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Abstract

The exogenous RNA interference (RNAi) pathway is an important antiviral defense against arboviruses in mosquitoes, and
virus-specific small interfering (si)RNAs are key components of this pathway. Understanding the biogenesis of siRNAs in
mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing
technology, we characterized dengue virus type 2 (DENV2)-specific small RNAs produced during infection of Aedes aegypti
mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line.
We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they
are products of Dicer-2 (Dcr2) cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are
longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination
of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus
(CFAV) corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production,
while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the
key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36
cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of
their mosquito hosts.
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Introduction

Mosquito cell cultures are used routinely in arbovirology studies

to grow viruses and to elucidate aspects of viral infection and

replication in mosquitoes. Many of these cell lines were established

by Peleg and Singh in the 1960’s [1,2]. A mosquito cell line

designated C6/36 resulted from a clone selected by Igarashi from

Singh’s Aedes albopictus larval line for its ability to grow dengue and

chikungunya viruses to high titers [3], and has become one of the

most commonly used of arbovirologists’ tools [4,5,6,7,8]. Since

Aedes aegypti is the most important vector for arboviruses such as

dengue, we have used another cell line, derived from A. aegypti

embryos and known as Aag2, in several recent studies [9,10]. This

cell line was originally established by Peleg in 1968 and was further

characterized by Lan and Fallon in 1990 [11].

RNA interference (RNAi) has been shown to play an important

role in insect antiviral immunity [12,13,14]. RNAi is a molecular

pathway that is triggered by exogenous long double-stranded RNA

(dsRNA) in the cytoplasm. Much of what we know about RNAi in

insects has been elucidated in Drosophila flies and cultured cells.

Dicer-2 (Dcr2) is a multi-domain RNase III that recognizes and

cleaves dsRNA into small interfering RNAs (siRNAs) to initiate the

RNAi pathway. The siRNAs are usually 21 bp in length with 59

phosphates and two nt overhangs on the 39 hydroxyl ends

[15,16,17,18,19]. siRNAs, in association with Dcr2 and the

dsRNA-binding protein R2D2, are loaded into a multi-protein

RNA-induced silencing complex (RISC), which contains the

endonuclease Argonaute-2 (Ago2) [20,21,22]. The RISC unwinds

and degrades one of the siRNA strands, and retains the other

strand for use as a guide to identify long single-stranded RNA

(ssRNA), such as viral mRNA, which is complementary to the

siRNA. In the effector phase of RNAi, Ago2 cleaves the long

ssRNA at the point of complementarity, leading to its further

destruction [23,24,25].

Other RNA silencing pathways, including Piwi-interacting

(piRNA) and endogenous siRNA (endo-siRNA), have been

discovered in Drosophila [26,27,28,29,30,31,32]. piRNAs associate

with members of the Piwi clade of the Argonaute proteins, which

includes Piwi, Aubergine (Aub) and Argonaute 3 (Ago3) in

Drosophila. piRNAs are approximately 24–30 nt in length and are
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modified by DmHEN1 (also known as Pimet) by 29-O-methylation

on their 39 termini [33,34]. The piRNA pathway trigger appears

to be single-stranded RNA since the small RNAs are almost always

of a single polarity, and the biogenesis is Dcr1- and Dcr2-

independent, possibly using the endonuclease activity of the Piwi

proteins, at least in determining their 59 ends [27,28,35]. The

piRNA pathway is believed to have important roles in controlling

the transcription of transposable elements in the genome and in

development of reproductive tissues. Recently, virus-derived

piRNAs were discovered in cultured Drosophila ovary somatic

sheet cells [36].

Genomic analyses show that mosquitoes encode Drosophila-

orthologous RNAi pathway components including Dcr2, R2D2,

and Ago2, as well as paralogous microRNA (miRNA) path-

way components Drosha, Pasha, Dicer-1 (Dcr1), Loquacious

(Loqs; R3D1), and Argonaute-1 (Ago1) [37]. Deep sequencing

analyses have characterized miRNAs in A. aegypti [38] and Culex

quinquefasciatus [39] and have demonstrated altered levels of

expression after blood-feeding [38] and after WNV infection

[39].

Dengue virus serotypes 1-4 (DENV1-4; genus Flavivirus; family

Flaviviridae) are the most important mosquito-borne viruses

affecting humans. They are hyperendemic throughout the tropics

and are transmitted primarily by A. aegypti mosquitoes in an urban

cycle. The DENV genome is a single-stranded, positive-sense

RNA approximately 10.7 kilobases (kb) in length with a 59 cap

structure, but no 39 polyA tail. It encodes three structural proteins

and seven non-structural proteins. Viral RNA replication occurs in

the perinuclear region of the cytoplasm in membrane-enclosed

replication complexes [40,41]. During replication, a full-length

negative-sense complementary RNA is used as a template for

genome synthesis, resulting in a replicative form consisting of long

viral dsRNA [42].

We recently showed that injection of A. aegypti mosquitoes with

dsRNA derived from A. aegypti dcr2 or r2d2 mRNA to knock-down

expression of RNAi pathway components, followed two days later

by oral challenge with DENV2, resulted in increased virus titers in

whole mosquitoes compared to non-injected or unrelated dsRNA

(b-gal)-injected mosquitoes [10], indicating a role for Dcr2 in the

mosquito antiviral response. DENV2-related si-like RNAs (viR-

NAs) were also detected in DENV2-infected A. aegypti and Aag2

cells in this study [10]. West Nile virus (WNV)-derived viRNAs

were detected in WNV-infected Culex mosquitoes via deep

sequencing [43]; however, small RNAs derived from WNV

RNA were not detectable in northern blots from WNV-infected

C6/36 cells [8]. We know of no other reports of detection or

characterization of flavivirus-derived siRNAs.

