1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 August 15.

-, HHS Public Access
«

Published in final edited form as:
Neuroimage. 2021 August 15; 237: 118100. doi:10.1016/j.neuroimage.2021.118100.

Perturbing fMRI brain dynamics using transcranial direct current
stimulation

Yiheng Tu2P, Jin Cao?, Seyhmus Guler?, Thalia Chai-Zhang?, Joan A. Camprodon&P, Mark
Vangel?, Randy L. Gollub2P, Darin D. Dougherty2P, Jian Kong2b*

aDepartment of Psychiatry, Massachusetts General Hospital and Harvard Medical School,
Charlestown, MA 02129, United States

bDepartment of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General
Hospital and Harvard Medical School, Charlestown, MA, United States

Abstract

The dynamic nature of resting-state functional magnetic resonance imaging (fMRI) brain activity
and connectivity has drawn great interest in the past decade. Specific temporal properties of fMRI
brain dynamics, including metrics such as occurrence rate and transitions, have been associated
with cognition and behaviors, indicating the existence of mechanism distruption in
neuropsychiatric disorders. The development of new methods to manipulate fMRI brain dynamics
will advance our understanding of these pathophysiological mechanisms from native observation
to experimental mechanistic manipulation. In the present study, we applied repeated transcranial
direct current stimulation (tDCS) to the right dorsolateral prefrontal cortex (rDLPFC) and the left
orbitofrontal cortex (IOFC), during multiple simultaneous tDCS-fMRI sessions from 81 healthy
participants to assess the modulatory effects of stimulating target brain regions on fMRI brain
dynamics. Using the rDLPFC and the IOFC as seeds, respectively, we first identified two
reoccurring co-activation patterns (CAPs) and calculated their temporal properties (e.g.,
occurrence rate and transitions) before administering tDCS. The spatial maps of CAPs were
associated with different cognitive and disease domains using meta-analytical decoding analysis.
We then investigated how active tDCS compared to sham tDCS in the modulation of the
occurrence rates of these different CAPs and perturbations of transitions between CAPs. We found
that by enhancing neuronal excitability of the rDLPFC and the IOFC, the occurrence rate of one
CAP was significantly decreased while that of another CAP was significantly increased during the
first 6 min of stimulation. Furthermore, these tDCS-associated changes persisted over subsequent
testing sessions (both during and before/after tDCS) across three consecutive days. Active tDCS
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could perturb transitions between CAPs and a hon-CAP state (when the rDLPFC and the IOFC
were not activated), but not the transitions within CAPs. These results demonstrate the feasibility
of modulating fMRI brain dynamics, and open new possibilities for discovering stimulation targets
and dynamic connectivity patterns that can ensure the propagation of tDCS-induced neuronal
excitability, which may facilitate the development of new treatments for disorders with altered
dynamics.
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1. Introduction

Functional magnetic resonance imaging (fMRI) has been widely used to investigate the
brain’s functional activity and connectivity by means of the blood oxygenation level-
dependent (BOLD) signal which is a proxy for neural activity (Logothetis et al., 2001).
Studies have shown that the brain is intrinsically organized with spatial patterns of temporal
BOLD correlations even without any explicit stimulation or task. Those networks are
generally referred to as ‘resting-state networks (RSNs)” (Biswal et al., 1995), and can
provide novel insights into the brain’s functional organization for development (Dosenbach
et al., 2010), behaviors (Finn et al., 2015), and diseases (Buckner et al., 2009).

Recent studies have challenged the conventional assumptions that the temporal BOLD
correlations remain constant and that RSNs are invariant through the entire fMRI scan by
showing that resting-state brain activity and functional connectivity can vary considerably in
different temporal scales (Hutchison et al., 2013; Lurie et al., 2020; Zalesky et al., 2014).
The sliding window approach is one of the most widely applied tools to track the fMRI
temporal dynamics by evaluating functional connectivity across consecutive temporal
windows of 30-60 s over the fMRI scan (Hindriks et al., 2016; Hutchison et al., 2013).
Other time-resolved approaches that can provide enhanced temporal resolution by evaluating
brain dynamics at a framewise level have also drawn attention (Bolton et al., 2020a). For
instance, Liu and Duyn found that averaging the whole brain spatial maps at a few critical
time points when the seed (i.e., region of interest) signal intensity is above a specific
threshold can resemble maps obtained from conventional linear correlation (Liu and Duyn,
2013). Moreover, spatial maps at these critical time frames can be temporally decomposed
into multiple reoccurring spatial patterns (i.e., co-activation patterns, CAPs). Compared to
the sliding window approach, CAP analysis has fewer model assumptions and is more
suitable for investigations into the co-activation between predefined regions of interest
(ROIs) and other brain areas (Liu et al., 2018).

Studies investigating temporal properties of fMRI brain dynamics have explored the
abnormal occurrences of disease-specific dynamic brain connectomics in a variety of
neuropsychiatric disorders, such as chronic low back pain (Tu et al., 2020), migraine (Tu et
al., 2019a), Alzheimer’s disease (Fu et al., 2019), autism (Fu et al., 2018), and Parkinson’s
disease (Kim et al., 2017). Moreover, studies have shown that the temporal organization of
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brain dynamics is not random but may follow specific sequential orders/states (Ma and
Zhang, 2018). The transitions between these different dynamic states reflect the intrinsic
architecture of the human brain (Kringelbach and Deco, 2020), and could be perturbed by
psychological states (e.g., emotions), physiological states (e.g., sleep, coma), or pathological
states (e.g., neuropsychiatric disorders) (Deco et al., 2019).

