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Abstract: This review presents the chemical diversity and pharmacological properties of secondary
metabolites produced by endophytic fungi associated with various genera of Rubiaceae. Several classes
of natural products are described for these endophytes, although, this study highlights the
importance of some metabolites, which are involved in antifungal, antibacterial, anti-protozoal
activities; neurodegenerative diseases; cytotoxic activity; anti-inflammatory and antioxidant activity;
and hyperglycemic control.
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1. Introduction

Natural products are small molecules from primary and secondary metabolites naturally
synthesized by microorganisms, plants, or animals [1,2]. They are a continuing source of novel
bioactive metabolites and have a significant impact on modern medicine [3,4]. Currently, more than
70% of antibacterial and anticancer compounds are natural products or their derivatives [5,6].

Fungi-derived natural products are considered one of the most relevant sources discovery and
molecular diversity for new drugs. They are valuable source of biological metabolites that find
wide-ranging applications as antibiotics, antifungal, immunosuppressants, antiparasitic and anticancer
agents [7–12]. Among the microorganisms, endophytes have aroused interest in the last decades
mainly for the discovery of important secondary metabolites identified from them.

The term endophyte refers to the microorganism that colonizes interior organs of plants, generally
inhabiting their aerial parts such as stems and leaves, but that does not have pathogenic effects on
its host [1,7,13–16]. Endophytes are ubiquitously found in every plant species examined to date. It is
worth mentioning that, of the nearly 300,000 species on earth, each plant hosts one or more endophytes,
and approximately 1 million of different species of microorganisms can be found [1,17]. In their
symbiotic association, the host plant protects and feeds the endophyte, which in return produces
bioactive metabolites to enhance the growth and competitiveness of the host and to protect it from
herbivores and plant pathogens [7,9,18].

Endophytic fungi are known to produce a wide range of bioactive secondary metabolites,
emphasizing chemical diversity, molecules originality and their biological activities [1,7,9,15–17,19–24].
Some studies suggest that up to 51% of bioactive metabolites obtained from endophytic fungi have
unknown chemical structure, which highlights the huge biotechnological potential of this microbial
group to the discovery of new drugs [21].

J. Fungi 2020, 6, 128; doi:10.3390/jof6030128 www.mdpi.com/journal/jof

http://www.mdpi.com/journal/jof
http://www.mdpi.com
https://orcid.org/0000-0001-5807-6161
http://www.mdpi.com/2309-608X/6/3/128?type=check_update&version=1
http://dx.doi.org/10.3390/jof6030128
http://www.mdpi.com/journal/jof


J. Fungi 2020, 6, 128 2 of 26

This review will focus on secondary metabolites synthesized by endophytic fungi isolated from
Rubiaceae species, as well as the biological activities described in the literature for these compounds.
The bibliographic research was carried out until March 2020.

2. Secondary Metabolites Produced by Endophytic Fungi from Rubiaceae

Rubiaceae is the fourth largest angiosperm family and comprises about 617 genera and
13,000 species of herbs, shrubs, and trees, found worldwide, especially in tropical and warm
regions [25–27]. This family presents a vast diversity of chemical substances such as iridoids,
anthraquinones, indole alkaloids, terpenoids, flavonoids, and alkaloids [28–32]. Diverse species
of Rubiaceae have widespread use in folk medicine, and some of them showed anti-inflammatory,
analgesic, antibacterial, mutagenic, antiviral, and antioxidant activities. Besides, an effect on vascular
diseases and action on the central nervous system were observed [25,27,33,34].

The research on microorganisms associated with the Rubiaceae family, for biotechnological
applications, led to the isolation of endophytic fungi [35–47] and the discovery of several bioactive
metabolites [38,48–55]. The diversity of chemical structures observed for secondary metabolites
synthesized by fungi isolated from Rubiaceae species showed a dynamic range of metabolites
pathways used by these microorganisms.

Fungi secondary metabolites are categorized in chemical classes: polyketides [56–59],
non-ribosomal peptides [57,59–62], ribosomal peptides [62–64], terpenes [65–67], and hybrid
metabolites [68–74]. These chemical classes are synthesized by specialized class-defining (backbone)
enzymes such as polyketides synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), terpene
cyclases (TCs), and dimethylallyl tryptophan synthases (DMATSs), respectively. The endophytes
isolated from Rubiaceae showed the ability to produce these chemical classes (Figure 1). The set of
enzymes needed for the production of a secondary metabolite is encoded by a gene cluster (BGC).
Interestingly the genes that are essential for the synthesis of a primary metabolite are dispersed
throughout the fungal genome, while the genes encoding the enzymatic activities for metabolic
pathways to produce any secondary metabolite are arranged in continuous fashion. In the last decades,
significant advances have been observed in the identification, understanding, and engineering of
fungal biosynthetic gene clusters (BGCs) [75–84].

The endophytic fungi distribution and diversity in Rubiaceae have been reported since the
1950s [85–87], and studies performed with Coffea arabica stand out [88–92]. However, only in 1999
was the first study on the secondary metabolism of endophytic fungi isolated from Rubiaceae species
published. In this work, Strobel related the occurrence of taxol (Figure 2), a potent anticancer drug, in the
culture of the endophyte Seimatoantlerium tepuiense (Amphisphaeriaceae) isolated from Maguireothamnus
speciosus [93]. The occurrence of taxol was described for other endophytes isolated from Rubiaceae
species, Botryodiplodia theobromae (Botryosphaeriaceae) and Aspergillus oryzae (Trichomaceae), obtained
from Morinda citrifolia and Tarenna asiatica, respectively [94–96]. The pharmacological properties of
taxol, isolated from Botryodiplodia theobromae, were confirmed through the cytotoxicity assay [94].

