Regardless, exotropia is a characteristic of patients 
with MFS, at least in this Bai Chinese family.

FBN1 mutations occur through all 65 exons. Muta-
tions cluster in exons 24–32, a hot spot area associated with 
neonatal, classic, and other severe forms of MFS [16,29]. 
However, mutations in exons 12–15 encoding cbEGF-like 
domains 3–6 have caused a mild phenotype of MFS with 
possible late cardiovascular involvement [30-32]. The 
missense mutation c.1786T>G identified in our study is 
located on exon 14. The phenotypes of all the affected Bai 
Chinese family members manifested mainly in the ocular 
and skeletal organs except patient II:1, who had cardiovas-
cular symptoms (Table 1), suggesting that the molecular 
mechanisms used by other mutations in exons 12–15 may 

Figure 3. Identification of the 
C596G mutation in FBN1 on 
exon 29. A: A heterozygous T>G 
change, causing the substitution of 
cysteine by glycine at codon 596 
(p.C596G) in the proband. B: The 
corresponding normal sequence in 
an unaffected family member (II:2).
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be involved in pathogenesis of MFS in the family with 
the mutation c.1786T>G in exon 14. Nevertheless, further 
investigations are required to confirm this hypothesis. The 
c.1786T>G mutation has been reported in one sporadic case 
from 53 Japanese probands suspected of having MFS, but no 
clinical information about the identified proband is available 
[33]. A similar missense mutation c.1786T>C (p.C596R) was 
found in a patient with ectopia lentis at the age of 3 [34]. This 
proband had no cardiovascular involvement, but the involve-
ment of the skeletal system is unknown, showing that the 
type of amino acid mutated might affect the phenotype and 
severity.

In summary, a novel mutation of FBN1 (c.1786T>G) in 
exon 14 was identified in a Bai Chinese family with MFS. 
The results expand the spectrum of FBN1 mutations and help 
for early diagnosis in uncertain MFS cases.
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