Recent developments in transcranial electrical stimulation (e.g., transcranial direct current
stimulation, tDCS) have advanced interest from observing native neural responses to
mechanistic manipulation (Chase et al., 2020; Polania et al., 2018). By stimulating a targeted
brain region (e.g., anodal tDCS to enhance neuronal excitability, while cathodal tDCS to
inhibit neuronal excitability), tDCS allows researchers to make inferences between the
neural processes and specific behaviors, such as learning, memory, perception, and motor
actions (Filmer et al., 2014). In parallel, tDCS has also been used to relieve symptoms of
different disorders such as chronic pain (Fregni et al., 2007), autism (Amatachaya et al.,
2014), depression (Loo et al., 2012), Alzheimer’s disease (Ferrucci et al., 2008), and
Parkinson’s disease (Broeder et al., 2015).

Combining fMRI brain dynamics and tDCS can mutually promote our understandings of
both fields. In a concurrent tDCS-fMRI model, findings from active tDCS (i.e., anodal and
cathodal) and sham tDCS can be contrasted to allow for the elimination of well-known non-
physiological noises (e.g., head motion, vigilance, heartbeat) that confound fMRI brain
dynamics (Lurie et al., 2020). Target brain regions can be continuously stimulated (while the
participant is restful and passively receiving the stimulation) to modulate brain dynamics as
compared to ‘rest’. Studying brain dynamics during stimulation may reveal temporal
alterations and perturb transitions in the underlying networks (Deco et al., 2019; Ozdemir et
al., 2020) which cannot be discovered through conventional static functional connectivity
(Keeser et al., 2011; Wérsching et al., 2017).

In this study, we combined repeated tDCS over three consecutive days and a time-resolved
fMRI analytical approach to study and perturb brain dynamics in 81 healthy participants
who were randomized into three tDCS groups: 1) anodal at the right dorsolateral prefrontal
cortex (rDLPFC) and cathodal at the left orbitofrontal cortex (IOFC); 2) cathodal at the
rDLPFC and anodal at the IOFC and 3) sham tDCS. fMRI data were collected before,
during, and after tDCS application on the first and third days. We first performed high-
dimensional clustering of CAPs and identified reoccurring whole-brain fMRI brain
dynamics (i.e., the rDLPFC and IOFC CAPs) before applying tDCS. We then investigated
the occurrences and transitions of brain dynamics during and after tDCS application. We
hypothesized that the active but not the sham tDCS could modulate the temporal dynamics
of CAPs, including the occurrence rates and transition probabilities.

Methods

Participants

Healthy participants without any psychiatric or neurologic disorders were enrolled in the
study. Four participants were dropped after the randomization (A= 3 and 1 for cathodal and
sham groups, respectively; due to scheduling issues or device dysfunction). The final sample

Neuroimage. Author manuscript; available in PMC 2021 August 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Tuetal.

2.2.

Page 4

consisted of 81 participants (37 females, mean = SD age: 27.4 + 6.4), with 27 participants in
each of the three tDCS groups. All participants finished the experiment. Participants in the
three groups were not significantly different in age (F(2,7g) = 0.17, p=0.84) and gender (;(2
=0.40, p=0.82). The study was approved by the Massachusetts General Hospital
Institutional Review Board. Informed consent was obtained from all participants. The study
was originally designed to investigate the modulation effects of tDCS on placebo and
nocebo responses (Tu et al., 2021); however, this manuscript only focused on how tDCS can
perturb the brain dynamics. Please see the orignal publication for more details of the study
(Tuetal., 2021).

tDCS setup

Participants were randomized into three tDCS groups (anodal, cathodal, and sham; Fig. 1B),
and received corresponding tDCS on three consecutive days. For each session, tDCS was
applied at 2 mA for 20 min using the StarStim system (Neuroelectrics, Spain). The MRI-
compatible electrodes, consisting of a sponge cover and a carbon rubber core (circular shape
contact area 8 cm2), both radiotranslucid materials, were used to stimulate the rDLPFC and
the IOFC (details of the electrode can be found in the Neuroelectrics user manual and Figure
S1). These two regions were selected as stimulation targets since they are important regions
involved in various cognitive processes and have been used as targets for non-invasive
neuromodulation in treating many neuropsychiatric disorders (Demirtas-Tatlidede et al.,
2013).