RNAi has also been shown to be an important antiviral pathway

in alphavirus infections of A. aegypti mosquitoes. Co-injection of

dsRNA derived from A. aegypti ago2 or dcr2 mRNA with Sindbis

virus (SINV) TR339-eGFP (genus Alphavirus; family Togaviridae)

into A. aegypti resulted in increases in detectable viral RNA,

infectious virus titers and infection rates of mosquitoes [44]. When

SINV were engineered to express the B2 protein, a viral

suppressor of RNAi, the viruses replicated to higher titers in

mosquitoes and Aag2 mosquito cell cultures, and caused

cytopathic effects in cell cultures and mortality in mosquitoes,

suggesting the importance of the RNAi pathway in maintaining

persistent, non-pathogenic arboviral infections of the mosquito

host [9,45]. RNAi as an antiviral defense was also demonstrated in

Anopheles gambiae mosquitoes, in which injection of dsRNA to

knock-down expression of Ago2 resulted in increased replication

and dissemination of another alphavirus, O’nyong-nyong virus

(ONNV) [46]. ONNV-derived viRNAs were identified in A.

gambiae mosquitoes by deep sequencing [45].

Despite the demonstration of antiviral RNAi in mosquitoes and

mosquito cells, arboviruses are able to establish persistent,

generally non-cytopathic infections in their natural vectors.

Furthermore, the mechanistic details of small RNA production

have not been confirmed in mosquitoes or mosquito cell lines.

Since we have observed more robust growth of DENV2 in C6/36

than in Aag2 cells, we hypothesized that this difference was due to

variations in the RNAi responses of the two cell lines. We describe

here a comparative study of DENV2-specific small RNAs made

during infection of Aag2 and C6/36 mosquito cell cultures and A.

aegypti mosquitoes, and present evidence that C6/36 cells have an

aberrant antiviral RNAi pathway.

Materials and Methods

Viruses and cell cultures
The DENV2 strain used for infections of cells and mosquitoes

was highly passaged Jamaica 1409. DENV2 stocks used for

infection of C6/36 cells and Aag2 cells were propagated in Aag2

cells. Because the Aag2 cell line is persistently infected with the

mosquito-only flavivirus cell fusing agent virus (CFAV), DENV2

stocks contained infectious CFAV. C6/36 (A. albopictus) cells were

grown in L-15 medium with 10% fetal bovine serum (FBS),

100 U/ml/100 mg/ml penicillin/streptomycin (P/S), and L-glu-

tamine (L-glut) at 28uC (without CO2). C6/36 cell infections were

done in L-15 with 2% FBS, P/S, L-glut and non-essential amino

acids (NEAA) at 28uC (without CO2). Aag2 (A. aegypti) cells were

grown in Schneider’s Drosophila medium with 10% FBS, P/S, and

L-glut at 28uC (without CO2). Aag2 cell infections were done in

Schneider’s Drosophila medium with 2% FBS, P/S, L-glut and

NEAA at 28uC (without CO2). Cells were infected with DENV2 at

a multiplicity of infection (MOI) of 0.1, and cell RNA was

harvested at one and five days post DENV2- or mock- infection.

LLC-MK2 monkey kidney cells were cultured in modified Eagle’s

medium (MEM) supplemented with 8% FBS, L-glut, NEAA and

P/S and maintained at 37uC in the presence of CO2.

For the transfection experiments, Aag2 cells were grown as

described above, while the C6/36 cell line was grown in MEM

with 10% FBS, P/S, L-glut, and 0.015% sodium bicarbonate at

28uC in the presence of CO2.

Infectious virus titration by plaque assay
LLC-MK2 cells were grown to confluent monolayers in 24-well

plates, infected with 10-fold serial dilutions of virus for 1 hour and

Author Summary

Understanding how arthropod-borne viruses (arboviruses)
establish persistent infections in mosquitoes will help us to
find ways to prevent viral disease transmission by these
insects. RNA silencing pathways in mosquitoes and other
insects, particularly RNA interference (RNAi), have been
shown to be important in antiviral defense. In this study we
describe small RNAs involved in RNA silencing that are
derived from the genome of the arbovirus dengue virus
type-2 (DENV2) in infected Aedes aegypti mosquito cell lines
and mosquitoes. We also show that C6/36, a mosquito cell
line from A. albopictus, appears to process DENV2 RNA for
silencing differently from A. aegypti mosquitoes, revealing
that other small RNA pathways in mosquito cells might have
a role in antiviral immunity in this cell line and provide
insight into using mosquito cell cultures to study the
antiviral response to arboviruses in mosquitoes.
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overlaid with an agarose-nutrient mixture. After 7 days incubation

at 37uC cells were stained with 5 mg/ml MTT (3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) solution.

Viral titers were determined by counting plaques [9].

Mosquitoes and DENV2 infection
A. aegypti RexD strain mosquitoes were reared at 28uC with 82%

humidity. Female mosquitoes one-week post-eclosion were

deprived of a sugar source overnight and were then allowed to

feed on artificial bloodmeals containing defibrinated sheep blood

(40%) (Colorado Serum Company, Boulder, CO) and an infected

C6/36 cell suspension (60%) with 1 mM ATP for one hour. The

bloodmeal was maintained at 37uC in a water-jacketed glass feeder

covered with hog gut membrane, and mosquitoes fed on the blood

through the membrane. The bloodmeal titer of DENV2 strain

Jamaica 1409 was approximately 16107 PFU/ml, while the

mock-infected mosquitoes were given a blood and uninfected

C6/36 cell mixture. Bloodfed females were selected and were

maintained with water and sugar for nine days after the infection

(or mock infection), when RNA was harvested from 20 whole

mosquitoes per group.

Preparation of dsRNA substrate for in vitro dicing assay
and RNA silencing

dsRNA was prepared by in vitro transcription from a PCR

product of a 498 bp region of the E. coli beta-galactosidase (b-gal)

gene with T7 promoters on both strands. Transcription was

carried out using the Megascript T7 Kit (Applied Biosystems,

Foster City, CA) for approximately 16 hours at 37uC with

approximately 9% of the UTP substrate conjugated to biotin

(Applied Biosystems). The reaction mixture was treated with

Turbo DNase (Applied Biosystems) for 30 minutes, followed by a

phenol/chloroform extraction and an overnight ethanol precipi-

tation. The RNA was fractionated on a TBE-urea 6% polyacryl-

amide gel (Invitrogen, Carlsbad, CA) and small RNA was eluted

overnight at room temperature. RNA was extracted with phenol/

chloroform (5:1), followed by chloroform/isoamyl alcohol (24:1),

and precipitated overnight at 220uC in ethanol. The RNA was

quantified by spectrophotometry.