To enhance the rDLPFC excitability and inhibit the IOFC excitability (anodal group), the
anodal electrode was placed over F4 and the cathodal electrode over FP1. To inhibit the
rDLPFC excitability and enhance the IOFC excitability (cathodal group), the cathodal
electrode was placed over F4 and the anodal electrode over the FP1 (Fig. 1 and Figure S1).
Stimulation started and finished with a 15 s gradual current ramp-up and ramp-down to
decrease subjects’ discomfort. For sham tDCS, the electrodes were placed at the same
positions but the current was applied only for the 15 s ramp up/down phases at the beginning
and the end of a 20 min sham-stimulation period, to simulate the potential experience of
local tingling sensation that active stimulation produces but without sustained effect on
cortical activity. This setup of sham tDCS is widely accepted in tDCS studies to blind
subjects (Palm et al., 2013), and subjects in this study were not able to distinguish between
active and sham tDCS. The impedances were kept below 10 kQ for both stimulation
electrodes. The randomization and double-blinded setup of tDCS were conducted by a team
member who was not involved in the experiments and analyses of the study, before initiating
the first experiment. The double-blinded tDCS modes were configured in the StarStim
system software to blind both operators/analysts and participants. We measured the
sensations evoked by active and sham tDCS in the last half of enrolled participants using a
questionnaire of sensations related to transcranial electrical stimulation (Antal et al., 2017).
The results showed that the sensations were not significantly different across the three tDCS
groups (Fz,28) = 0.35, p=0.71; Fp 28) = 2.25, p=0.12; Fp 2g) = 1.56, p= 0.23 for day 1,
day 2, and day 3 tDCS sessions respectively, Figure S2).
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2.3. MRI acquisition

Eight fMRI scans were collected in the first (day 1) and the third (day 3) tDCS sessions (Fig.
1A), including one before applying tDCS (pre-tDCS), two simultaneously during the
application of tDCS (one during the first 6 min [tDCS-early], another during the last 6 min
[tDCS-late]), and one immediately after the application of tDCS (post-tDCS). All MRI data
were acquired using a 32 channel radio-frequency head coil in a 3T Siemens scanner at the
Massachusetts General Hospital Martinos Center for Biomedical Imaging. During the fMRI
scan, subjects were asked to keep their eyes open and to blink normally while looking at a
darkened screen for approximately 6 min. Functional data encompassing the whole brain
were acquired with gradient echo planar imaging (echo time: 30 ms, repetition time: 3000
ms, flip angle: 90°, slice thickness: 3 mm, interslice gap: 0.88 mm, and 44 slices) and a total
of 124 vol were collected. T1-weighted high-resolution brain structural images were
acquired with a 3-dimensional multi-echo magnetization-prepared rapid gradient-echo
sequence (repetition time: 2200 ms, echo time: 1.54 ms, slice thickness 1 mm, flip angle: 7°,
and 176 sagittal slices covering the whole brain).

For the concurrent tDCS-fMRI sessions, tDCS was applied in the MRI scanner using the
Neuroelectrics” ‘Multi-Channel MRI Extension Kit’. MRI-compatible electrodes were used
inside the tDCS cap, which subjects wore inside the scanner. The electrode leads on
Neuroelectrics’ “MRI Harness’ were then attached to the cap electrodes, and the Harness
was plugged into the patch panel in the MRI scan room. On the opposite side of the patch
panel in the MRI control room, an “MRI Filter’ was attached. The tDCS device was
connected to the Filter inside the control room and always remained outside of the MRI scan
room. The subject was instructed to wear the cap inside the MRI, and was asked to lay down
and keep still in the MRI machine. The device was connected for all experiment sessions,
but was turned off during pre/post-DCS sessions. For the sham session, the device was
turned on with the ‘sham’ setup configured in the StarStim system software to blind both
operators/analysts and participants. The imaging was started after the stimulation ramp up,
and before the stimulation ramp down.

In order to test the reproducibility of the identified CAPs, we included a dataset consisting of
twenty-four healthy subjects who received four MRI sessions separated by at least 7 days.
This dataset was reported in our previous study (Tu et al., 2019b). In brief, twenty-four
subjects received 8 min of resting-state fMRI, and the MRI sequence was identical to the
dataset we reported above, except the total length of the scan.

2.4. fMRI data preprocessing and quality control

fMRI data were preprocessed using the CONN toolbox version 18b (https://www.nitrc.org/
projects/conn). The first five volumes were removed for signal equilibrium and participants’
adaptation to the scanner’s noise. Preprocessing steps included a standard pipeline (slice-
timing correction, realignment, unwarping, spatial normalization, and smoothing with a 6
mm full-width at half-maximum [FWHM] Gaussian kernel). White matter, cerebrospinal
fluid signals, and the linear trends of 6 motion parameters, were included as nuisances
regressors which were regressed out from the fMRI data. The fMRI data were then band-
pass filtered from 0.01 Hz to 0.08 Hz.
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We performed quality control for each fMRI runs using MRIQC (https://
mrigc.readthedocs.io/en/stable/), to compare the data quality between tDCS groups and
between tDCS on and tDCS off runs. For quality control, we focused on two typical metrics,
temporal signal-to-noise ratio (tSNR) and mean framewise displacement (FD; measures
head motion during scan) (Figures S3 and S4).

2.5. Co-activation analytical framework

In conventional seed-based connectivity analysis, connectivity maps are obtained by
correlating the time-series of the seed region with the time-series of all other voxels in the
brain. CAP analysis has shown that similar connectivity maps can be obtained by temporally
averaging the spatial maps of the time frames when the seed amplitude exceeds a certain
threshold. Temporal clustering of these extracted spatial maps can yield multiple CAPs that
are functionally relevant and reoccur during an fMRI scan (Liu and Duyn, 2013). Fig. 2
shows the analytical framework to identify CAPs. We performed the analyses using the
ThCAPs toolbox (Bolton et al., 2020b). In brief, we consider an fMRI data matrix X, €

R V%7 for a particular subject, where Vis the number of voxels in the whole brain and T'is
the number of time frames during the scan. In the first step, the data matrix X, needs to be
temporally z-scored at each voxel to have:

T
A SN 0 )
Hy = T -
T 2
_1(X,(v,1) —
O_U:\/Zt—l(Tn(_l) o) =1, forv=12,..,V. @

Then we define a seed region S(e.g., the rDLPFC in Fig. 2A) to probe the interactions with
the rest of the brain. The amplitude of the seed region at a time frame can be written as:

ZU (S SXn(U1 t)

An(t) = ISI

,fort=1,2,....T, (3)
where |5 denotes the number of voxels in S. According to (Liu and Duyn, 2013), we only
consider critical time points (i.e., frames) 7. € 7when the seed time course A,(f) exceeds a
threshold, and construct the set of spatial maps extracted from these critical time points, as
F, e RY*T+ n=1, ..., M. Here we used a threshold of 1 (since the data were z-scored, we

would retain about 16% of time points; a detailed explanation for the reasoning behind this
choice can be found in (Bolton et al., 2020b); we also retained 20% frames to validate our
results) and scrubbed the frame if the head motion (i.e., instantaneous frame displacement)
was larger than 0.5 mm (see Figure S5 for the numbers of frames discarded in different
sessions and groups). After constructing the set for each subject, we concatenate spatial
maps from subjects and perform clustering into reoccurring states using K-means clustering
by optimizing:
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K N T+
argmin Z 2 Z dist(F,, c), 4
k=1ln=1t=1

where K'is the number of states to derive, and c is the spatial map of CAP k. The diist
function depends on the type of distance to use in the algorithm, which in the current study
was the spatial correlation between two spatial maps. The number of clusters, K is a key
parameter for clustering. As suggested by (Bolton et al., 2020b; Zoller et al., 2019), we
applied consensus clustering to determine the best K for large scale fMRI data (see
Supplementary Material for details).

The clustering analysis was only performed on the baseline data (i.e., pre-tDCS data on Day
1) across all subjects. We then assigned the frames in the following other sessions (during
and after tDCS) to the identified CAPs by calculating the distance between each frame data
and cluster centroids (i.e., assign the frame to the CAP with highest spatial correlation). In
addition, a frame was assigned to a CAP only when the spatial correlation was sufficiently
high compared to the distribution of spatial correlations obtained from the clustering
analysis of baseline data (i.e., exceeds the 5th percentile of the distribution) (Bolton et al.,
2020b). In this way, we were able to track the reoccurring CAPs which were referenced to
the baseline data, and investigate the changes of occurrences and transitions induced by
tDCS. Note that the occurrence rate of each CAP represents the proportion of its
corresponding number of frames from all identified critical time points. The transitions
include K CAPs and a non-CAP state (here we denoted it as CAP 0) when the seed (e.g., the
rDLPFC) is not strongly activated (i.e., frames does not exceed the threshold). The
transitions are bi-directional between CAPs.

In the present study, we selected the rDLPFC and the IOFC as two seeds since the anodal
and cathodal tDCS were aimed to enhance neuronal excitability in these two regions,
respectively. The coordinates (x= 36, y=44, z= 32 for the rDLPFC; x=-22, y=65, z=
-2 for the IOFC) were defined based on the 10-20 electrode system (F4 electrode and FP1
electrode) projected onto the MNI cortical space (Cutini et al., 2011; Okamoto et al., 2004).
The seeds were a sphere with a 10-mm radius, comparable to that used by Miranda and
colleagues (Miranda et al., 2006), and areas outside the cortex were rejected using the whole
brain mask.

In order to validate the reproducibility of the rDLPFC CAPs, we performed the analysis
separately on each of the four sessions in the longitudinal test-retest dataset (see MRI
acqusitions and (Tu et al., 2019b) for details). If the CAPs are reproducible, we will be able
to see very similar spatial maps across four sessions, and these maps will also have very high
similarity to the maps we identified from the tDCS dataset. In addition, the occurrence rates
of the same CAP will not differ significantly across sessions.

2.6. Meta-analytical decoding

To associate the spatial maps of different CAPs with cognitive and disease domains, we
performed a meta-analytical decoding to make reverse inferences from the term-to-activation
mappings in Neurosynth (http://neurosynth.org) (Chang et al., 2013). In brief, meta-
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analytical decoding computed the spatial similarity between the spatial maps of CAP and
meta-analytic reverse inference maps in the Neurosynth database. We then visualized the
strength of association between each term and each of the CAPs using polar plots. The
relevant terms were selected based on the functions of DLPFC and OFC, and they were
categorized into two domains: cognitive and disease domains. For DLPFC, the cognitive
terms included ‘language’, ‘memory’, ‘social cognition’, ‘execution’, ‘reward’, and
‘attention’, while the disease terms included ‘pain’, ‘depression’, ‘autism’, ‘dementia’,
‘anxiety’, and ‘schizophrenia’. For OFC, the cognitive terms included ‘emotion’, ‘reward’,
‘social cognition’, ‘value’, ‘decision making’, and “attention’, while the disease terms
included “pain’, ‘depression’, ‘autism’, ‘addiction’, ‘bipolar’, and ‘obsessive-compulsive
disorder’. We stored the spatial maps at Neurovault (https://neurovault.org/) for interactive
meta-analytical decoding of all other terms in the Neurosynth database (https://
neurosynth.org/decode/).