In vitro dicing assay
Cell-free lysates were generated from Aag2 cells and C6/36 cells

using a previously described protocol [47]. Briefly, cells were

washed in PBS three times, then resuspended in 1X lysis buffer

with protease inhibitors and 5 mM DTT. The cells were disrupted

in a Dounce homogenizer, and then centrifuged at 14,000 rpm for

25 minutes at 4uC. The supernatant was flash frozen in a dry ice/

ethanol bath and stored at 280uC. Protein concentrations were

determined with the DC Protein Assay (Bio-Rad Laboratories

Inc., Hercules, CA) and samples were equilibrated to the same

protein concentration using lysis buffer immediately before the

dicing assay was set up. Dicing activity reactions contained 1/2

volume lysate, 1/3 volume 40X reaction mix and approximately

70 nanograms of 498 bp biotinylated b-gal dsRNA, with the lysate

being added last. At each timepoint, 10 microliters (ml) of the

reaction were removed, added to 2X PK buffer and flash frozen.

RNA was extracted using phenol/chloroform (5:1), followed by

chloroform/isoamyl alcohol (24:1), and precipitated overnight at

220uC in ethanol. RNA was electrophoresed on a TBE non-

denaturing 20% polyacrylamide gel (Invitrogen), electrophoreti-

cally transferred to a positively charged nylon BrightStar-Plus

membrane (Applied Biosystems) and UV-crosslinked to the

membrane. Biotinylated RNA was detected with the BrightStar

BioDetect Kit (Applied Biosystems) and exposed to autoradiogra-

phy film. In some reactions, 1 ml (0.5 unit) of recombinant human

dicer enzyme (Genlantis Inc., San Diego, CA) was added to the

10 ml reaction just before addition of the lysate.

Plasmid construction
The enhanced green fluorescent protein (EGFP) gene was

amplified from the pEGFP-1 plasmid (Clontech, Mountain View,

CA) using the forward primer EGFP-Nco I F and reverse primer

EGFP-Xho I R. The amplicon was digested with Nco I and Xho I

and cloned into the insect-specific expression plasmid pIEx

(Novagen, Madison, WI) to generate the pIEx-EGFP vector.

Small interfering RNAs and double stranded RNAs
The Accell EGFP siRNA used in these experiments and the

control WNV siRNA were synthetically produced by Dharmacon

(Lafayette, CO). WNV siRNA was complementary to a 21 nt

region of the WNV genome starting at position 85 in the capsid

gene.

Approximately 500 bp fragments corresponding to EGFP or

WNV capsid genes were amplified using primers that included a

T7 promoter sequence in both the forward and reverse primers.

The amplicons were PCR purified and subsequently used as

templates for dsRNA transcription. Synthesis of dsRNA molecules

was carried out using the T7 Megascript kit (Applied Biosystems)

as described above with omission of biotinylated UTP. The

dsRNA was re-suspended in 50 ml PBS, quantified and brought to

a final concentration of 1 mg/ml.

Transfection Conditions
The day prior to transfection, Aag2 or C6/36 cells were seeded in

24-well tissue culture plates at a density of 56105 cells/well. For

the transfections, 250 ng/well of the pIEx-EGFP plasmid were

combined with either EGFP or WNV siRNA (to a final con-

centration of 50 nM), or 1 mg/well of EGFP or WNV dsRNA in

Opti-MEM medium. Subsequently, the Attractene Transfection

Reagent (Qiagen, Valencia, CA) was added and lipid-nucleic acid

complexes were allowed to form for 15 min. at room temperature.

The medium on the cells was discarded and 440 ml of Opti-MEM

were added to each well followed by dropwise addition of 60 ml of

the complexes. The cells remained in the presence of the

transfection reagent for four hours, after which appropriate medium

for each cell line was replaced. Cell viability was monitored for

48 hours post transfection, when cell images were acquired and the

cells harvested. The cell pellets were re-suspended in 500 ml Trizol

(Invitrogen) and total protein for immunoblots precipitated

according the manufacturer’s instructions.

Microscopy
Images were acquired using a Nikon TE2000 inverted

microscope with a Hamamatsu Orca camera and Wasabi software

(Hamamatsu Photonics, Japan). Representative areas as deter-

mined by cell density were photographed under 106 magnifica-

tion. Fluorescent images were acquired using a 222 ms exposure

without gain and the light images were acquired using a 30 ms

exposure without gain. The monochrome images were subse-

quently pseudo-colored using the Slidebook software (Intelligent

Imaging Innovations, Denver, CO).

Immunoblots
Total protein recovered from transfected cell cultures was

quantified using the Bradford Kit on the Bio-Rad SmarSpec Plus

spectrophotometer (Bio-Rad Laboratories Inc., Hercules, CA).

Antiviral RNAi in Mosquito Cell Cultures

www.plosntds.org 3 October 2010 | Volume 4 | Issue 10 | e848



Fifteen micrograms of total protein were separated on 12.5%

SDS-PAGE and transferred to a nitrocellulose membrane. The

presence of EGFP was detected using a primary mouse anti-

Aequorea victoria EGFP monoclonal antibody (Clontech) at a

dilution of 1:1000 in TBST +5% non-fat dry milk. The blot was

subsequently probed with phosphatase labeled goat anti-mouse

IgG at a 1:1000 dilution (KPL Inc., Gaithersburg, MD). Detection

of actin was performed with primary rabbit polyclonal antibodies

at a 1:1000 dilution in TBST +5% BSA (Abcam, Cambridge, MA)

and phosphatase labeled goat anti-rabbit IgG secondary antibody

at a 1:1000 dilution (KPL Inc.). Membranes were developed with

the 1-Step NBT/BCIP reagent for 5–10 minutes at room

temperature (Pierce, Rockford, IL).

Small RNA isolation and library preparation
Total RNA was extracted using TRIzol (Invitrogen) with

manufacturer’s instructions from Aag2 and C6/36 cells mock- or

DENV2-infected (MOI = 0.1) at 5 days post infection. Total RNA

was extracted with TRIzol from non-infectious bloodfed and

DENV2 bloodfed A. aegypti mosquitoes at nine days post blood-

meal. Small RNA was isolated using the FlashPAGE Fractionator

(Applied Biosystems). Small RNA libraries were made using

SOLiD small RNA expression kit (Applied Biosystems) and were

sequenced at the University of Washington on a SOLiD sequencer

(Applied Biosystems).

viRNA sequencing analysis
Potential viRNAs were aligned to the DENV2 or CFAV

genome using NextGENe software (Softgenetics, LLC, State

College, PA), Version 1.11, running the transcriptome assembly

function. CSFASTA (color-space) files from SOLiD sequencing of

samples were used as the sample file and a FASTA file of either

DENV2 Jamaica 1409 RNA from Genbank accession number

M20558.1 or CFAV RNA Genbank accession number

NC001564.1 was used as the reference sequence.

Logo analysis
Logo analysis was performed using WebLogo 3 located at

http://weblogo.threeplusone.com in March, 2010 [48,49]. Reads

that matched DENV2 and CFAV genomes were identified with

NextGENe alignment, converted to base-space with NextGENe,

and used in the WebLogo. The full length (35 nt) of the matched

read was used to allow comparison of all of the viRNAs at once as

all reads must be the same length when analyzed with the

WebLogo program. The program default settings were used,

except the Y-axis scale was set to 1 bit.

Dicer-2 northern blot hybridization
5 mg of total RNA from Aag2 or C6/36 cell cultures was heated

at 95uC for 5 minutes, placed on ice, then loaded onto a 1.25%

denaturing formaldehyde agarose gel and electrophoresed in

MOPS/formaldehyde buffer. The RNA was passively transferred

from the gel overnight to a BrightStar-Plus positively charged

nylon membrane (Applied Biosystems) with 10X SSC buffer. The

membrane was autocrosslinked twice and pre-hybridized in 5 ml

of UltraHyb Hybridization Buffer (Applied Biosystems) for 1 hour

at 68uC. Biotinylated dcr2 antisense ssRNA probes (nt 4919-5116)

were added to the hybridization buffer to a final concentration of

0.1 nM (approximately 80 ng of probe in 5 ml buffer). A. aegypti

dcr2 probe was added to the membrane with the Aag2 RNA

bound, and A. albopictus dcr2 probe was added to the membrane

with C6/36 RNA bound and the hybridizations took place in

separate tubes. Membranes and probes hybridized for 18 hours at

68uC. Membranes were then washed twice for 30 minutes in 2X

SSC, 0.1% SDS buffer and twice for 60 minutes in 0.1X SSC,

0.1% SDS buffer. All washes were done at 68uC and A. aegypti and

A. albopictus membranes remained in separate tubes. The

biotinylated probes attached to the membrane were detected with

the BrightStar BioDetect Kit (Applied Biosystems), following

manufacturer’s instructions, with all washes performed for

maximum recommended times. The membranes were exposed

to autoradiography film for various times and the film was

developed in an automatic autoradiography developer. Band

intensities were compared with the BioRad Quantity One

software, with adjustment for background.

Results

Characterization of DENV2-derived small RNAs
DENV2-specific small RNAs from either mock- or DENV2-

infected Aag2 cells, C6/36 cells, or A. aegypti mosquitoes were

sequenced with the ABI SOLiD 2 sequencer and analyzed using

NextGENe software. The small RNA library from DENV2-

infected Aag2 cells at five days post-infection contained 1,612

viRNAs that aligned to the DENV2 genome from over 126106

reads (Table 1). Although this is a much higher number than in the

uninfected or DENV2-infected cells at 1 dpi, it accounted for only

0.01% of the total number of small RNA reads from the library,

possibly due to low levels of viral replication, or to sequestration of

the dsRNA trigger in cellular membrane-enclosed vesicles

[40,41,50]. The DENV2-infected A. aegypti mosquito library had

6,029 DENV2-specific small RNAs at 9 dpi, accounting for only

0.05% of the total small RNA reads. Many more DENV2-specific

small RNAs (24,938 from over 126106 reads) were found in the

C6/36 cells at 5 dpi (Table 1); this is possibly related to the ability

of DENV2 to grow to 10- to 100-fold higher titers in these cells

than in Aag2 cells (Figure 1).

The DENV2-specific small RNAs from Aag2 cells at 5 days post

DENV2-infection were 59% positive (genome) sense, and the

small RNAs from DENV2-infected mosquitoes were 55% positive

sense (Table 1). Nearly-equal ratios of positive to negative sense

DENV2 small RNAs suggested that most small RNAs are derived

from dsRNA replicative intermediates, rather than intrastrand

secondary structures in the ssRNA genome. In C6/36 cells,

DENV2-specific small RNAs were 96% positive sense, suggesting

that they were derived from ssRNA, and were not generated by

Dcr2 cleavage of dsRNA as in A. aegypti cell cultures and

mosquitoes.

The predominant size of DENV2-specific small RNAs in the

Aag2 library (5 dpi) and in the DENV2-infected A. aegypti

mosquitoes was 21 nt, which is the expected size for Dcr2

products, confirming that the exogenous-siRNA pathway was the

most likely mechanism used by these cells to target DENV2

dsRNA (Fig. 2). The most common size of DENV2 small RNAs in

the C6/36 cell library was 27 nt, which is not expected from the

exogenous siRNA pathway. Furthermore, the few 21 nt DENV2-

derived RNAs in the C6/36 cell library were predominantly

positive sense, unlike the more nearly equal sense to antisense ratio

found in the Aag2 cell library.

The sequences of the DENV2-specific small RNAs in the Aag2

cell library (5 dpi) were distributed evenly across the entire

DENV2 genome, with the exception of a higher proportion of

reads from one site around 10,000 nt (Fig. 3), further indicating

that dsRNA replicative intermediates were the target of Dcr2

cleavage. The distribution along the viral genome of the DENV2

viRNAs from infected mosquitoes was somewhat different from

that seen in the DENV2-infected Aag2 cells (Fig. 3), with several

Antiviral RNAi in Mosquito Cell Cultures
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‘hot spots’ for origins of either positive-sense or negative-sense

viRNA, suggesting that ssRNA secondary structures in the

DENV2 genome or its complement may also have been targeted

by Dcr2, and to a greater extent in the mosquito than in cell

culture. Analysis of potential secondary structures in the DENV2

RNA genome using mFold (www.bioinfo.rpi.edu/applications/

mfold) predicts optimal-energy RNA configurations with extensive

intrastrand base-pairing throughout the genome; however, most of

these dsRNA structures lack perfect base-pairing over regions

.21 bp so it is difficult to correlate them with siRNA ‘‘hot-spots’’.

The DENV2-specific small RNAs in C6/36 cells were not equally

distributed, but instead were derived from a few specific regions of

the genome, which might represent intrastrand secondary

structure in the positive-strand virus genome.