3. Results

3.1. TherDLPFC CAPs at baseline

Using the pre-tDCS fMRI data and the rDLPFC as the seed, we identified two reoccurring
CAPs, with 54% and 46% occurrence rates, respectively, from the pre-tDCS fMRI data (Fig.
3A). The number of CAPs was determined by the consensus clustering approach, showing K
= 2 provided the most robust clustering performing in a range from K= 2 to 10 (Figure S6).
The visualizations of both CAPs in low dimensional space is shown in Figure S7. In the first
CAP, we observed co-activations in the anterior cingulate cortex (ACC), the contralateral
IDPFC, and bilateral inferior parietal lobe (IPL). In the second CAP, the rDLPFC co-
activated with the supplementary motor area (SMA), bilateral insula, and bilateral
postcentral gyrus (PoCG), while co-deactivation was seen with the default mode network
(i.e., medial prefrontal cortex [mPFC], post-cingulate cortex [PCC], and bilateral angular

gyrus).

Meta-analytical decoding (Fig. 3B) showed that the first CAP had positive associations with
memory (r=0.1, p< 0.001) and reward (r= 0.1, p < 0.001), while strong negative
associations were seen with language (r=-0.14, p< 0.001) and execution (r=-0.13, p<
0.001) topic maps from Neurosynth. In contrast, the second CAP had strong positive
associations with execution (r=0.26, p < 0.001), attention (r=0.12, p< 0.001), and pain (r
=0.29, p< 0.001), while strong negative associations were seen with memory (r=-0.11, p
< 0.001) and social cognition (r= —0.15, p < 0.001) topic maps.

Fig. 3C shows the transition probability matrix between the two CAPs (CAP 1 and CAP 2)
and the non-CAP (CAP 0). In general, the brain stayed in CAP 0 with 75% probability. The
direct transitions between the two CAPs were rare (<1%). In most instances, one CAP
needed to switch to the non-CAP before switching to another CAP.

In the validation dataset (Figures S8 and S9), the rDLPFC CAPs were highly reproducible
across four sessions and the pre-tDCS session according to the observations (panel A) and
spatial correlations (panel B) of their spatial maps. The occurrence rates of the CAPs were
also not significantly different across four sessions (F3 92 = 1.07, p= 0.37, one-way repeated
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measures ANOVA; only one ANCOVA was performed since the occurrence rates of CAP 1
and CAP 2 were proportionally changed, i.e., the sum equals to 100% for each subject).

3.2. The IOFC CAPs at baseline

Using pre-tDCS fMRI data and the IOFC as the seed, we identified two reoccurring CAPs
(as determined by consensus clustering; Supplementary Figure S3), with 51% and 49%
occurrence rates, respectively, from the pre-tDCS fMRI data (Fig. 3D). The visualization of
both CAPs in low dimensional space is shown in Figure S4. In the first CAP, we observed
co-activations in the DMN (mPFC, PCC, and angular gyrus) and superior frontal gyrus
(SFG), while deactivation was observed in the bilateral PoCG. In the ond CAP, the IOFC co-
deactivated with the subgenual and pregenual ACC, SFG, and bilateral inferior temporal
lobe.

Meta-analytical decoding (Fig. 3E) showed that the first CAP had positive associations with
reward (r=0.1, p< 0.001), value (r=0.1, p< 0.001), and social cognition (r=0.12, p<
0.001), while strong negative associations were seen with attention (r=-0.13, p< 0.001)
and pain (r=-0.22, p< 0.001) topic maps from Neurosynth. In contrast, the second CAP
had strong negative associations with emotion (r=-0.1, £< 0.001) and reward (r=-0.1, p<
0.001) topic maps.

Fig. 3F shows the transition probability matrix between the two CAPs (CAP 1 and CAP 2)
and the non-CAP (CAP 0). Similar to the rDLPFC, the brain stayed in CAP 0 with 75%
probability. The direct transitions between the two CAPs were rare (<1%). In most
instances, one CAP needed to switch to the non-CAP before switching to another CAP.

In the validation dataset (Figures S10 and S11), the IOFC CAPs were highly reproducible
across four sessions and the pre-tDCS session according to the observations (panel A) and
spatial correlations (panel B) of their spatial maps. The occurrence rates of the IOFC CAPs
were also not significantly different across four sessions (F3 g2 = 0.30, p= 0.82, one-way
repeated measures ANOVA).