From over 146106 reads, there were only 93 matches to the

DENV2 genome in the uninfected Aag2 cell sample (approaching

0% of total reads) (Table 1). The Aag2 library from 1 day post-

DENV2 infection also had a very low number of DENV2-specific

reads (55), suggesting that viral replication to produce the dsRNA

trigger in the cell was at a low level early after infection.

Determination of cultured mosquito cell dicing activity
by in vitro and whole cell assays

We developed an in vitro dicing activity assay for cultured

mosquito cells based on similar methods used to prepare Drosophila

cell lysates [47]. This assay was used to compare the ability of

cytoplasmic preparations from Aag2 and C6/36 cells to cleave a

long exogenous dsRNA into 21 bp small RNAs, indicative of Dcr2

activity. Aag2 cell preparations produced the appropriate size

product (matching the recombinant human dicer control product)

within 18 hr after 500 bp long dsRNA was added to the lysate.

C6/36 cell lysates did not make a 21 nt small RNA product from

this labeled dsRNA during the same time period. When human

recombinant dicer was added to the lysates, a siRNA-like product

was made in the C6/36 cell lysate, indicating that although the

C6/36 lysate lacks endogenous Dcr2 activity, it does not inhibit

exogenously provided enzyme (Fig 4A).

Intact C6/36 and Aag2 cells were also tested for the ability of

their RNAi pathways to inhibit EGFP expression from a

transfected plasmid. Each cell line was transiently transformed

with a plasmid expressing EGFP along with siRNAs or long

dsRNA derived from the EGFP sequence or control RNAs derived

from the WNV genome sequence. Transfection of EGFP-derived-

siRNAs into either cell type resulted in knock-down of EGFP

expression, indicating that both have a functional RNAi pathway

if pre-formed siRNA is loaded into RISC. However, transfection

of cognate long dsRNA resulted in knock-down of EGFP

expression only in Aag2 cells, suggesting that only this cell line

was able to efficiently carry out Dcr2-mediated cleavage of dsRNA

(Fig 4B). Immunoblotting of fractionated cell proteins with EGFP

antibodies confirmed the corresponding protein expression levels

(Fig 4C). These results provide further evidence that C6/36 cells

Figure 1. DENV2 strain Jamaica 1409 grows to higher titers in C6/36 than in Aag2 mosquito cell lines. Cell cultures were infected at a
MOI of 0.001 and aliquots of medium were removed at 24 hour intervals and titrated by plaque assay. The assays were performed in triplicate and
titers are expressed as means 6 SEM.
doi:10.1371/journal.pntd.0000848.g001

Table 1. DENV2 viRNAs from whole mosquito and mosquito
cell culture libraries.

Sample
(Total #
reads)

DENV2
viRNAs
(% total)

%
positive
sense

%
negative
sense

Aag2 Mock
(14,087,714)

93 (761024%) 17% 83%

Aag2 DENV 1dpi
(12,615,439)

55 (461024%) 41% 59%

Aag2 DENV 5dpi
(12,131,018)

1612 (0.01%) 59% 41%

Mosquito Mock
(7,687,058)

30 (461024%) 60% 40%

Mosquito DENV2 9dpi
(12,267,708)

6029 (0.05%) 55% 45%

C6/36 Mock
(11,915,311)

57 (561024%) 61% 39%

C6/36 DENV2 5dpi
(12,558,261)

24938 (0.2%) 96% 4%

doi:10.1371/journal.pntd.0000848.t001
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are defective in Dcr2 activity and suggest that both cell lines are

able to form a functional RISC.

CFAV small RNAs identified from SOLiD sequencing
During preliminary small RNA analysis, we detected cell fusing

agent virus (CFAV) small RNA in Aag2 cells, suggesting persistent

infection by this insect-only flavivirus. The sequences of small

RNA libraries prepared from Aag2 cells were aligned with a

CFAV genome sequence from GenBank as reference using

NextGENe software. Surprisingly, there were many more small

RNAs in all Aag2 libraries that aligned to CFAV RNA than to

DENV2 RNA (Table 2). CFAV was first described in the

precursor cell line to Aag2 cells [51,52]. Neither the mock-

infected nor DENV2-infected A. aegypti mosquitoes appeared to

have a CFAV infection, as only a small number of reads from

those libraries matched the CFAV genome (data not shown). The

mock infected C6/36 cells also had ,60 CFAV-specific small

RNAs, but .21,000 CFAV small RNAs were detected in the C6/

36 cell culture library 5 days post DENV2-infection (Table 2).

Since the DENV2 stock used to infect the C6/36 cells was grown

in Aag2 cells, this was probably the source of the CFAV, which

was introduced to the C6/36 cells during the DENV2 infection.

Interestingly, the patterns of size, polarity, and genome

distribution of the CFAV-derived small RNAs were very similar

to those of the DENV2-derived small RNAs in both cell lines

(Table 2, Fig. 5A and B). Aag2 cell CFAV-specific small RNAs

were predominantly 21 nt in length and were 54–63% positive

sense. C6/36 cell CFAV-specific small RNAs were mostly 27 nt in

length and 99% were derived from the positive sense strand,

similar to the characteristics observed for DENV2-specific small

RNAs, indicating that the defect in Dicer activity was not limited

to production of DENV2 small RNAs.

Logo Analysis of virus-specific small RNAs
The DENV2- and CFAV-specific small RNAs from both cell

types were analyzed with the WebLogo 3 program (http://

weblogo.threeplusone.com) to determine if there were preferences

for specific nucleotides at certain positions. The total untrimmed

35 nt length of virus RNA-matching reads was analyzed in the

program; therefore, the sequences for the six 39-terminal

nucleotides match the linker attached to the small RNAs in

preparation of libraries. In both the DENV2 and CFAV viRNAs

from Aag2 cells, there were no apparent preferences for specific

nucleotides at any positions in the 59 21 nt. However, in the C6/

36 cell libraries, there appeared to be a bias for adenine on the

nucleotide at position 10 in both the DENV2-specific and CFAV-

specific small RNAs (Fig 6). Ago3-associated Piwi-interacting

RNAs (piRNAs) often have an adenine at the 10th position, hinting

at a possible mechanism for generation of these small RNAs in

C6/36 cells [35,53].

Figure 2. viRNA size distribution varies among DENV2-infected Aag2 and C6/36 cell cultures and Aedes aegypti mosquitoes. Shown
are Aag2 (5 dpi) library, C6/36 (5 dpi) library, A. aegypti (9 dpi) library. Red bars, negative-sense viRNAs; blue bars, positive-sense viRNAs. Note
differences in Y-axes among graphs.
doi:10.1371/journal.pntd.0000848.g002
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Dcr2 expression in Aag2 and C6/36 cells
To examine levels of dcr2 expression in C6/36 cells as a possible

explanation for defective Dcr2 activity, we compared dcr2 mRNA

in Aag2 and C6/36 cells by northern blot hybridization of total

RNA, using specific probes based on sequences of cDNA amplified

from each cell line (data not shown). dcr2 messenger of the

anticipated size was detected in both Aag2 cells and C6/36 cells

using their respective probes (Fig 7). Neither probe hybridized to

RNA from the heterologous species (not shown). Comparison of

band intensities determined that the Aag2 cell band was

approximately 1.7-fold stronger than the C6/36 cell band.

Discussion

The aims of this study were to further define the mechanisms of

antiviral RNA silencing in mosquito cells infected with DENV2 by

characterization of the virus-specific small RNAs (viRNAs) produced

during infection and to test the hypothesis that enhanced virus

production in C6/36 cells as compared to Aag2 cells is attributable

to a less effective RNAi response in the former. We present further

evidence that the RNAi response initiated by Dcr2 is central to

antiviral defense in A. aegypti and that defective Dcr2 activity in C6/

36 cells renders them less able to control DENV2 replication.

Little was previously known about the nature of the DENV2

RNA trigger of the RNAi antiviral pathway and the characteristics

of resulting DENV2-specific siRNAs during the natural transmis-

sion cycle in mosquitoes. We previously reported enhancement of

DENV2 replication after knock-down of dcr2 expression and

presence of virus-specific small RNA in A. aegypti [10], but our

attempts to characterize these small RNAs using traditional cDNA

cloning and sequencing methods yielded very few genome matches

(unpublished); thus in this study we employed deep sequencing

and analysis of small RNA libraries. Since DENV2 induces the

production of dsRNA during its replication cycle [10,42,54], this

would be the most obvious target for Dcr2 cleavage and activation

of an RNAi response. Analysis of our deep sequencing data

showed that 54–60% of the DENV2-small RNAs in Aag2 cells

were positive sense, close to the 1:1 ratio that would be expected if

the trigger were a double-stranded intermediate composed of long

strands of positive genomic RNA annealed to a complementary

negative sense strand. The slight excess in positive-sense siRNAs in

Aag2 cells and A. aegypti is likely to arise from Dcr2 recognition and

cleavage of intrastrand secondary structures in the DENV2

genome. The distribution of viRNAs along the DENV2 genome

in Aag2 cells at 5 days post DENV2 infection is relatively uniform,

also implicating a long dsRNA replicative intermediate as the

main source of DENV2-specific small RNAs in Aag2 mosquito

cells. In DENV2-infected mosquitoes, the positive strand: negative

strand ratio was even closer to 1:1, with 55% of the DENV2-

specific small RNAs being derived from the positive sense strand.

Figure 3. viRNA genome coverage distribution varies among DENV2-infected Aag2 and C6/36 cell cultures and Aedes aegypti
mosquitoes. viRNA coverage across DENV genome for each library. Shown are Aag2 (5 dpi) library, C6/36 (5 dpi) library, A. aegypti (9 dpi) library. Red
bars, negative-sense viRNAs; blue bars, positive-sense viRNAs. Note differences in Y-axes among graphs.
doi:10.1371/journal.pntd.0000848.g003
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Previous studies of another flavivirus, WNV, in Culex quinque-

fasciatus mosquitoes showed that approximately 74% of the virus-

specific small RNAs were from the positive sense RNA strand [43].

These differences in strand polarity ratios may be due to

replication strategies of the viruses themselves or to a different

RNAi response in Culex mosquitoes when compared to A. aegypti.

Culex mosquitoes have a duplication of the ago2 gene, which could

result in differences in antiviral RNAi responses [37]. Small RNA

deep sequencing of A. aegypti mosquitoes infected by the positive

sense RNA alphavirus SINV showed that 54% of the virus-specific

small RNAs were from the positive sense strand [45], a very

similar proportion to our findings in DENV2-infected A. aegypti.

When the alphavirus ONNV was studied in A. gambiae mosquitoes,

the proportion of positive sense virus-specific small RNAs was

slightly higher at 64% [45]. The differences seen between these

alphavirus-infected mosquitoes also may be due to differences in

SINV and ONNV replication mechanisms or due to different

responses in the two mosquito genera.

The number of DENV2-specific small RNAs in our total RNA

samples was very low. Next generation SOLiD sequencing

revealed that that less than 0.02% of the small RNAs in the

DENV2-infected Aag2 cell (5 dpi) library and less than 0.05% of

the small RNAs in DENV2-infected A. aegypti mosquitoes (9 dpi)

were DENV2-specific. These results appear to be typical of

flavivirus-infected mosquitoes, as Culex mosquitoes infected with

WNV had less than 0.05% WNV-specific small RNAs in the total

small RNA population at 7 days post-infection and 0.12% WNV-

specific small RNAs at 14 days post-infection [43]. This may be

due to sequestration of flavivirus replication complexes in

membrane-enclosed vesicles in mosquito as well as mammalian

Figure 4. C6/36 cells are unable to produce a Dicer-2-like product. A) In vitro dicing assay. Biotinylated 500 bp b-gal dsRNA was added to
Aag2 and C6/36 cell lysates, with (as indicated by +) or without human recombinant Dicer (reDicer), and aliquots were collected immediately (0) or
after 18 hours. Lysate RNA was separated by electrophoresis on a polyacrylamide gel and transferred to a membrane for detection using the
BrightStar detection system. C lane contains product of in vitro reaction of reDicer with 500 bp dsRNA, as size marker. (B) Analysis of dicing activity in
Aag2 (a-d) and C6/36 (e-h) cell cultures. Aag2 cells were transfected with (a) pEGFP + EGFP siRNA, (b) pEGFP + WNV siRNA, (c) pEGFP + EGFP dsRNA,
(d) pEGFP + WNV dsRNA. C6/36 cells were transfected with (e) pEGFP + EGFP siRNA, (f) pEGFP + WNV siRNA, (g) pEGFP + EGFP dsRNA, (h) pEGFP +
WNV dsRNA. All cells were analyzed by fluorescent microscopy at 48 hr after transfection. (C) Immunoblot shows EGFP protein silencing. 1, pEGFP +
EGFP siRNA, 2, pEGFP + WNV siRNA, 3, pEGFP + EGFP dsRNA, 4, pEGFP + WNV dsRNA.
doi:10.1371/journal.pntd.0000848.g004

Table 2. CFAV viRNAs from mosquito cell culture libraries.