3.3. Anodal tDCS perturb the rDLPFC CAPs dynamics

After the baseline pre-tDCS session, we aimed to enhance neuronal activations in the
rDLPFC using the anodal tDCS over three consecutive days and collected two sessions
(tDCS-early and tDCS-late) of concurrent tDCS-fMRI on day 1 and day 3, respectively. We
investigated the changes of occurrences and transition probabilities of both CAPs in the
following seven fMRI sessions (i.e., early tDCS, late tDCS, and post tDCS on day 1, pre
tDCS, early tDCS, late tDCS, and post tDCS on day 3; Fig. 4A), in the participants who
received anodal tDCS as compared to those who received sham tDCS. The left panel of Fig.
4A shows the difference in occurrence rate between the pre-tDCS session on day 1 (i.e., the
baseline) and each of the seven fMRI sessions. Compared to sham tDCS, the anodal tDCS
significantly decreased the occurrence rate of the first CAP and increased the occurrence rate
of the second CAP in the early tDCS session, and then remained at significantly decreased/
elevated levels in the following sessions (two-sample #test between the (anodaleariyiate/post-
anodalpye) and (shameariy/iate/post-Shampre); p values were corrected for multiple comparisons
using false-discovery rate [FDR] across 7 comparisons in day 1 and day 3 for each CAP).
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Fig. 4B shows the changes of transition probabilities across the two CAPs and the non-CAP,
between the pre-tDCS session on day 1 and each of the following seven fMRI sessions. We
observed that the anodal tDCS significantly reduced the transition probability of bi-
directional switches between CAP 0 and CAP 1 (two-sample #test between the
(anodaleariy/ate/post-anodalpre) and (shameariy/iate/post-Shampre); p values were corrected for
multiple comparisons accounted for all 63 possible switches in the matrix [excluding the
baseline column] using FDR), but did not have consistent and significant effects on the
switches between the baseline and CAP 2 as well as between CAP 1 and CAP 2. Using a
different threshold (20%) to select critical time points, we observed consistent and similar
findings for the rDLPFC CAPs and tDCS-perturbed brain dynamics (Figure S12).

3.4. Cathodal tDCS perturb the IOFC CAPs dynamics

Using cathodal tDCS, we aimed to enhance neuronal activations in the IOFC (Fig. 5A). The
left panel of Fig. 5A shows the difference in occurrence rate between the pre-tDCS session
on day 1 (i.e., the baseline) and each of the following seven fMRI sessions. Compared to
sham tDCS, cathodal tDCS significantly increased the occurrence of the first CAP and
decreased the occurrence rate of the second CAP in the early tDCS session, then remained at
significantly elevated/decreased level in the following sessions (two-sample #test between
the (cathodaleariyyiate/post-cathodalpre) and (shameariy/iate/post-ShaMpre); p values were
corrected for multiple comparisons using FDR across 7 comparisons in day 1 and day 3 for
each CAP). Fig. 5B shows the changes of transition probabilities across the two CAPs and
one non-CAP, between the pre-tDCS session on day 1 and each of the following seven fMRI
sessions. We observed that cathodal tDCS significantly decreased the transition probabilities
of the bi-directional switches between CAP 2 and baseline (two-sample #test between the
(cathodalegriyiate/post-cathodalyre) and (shameariy/iate/post-Shampre); P values were corrected
for multiple comparisons accounted for all 63 possible switches in the matrix using FDR).
Similar to anodal tDCS, cathodal tDCS did not have significant effects on the transitions
between CAP 1 and CAP 2. Using a different threshold (20%) to select critical time points,
we observed consistent and similar findings for the IOFC CAPs and tDCS-perturbed brain
dynamics (Figure S13).

4. Discussion

The human brain is never truly at rest but instead engaged in constant intrinsic and
condition-dependent dynamics even while not performing an explicit task. These whole-
brain dynamics can be characterized by reoccurring brain states with different occurrence
frequencies and transition probabilities (Deco et al., 2019; Kringelbach and Deco, 2020). In
this study, we tested the feasibility of using repeated tDCS to perturb dynamic brain states in
healthy participants. We found that anodal tDCS at the rDLPFC could significantly modulate
the occurrence rates of the two different and reoccurring rDLPFC CAPs, and perturb the
transitions between these CAPs and the non-CAP state (i.e., when the rDLPFC is not
activated during the fMRI scan). Similarly, cathodal tDCS significantly modulated the
occurrence rates of the two different and reoccurring IOFC CAPs, and perturbed the
transitions between the IOFC CAPs and the non-CAP state. In contrast, sham tDCS did not
have any significant effects on the occurrence rates and transition probabilities of the CAPs.
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These findings provide the first experimental evidence that direct electrical stimulation-
induced neural excitability could modulate brain dynamics and transitions of brain states
represented by fMRI CAPs.

In the past decade, studies using resting-state fMRI have challenged the conventional
assumption that fMRI brain activity is static throughout an entire scan. Using different time-
resolved fMRI methods, studies have revealed the dynamic and time-varying nature of
resting-state brain activity and found that the fMRI brain dynamics could be represented by
a series of connectomic or spatial patterns (Bolton et al., 2020a; Lurie et al., 2020; Preti et
al., 2017). Those brain patterns are inter-switchable in specific orders, representing
reoccurring brain states (Ma and Zhang, 2018). The temporal dynamics of brain states could
be modulated by psychological states (e.g., negative emotion) (Gaviria et al., 2019),
physiological states (e.g., wakefulness) (Damaraju et al., 2020; Patanaik et al., 2018), and
pathological states (e.g., brain disorders) (Fu et al., 2018; Kim et al., 2017; Tu et al., 2020,
2019a). Therefore, developing approaches to modulate brain dynamics could interfere with
these physiological processes and more importantly has the potential to advance treatments
for pathological conditions.