Sample
(Total # reads)

CFAV viRNAs
(% total)

%
positive sense

%
negative sense

Aag2 Mock
(14,087,714)

79,732 (0.6%) 57 43

Aag2 DENV2 Day 1
(12,615,439)

25,663 (0.2%) 63 37

Aag2 DENV2 Day 5
(12,131,018)

88,863 (0.7%) 54 46

C6/36 Mock
(11,915,311)

59 (561024%) 54 46

C6/36 DENV2 Day 5
(12,558,261)

21,807 (0.2%) 99 1

doi:10.1371/journal.pntd.0000848.t002
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cells, preventing Dcr2 access to dsRNA replicative intermediates

[40,41,50]. Alphavirus replication in mosquitoes appears to

generate more virus-specific small RNAs. Approximately 10% of

the 18–24 nt RNAs sequenced from SINV-infected A. aegypti

mosquitoes were matches to the SINV genome [45]. Although in

ONNV-infected A. gambiae mosquitoes the proportion of virus-

specific small RNAs was lower, with 1.2% of the total small RNA

reads matching the ONNV genome, still it was at least 10-fold

higher than for any flavivirus reported to date [45]. These higher

proportions of alphavirus small RNAs as compared to flavivirus

small RNAs may be due to differences in accessibility of the

replicative intermediate dsRNA to RNAi machinery during viral

replication, or possibly because of more rapid viral replication to

higher titers in alphavirus infected mosquitoes. Another reason for

the increased numbers of alphaviral small RNAs in these studies

may be that the mosquitoes were injected with SINV and ONNV,

whereas infection of mosquitoes used in the DENV and WNV

studies was established orally. Although we have presented clear

evidence that RNAi plays an antiviral role against DENV2 [10],

the low levels of DENV2 viRNAs in infected cells and mosquitoes

raise the question whether the viRNAs themselves have an

important role in the RNAi response. Possibly Dcr2 cleavage of

replicating viral RNA alone helps to keep the DENV2 infection

from overwhelming mosquito cells and causing excessive pathol-

ogy and overt mortality in the insect.

The DENV2-specific viRNAs in both Aag2 cells (5 dpi) and A.

aegypti mosquitoes were predominantly 21 nt long with similar

proportions of sense and antisense polarities, suggesting that the

underlying mechanistic aspects of their RNAi responses are similar.

During our small RNA analysis we also discovered many CFAV-

specific small RNAs in the Aag2 cell culture samples, but only a few

CFAV-matching reads in the A. aegypti mosquitoes. The Aag2 cell

line is persistently infected with this insect-only flavivirus, and it

appears to activate the antiviral RNAi pathway. Although the

CFAV RNA-specific proportion of small RNAs was higher (0.2–

0.7%), the size distribution and polarity of the CFAV-specific small

RNAs in Aag2 cells were similar to the DENV2-specific small RNAs

found after DENV2-infection, and these characteristics suggest that

they are products of the exogenous siRNA pathway. Possible effects

of CFAV persistent infection on DENV2 replication in the Aag2

cells are unknown and need further study. The sequence identity

between CFAV and DENV2 (Jamaica 1409 strain) RNAs is only

47%, so a sequence-specific response to DENV2 infection in

CFAV-persistently infected Aag2 cells seems unlikely, although a

change in level of RNAi activity due to persistent CFAV may have a

non-specific effect on DENV2 replication in these cells.

Figure 5. viRNA size and genome coverage distributions vary among CFAV-infected Aag2 and C6/36 cell cultures. (A) viRNA size
distribution. (B) viRNA coverage across CFAV genome for each library. Shown are Aag2 (5dpi) library, C6/36 (5dpi) library. Red bars, negative-sense
viRNAs; blue bars, positive-sense viRNAs. Note difference in Y-axes among graphs.
doi:10.1371/journal.pntd.0000848.g005

Antiviral RNAi in Mosquito Cell Cultures

www.plosntds.org 9 October 2010 | Volume 4 | Issue 10 | e848



In contrast to our findings for Aag2 cells, deep sequencing and

analysis of small RNA in DENV2-infected C6/36 cells revealed

abundant DENV2-specific small RNA that were longer than 21 nt

and almost exclusively sense polarity, characteristics not expected

of Dcr2-generated siRNAs. In addition, the C6/36 cell DENV2-

specific small RNAs seemed to be generated only from specific

regions of the genome. Further investigation is needed to

determine if these correspond to secondary structures within the

genome. Despite the greater numbers of virus-specific small RNAs

in C6/36 cells, the overwhelming predominance of genome-sense

small RNAs, even if they are loaded into a RISC, would result in

inefficient cleavage of newly-synthesized viral genomes and a

comparatively weak innate immune response. The lack of

functional Dcr2 activity in C6/36 cells and production of

predominantly positive-sense small RNAs may play a role in their

increased ability to support the replication of arboviruses such as

DENV and chikungunya virus, and may account for Igarashi’s

speculation that ‘‘the virus-sensitive C6/36 clone may lack efficient

regulatory mechanism for virus RNA synthesis and virus

production’’ [3].

Figure 6. Logo analysis of DENV2 viRNA from mosquitoes and cell culture and CFAV viRNAs from cell culture. Logo analysis was
performed on DENV2 and CFAV viRNAs using Weblogo 3. (A) Aag2 DENV2 (5 dpi) viRNA logo. (B) A. aegypti DENV2 (9 dpi) viRNA logo. (C) C6/36
DENV2 (5 dpi) viRNA logo. (D) Aag2 CFAV viRNA logo. (E) C6/36 CFAV viRNA logo.
doi:10.1371/journal.pntd.0000848.g006

Figure 7. Northern blot hybridization to detect expression of
dicer2 mRNA in cultured mosquito cells. Total RNA from Aag2 or
C6/36 cell cultures was fractionated by agarose gel electrophoresis,
transferred to a nylon membrane, and hybridized to either an A.
albopictus dcr2 probe (left) or an A. aegypti dcr2 probe (right). The
biotinylated probes were detected with the BrightStar BioDetect Kit.
doi:10.1371/journal.pntd.0000848.g007
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The predominant length of DENV2-derived small RNAs in

C6/36 cells was 27 nt, a size characteristic of piRNAs [28].

Production of piRNAs is Dcr1/Dcr2-independent and can be

mediated by Ago3 [53]. Virus-specific piRNAs were recently

described in Drosophila [36] and Zambon, et al. [55] showed that

piwi-family mutants of Drosophila were more susceptible to

Drosophila virus X infection. Logo analysis of DENV2- and

CFAV-specific small RNAs from C6/36 cells showed a bias for

adenine at the 10th position from the 59 end, which is also

characteristic of piRNAs bound by Ago3 [35,53].

We inadvertently co-infected the C6/36 cells with CFAV

contained in the DENV2 stock, and the CFAV-specific small

RNAs produced had similar properties to the DENV2-specific

small RNAs, but were uncharacteristic of an exogenous siRNA

pathway. The C6/36 cells also did not produce typical 21 nt

viRNAs in response to infection by WNV, SINV or LACV

(Brackney, et al., 2010 submitted). Earlier studies in C6/36 cells

engineered to express dsRNA hairpin structures derived from

DENV2 RNA showed small RNAs generated from these hairpins

that migrated between 20 nt and 30 nt size markers, with a size

appearing to be larger than 21 nt [56]. The cells expressing these

inverted repeat transcripts were resistant to DENV2 infection, and

in light of our current discovery of impaired Dcr2-like activity in

C6/36 cells, we speculate that the increased resistance to DENV2

infection in this engineered cell line was probably due to a Dcr2-

independent RNA silencing mechanism, such as the piRNA

pathway.

In the study by Chotkowski et al. [8], northern blot

hybridization using a sense-strand probe failed to detect WNV-

specific siRNAs in C6/36 cells. If WNV-specific small RNAs were

predominantly genome-sense, as in our study, they would be

poorly detected by a positive-sense hybridization probe. Our in

vitro assay indicated that C6/36 cells lack the ability to cleave long

dsRNA into characteristic siRNAs. Only transfected siRNAs could

be used to knock-down GFP expression from a plasmid in the cells,

and long dsRNA did not. Although C6/36 cells appeared to lack

efficient Dcr2 activity, addition of recombinant Dicer to the lysate

resulted in production of siRNAs; it thus appeared that the lack of

Dcr2 activity was not due to its inhibition in C6/36 cells. Northern

blot analysis showed that dcr2 was expressed at a somewhat

reduced level in C6/36 cells compared to Aag2 cells; however, the

magnitude of reduction does not appear to be sufficient to account

for the lack of dicing activity. A recent study by Lim et al. [57]

showed that missense mutations in the Drosophila dcr2 DExH

helicase domain or RNase III domain caused a loss of dsRNA

processing activity. We have cloned and sequenced full-length dcr2

cDNA from Aag2 cells and a 3920 nt fragment of C6/36 cell dcr2

(equivalent of nt ,1200-5120 on A. aegypti dcr2) (data not shown).

The Aag2 dcr2 nucleotide sequence was .99% identical to A.

aegypti dcr2; however, the C6/36 dcr2 fragment showed only 79%

identity with the Aag2 full-length sequence. Translation of the

nucleotide sequences revealed an apparent single nt deletion in

C6/36 dcr2 at nt 1508 that resulted in a termination codon, and

thus a nonsense mutation. Our detection of full-length dcr2 mRNA

in C6/36 cells suggests that it does not undergo nonsense-

mediated decay, as would be expected for early translation

termination [58], so it is possible that a ribosomal frame-shift

allows complete translation. However, because of the lack of

availability of the authentic A. albopictus sequence and the high

degree of divergence of C6/36 dcr2 sequence from A. aegypti dcr2,

we are unable to pinpoint particular mutations in C6/36 dcr2 that

could result in a change in phenotype.

The presence of unusual DENV-specific small RNAs in C6/36

cells coupled with ineffective Dcr2 activity suggested that a

compensating mechanism is used by these cells for generation of

viral-specific small RNAs. The piRNA pathway may serve as a

backup mechanism when the exogenous siRNA pathway is not

functioning correctly. Evidence for this hypothesis was seen when

the endo-siRNA pathway was disrupted by mutation of ago2 in

Drosophila, resulting in the appearance of somatic cell piRNAs that

possibly served as a backup in transposon surveillance [32,59]. In

our examination of RNAi in A. gambiae mosquitoes we found that

co-injection into mosquitoes of dsRNA derived from the ago3

sequence with ONNV resulted in increased ONNV titers, hinting

at a possible redundant role for Ago3 in antiviral immunity in

these mosquitoes [46]. Recently, viral small RNAs of various sizes

other than 21 nt were found in a variety of animal cells infected

with RNA viruses, suggesting roles for alternative RNA silencing

pathways in antiviral defense [60].

In summary, we determined that DENV2-specific small RNAs

produced during infection of A. aegypti mosquitoes and A. aegypti

Aag2 mosquito cell cultures appear to be made via the exogenous

siRNA pathway, but they are made in very low numbers,

indicating that DENV2 may have a strategy to evade the antiviral

RNAi response. In vitro studies demonstrated production of

characteristic siRNA in Aag2 cells but indicated that C6/36 cells

exhibit inefficient Dcr2 cleavage of long dsRNA. The C6/36 A.

albopictus cell line produced more abundant DENV2-specific small

RNAs, although they appeared to be generated by a different

small RNA pathway, possibly through a piRNA-like mechanism,

and this aberrant pattern of viral small RNA production extends to

other flaviviruses, alphaviruses and bunyaviruses (Brackney, et al.,

2010 submitted). The ability of C6/36 cells to support robust

arbovirus replication may be due to lack of a complete, functional

RNAi pathway. The evidence we have presented here indicates

that C6/36 cells do not provide an accurate model for mosquito-

arbovirus molecular interactions in the RNAi pathway.
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