Several previous studies have combined brain stimulation (e.g., transcranial magnetic
stimulation, [TMS]) and electroencephalography (EEG) to investigate the perturbation-
elicited changes in brain activity. These studies demonstrated stimulation-induced brain-
wide spatiotemporal propagation may be helpful for assessing consciousness and treating
patients in minimally conscious state (Casali et al., 2013; Ferrarelli et al., 2010). In addition,
TMS was able to create transitions between the EEG-based DMN and dorsal attention
network (DAN), which were associated with individual cognitive abilities (Ozdemir et al.,
2020). A very recent study used whole-brain modeling and a unique fMRI dataset of human
sleep to show the possibility of forcing transitions between different fMRI brain states using
direct electrical stimulation (Deco et al., 2019). Our study used multiple sessions of
concurrent tDCS-fMRI data as well as fMRI data before and after tDCS to provide direct
evidence of perturbing fMRI brain dynamics with external stimulation. We have found that
active tDCS could not only modulate the occurrence rates of brain states but also their
transition probabilities, which is consistent with the conclusion of the aforementioned
modeling study (Deco et al., 2019).

Among different approaches to fMRI time-resolving methods, we chose the CAP analysis
because compared to other tools it yields patterns of whole-brain activity and focuses on the
interactions with a seed region of interest by retaining only the timepoints when it exceeds a
threshold of activity (Liu and Duyn, 2013). Since tDCS targets a specific region to either
enhance or inhibit neuronal excitability, CAP analysis could therefore demonstrate the
whole-brain co-activation patterns with the stimulated region. For example, using the
rDLPFC as a seed, we identified two CAPs that had relatively close occurrence rates before
tDCS applications. These two CAPs had different spatial patterns (i.e., the first CAP showed
co-activation in ACC, while the second CAP showed co-activation in insula, PoCG, and
SMA, as well as co-deactivation in the DMN) and were associated with different meta-
analytical topic maps (e.g., the first CAP had a strong negative association with execution
while the second CAP had a strong positive association with execution). During and after
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anodal tDCS, the occurrence rate of the first CAP was decreased by up to 15% while the
occurrence rate of the second CAP was proportionally increased. By simultaneously
decreasing the occurrence rate of execution-negative CAP and increasing the occurrence rate
of execution-positive CAP, we would expect that anodal tDCS at the rDLPFC may enhance
participants’ executive function, which has been shown previously in multiple studies in
both healthy and patients population (Doruk et al., 2014; Imburgio and Orr, 2018; Sarkis et
al., 2014). In a very recent study, the occurrence rates of CAPs (i.e., the co-activations in
insula, DLPFC, DMN, and ACC; a similar spatial pattern to the rDLPFC CAP 2 in the
present study) were found to be decreased in autism patients (Marshall et al., 2020).
Therefore, it is possible that using anodal tDCS to increase the occurrence rate of CAP 2
may be helpful for patients with autism.

Developments in tDCS have extended interest from observing neural responses to
mechanistic manipulation (Chase et al., 2020; Polania et al., 2018), but the underlying neural
mechanisms of tDCS remain unclear. Applying tDCS to enhance behaviors is still in a
‘black box’, which heavily limits the potential of tDCS in clinical applications. Interestingly,
although we used 20 min continuous stimulation and repeated tDCS over three consecutive
days, the effects were significant for both anodal and cathodal tDCS in the first 6 min of the
stimulation (i.e., tDCS-early fMRI session on day 1) timepoint and remained significant and
stable in the following sessions (perhaps due to the floor and ceiling effect (Polania et al.,
2018)). These results suggest that fMRI brain dynamics are very sensitive to external
stimulation and have residual effects even after stimulation is halted. Importantly, since we
used sham tDCS as a control, the common confounders when estimating fMRI brain
dynamics (e.g., vigilance, head motion) could be largely controlled (Lurie et al., 2020).

There are several limitations in the present study. First, we did not record fMRI data in the
second tDCS session (i.e., day 2). It is unknown whether the effects on fMRI brain dynamics
were consistent in this session. Second, although we observed that fMRI brain dynamics
were very sensitive to tDCS, it is still unknown when the effects would eventually be
extinguished.

In conclusion, we used active and sham tDCS to test the feasibility of perturbing fMRI brain
dynamics with non-invasive brain stimulation. Our findings provide the first experimental
evidence that active but not sham stimulation could modulate both the occurrences and
transitions of brain dynamics represented by the fMRI CAPs. Given the relevance of fMRI
brain dynamics in psychological, physiological, and pathological states, this may open new
possibilities for discovering stimulation targets and dynamic connectivity patterns that can
ensure the propagation of tDCS-induced neuronal excitability in both healthy and patient
populations.
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Refer to Web version on PubMed Central for supplementary material.
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Data and code availability

fMRI data can be requested from the corresponding author. The spatial maps of CAPs will
be deposited to Neurovault (https://neurovault.org/). Matlab codes for analyzing CAPs are
available in the TbCAPs toolbox (https://c4science.ch/source/CAP_Toolbox/).
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A. 20 min anodal, cathodal, and sham tDCS were applied on 3 consecutive days according
to a double-blind, between-subject design. fMRI data were collected before the tDCS
session (rs-fMRI), during the first 6 min of tDCS session (tDCS-fMRI), during the last 6
min of tDCS session (tDCS-fMRI), and after the tDCS session (rs-fMRI). rsfMRI: resting-
state fMRI. B. The anodal electrode was placed over F4 and the cathodal electrode above
FP1 for the rDLPFC excitability enhancement. The anodal electrode was placed over FP1
and the cathodal electrode above F4 for the IOFC excitability enhancement. Color bar
indicates the strength of the potential field. For sham tDCS treatment, stimulation was
applied only at ramp periods at the beginning and end of sham stimulation to mimic the
somatosensory effect of active tDCS for 15 s. C. The rDLPFC seed (MNI coordinates: x =
36, y=44, z=32; radius = 10 mm) and the IOFC seed (MNI coordinates: x=-22, y=65, z
= -2; radius = 10 mm)used in functional connectivity analyses. Areas outside the cortex

were rejected.
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Fig. 2. Framework of co-activation pattern (CAP) analysis.
A. Critical time points (i.e., frames) when seed time course exceed a threshold were

identified, and fMRI spatial maps were extracted from these critical time points. B. Spatial
maps from all subjects were concatenated and K-means clustering was performed to identify
CAPs. C. The occurrences and transitions of CAPs were computed. CAP 0 represents the
state in which the seed (e.g., the rDLPFC) is not strongly activated.
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Fig. 3. TherDLPFC and IOFC CAPsat baseline.
A. Spatial maps for the two rDLPFC CAPs. In the first CAP, the rDLPFC co-activated with

the anterior cingulate cortex (ACC), the contralateral IDPFC, and bilateral inferior parietal
lobe (IPL). In the second CAP, the rDLPFC co-activated with the supplementary motor area
(SMA), bilateral insula (INS), and bilateral postcentral gyrus (PoCG), while co-deactivated
with the default mode network (i.e., medial prefrontal cortex [mMPFC], post-cingulate cortex
[PCC], and bilateral angular gyrus). B. Polar maps for the meta-analytical decoding of topics
in cognitive and disease domains, respectively. C. Transition probability matrix for the two
CAPs and the non-CAP (when the rDLPFC was not activated). D. Spatial maps for the two
IOFC CAPs. In the first CAP, the IOFC co-activated with the DMN (mPFC, PCC, and
angular gyrus) and superior frontal gyrus (SFG), while co-deactivated with the bilateral
PoCG. In the second CAP, the IOFC co-deactivated with the subgenual and pregenual ACC,
SFG, and bilateral inferior temporal (1T) lobe. E. Polar maps for the meta-analytical
decoding of topics in cognitive and disease domains, respectively. F. Transition probability
matrix for the two CAPs and the non-CAP (when the IOFC was not activated).
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Fig. 4. Anodal tDCS perturbstherDLPFC CAPs dynamics.
A. Anodal tDCS in three consecutive days significantly decreased the occurrence rate of
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CAP 1 and increased the occurrence rate of CAP 2. In contrast, sham tDCS did not have any

effect on the occurrence rates. Errorbars represent the standard error of the mean. The blue
dashed lines indicate the differences between the anodal and sham groups. The lines and
asterisks at the top/bottom of the plots indicate statistically significant differences between
the anodal and sham groups using the two-sample £test. Multiple comparisons were
corrected using FDR. B. The transitions across the two CAPs (CAP 1 and CAP 2) and the
non-CAP (CAP 0, i.e., baseline). Transitions are bi-directional, for example, (0,1) indicates
the switch from CAP 0 to CAP 1, while (1,0) indicates the switch from CAP 1 to CAP 0.
(0,0), (1,1), and (2,2) indicate unswitched transitions (i.e., stay in the same CAP in the next
frame). The matrices show the changes of transition probabilities between the pre-tDCS
session on day 1 and each of the following seven fMRI sessions. Compared to the sham
group, the anodal tDCS significantly reduced the transition probability of the bi-directional
switch between CAP 0 and CAP 1. Asterisks indicate p<0.05 for two-sample #test and
corrected for multiple comparisons using FDR.
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Fig. 5. Cathodal tDCS perturbsthe |IOFC CAPs dynamics.
A. Cathodal tDCS in three consecutive days significantly increased the occurrence rate of

CAP 1 and decreased the occurrence rate of CAP 2. The blue dashed lines indicate the
differences between the cathodal and sham groups. Errorbars represent the standard error of
the mean. The lines and asterisks at the top/bottom of the plots indicate statistically
significant differences between the cathodal and sham groups using the two-sample ~test.
Multiple comparisons were corrected using FDR. B. Compared to the sham group, cathodal
tDCS significantly decreased the transition probabilities of the bi-directional switches
between CAP 2 and CAP 0. Asterisks indicate p<0.05 for two-sample #test and corrected
for multiple comparisons using FDR.
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