The secondary metabolites study on microorganisms associated with Rubiaceae continued with
Palicourea marcgravii St. Hil. It was popularly known as “erva de rato” and provided several endophytic
fungi, including a Xylaria sp. (Xylariaceae) isolated from their leaves. The crude extract from Xylaria
sp. showed a potential antifungal activity, and five compounds: 2-hexyl-3-methyl-butanodioic acid (1),
cytochalasin D (2), 7-dechlorogriseofulvin (3), cytochalasin B (4) and griseofulvin (5) were obtained
(Figure 3) [97].

Oliveira et al. (2009) explored endophytic fungi living in plants of the Brazilian flora; two
Penicillium (Trichocomaceae) species from leaves of Alibertia macrophylla were isolated. Penicillium
sp.1 was cultivated in corn and potato dextrose broth produced three different compounds: orcinol
(6), cyclo-(L-Pro-L-Val) (7), uracil (8). The acetonitrile fraction from Penicillium sp.2 led to three
dihydroisocoumarins: 4-hydroxymellein (9), 8-methyl-mellein (10) and 5-hydroxymellein (11) [98].
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Additionally, (R)-7-hydroxymellein (12) and (3R,4R)-4,7-dihydroxymellein (13) were also isolated from
Penicillium sp. associated with A. macrophylla (Figure 4) [99].
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The continuing search for endophytes associated on A. macrophylla led to five new
eremophilane sesquiterpenes: xylarenones C–G (14–18) isolated from solid cultures of Camarops
sp. (Boliniaceae) [100,101]. This fungus was also able to produce two rearranged sesquiterpenes:
3,5,9-trihydroxy presilphiperfolane (19) and 4-deoxy-10-oxodihydrobotrydial (20); two branched
polyketides: 4-((E)-pent-1-enyl)-3-((1’S,2’S)-1’,2’-dihydroxybut-3-enyl)-5H-furan-2-one (21) and
(2E,4R)-2,4-dimethylnon-2-enoic acid (22); seven phenolic derivatives: p-hydroxyphenyllactic acid
(23), phenyllactic acid (24), p-hydroxybenzoic acid (25), p-hydroxybenzaldehyde (26), n-butyl-3,4-
dihydroxybenzoate (27), n-hexyl-3,4-dihydroxybenzoate (28) and n-octyl-3,4-dihydroxybenzoate (29);
and the known compound (2E,4S)-2,4- dimethyloct-2-enoic acid (30) (Figure 5) [102].
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Extracts of solid cultures of Sporormiella minimoides (Sporormiaceae), isolated as an endophytic
fungus from leaves Hintonia latiflora collected in Mexico, yielded five polyketides, 3,6-dimethoxy-8-
methyl-1H,6Hbenzo[de]isochromene-1,9-dione (31), 3-hydroxy-1,6,10-trimethoxy-8-methyl-1H,3H-
benzo[de]isochromen-9-one (32), 5-hydroxy-2,7-dimethoxy-8-methylnaphthoquinone (33), minimoidiones
A (34) and B (35), along with four known compounds: corymbiferone (36), ziganein (37), brocaenol
B (38) and preussochromone C (39) [103–105]. Two other compounds, 9S,11R(+)-ascosalitoxin (40)
and vermelhotin (41), were also produced by endophytes from this plant [105,106]. The tridepsides,
secondary metabolites produced by fungus Chaetomium sp. (Chaetomiaceae), also isolated
from medicinal plant H. latiflora, were identified as thielavins A (42), J(43) and K (44) [107].
Two new compounds, pestalotin 4′-O-methyl-β-mannopyranoside (45) and 3S,4R-(+)-4-hydroxymellein
(46), were isolated from an organic extract of X. feejeensis, which was isolated from
this plant. In addition, the compounds (3S,4S)-4-hydroxymellein (9), (3S)-8-methylmellein (10), and
the quinone derivatives 2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione (47), 4S,5S,6S-4-
hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-en-1-one (48), and 4R,5R-dihydroxy-3-methoxy-5-
methylcyclohexen-2-en-1-one (49) were obtained (Figure 6) [108].
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The ethyl acetate extract from Cytospora rhizophorae (Valsaceae), a fungus associated with
Morinda officinalis, led to the isolation of three new compounds, named cytosporaphenones A–C
(50–52), one new polyhydric benzophenone, and two new naphthopyrone derivatives, respectively.
In addition to eight known compounds: 2-(2′S-hydroxypropyl)-5-methyl-7-hydroxychromone (53),
2-acetonyl-7-hydroxy-5-methylchromone (54), 8-hydroxy-6-methylxanthone-1-carboxylic acid (55),
regiolone (56), (3R,4R)-cis-4-hydroxy-5-methylmellein (57), scytalone (58), p-hydroxybenzoic acid (59)
and 4-hydroxy-3-methoxybenzene-ethanol (60). Interestingly, all of them were identified from this
strain for the first time, and these three new compounds (50–52) were the most highly oxygenated
metabolites of their families discovered in nature [109].

The endophytic fungal strain Alternaria sp. (Pleosporaceae) isolated from medicinal plant
M. officinalis produced two new metabolites, isobenzofuranone A (61) and indandione B (62),
together with eleven known compounds (63–73): isosclerone (63), 2,4,8-trihydroxy-1-tetralone (64),
3,4-dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone (65), 6-hydroxyisosclerone (66), cis-4-hydroxyscytalone
(67), alternariol-4-methyl ether (68), 6-epi-stemphytriol (69), dihydroalterperylenol (70), alterperylenol (71),
altertoxin II (72) and stemphyperylenol (73). It is relevant emphasizing that indandione (62) showed a
rarely occurring indanone skeleton in natural products (Figure 7) [110].
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Figure 7. Compounds extracted from endophytic fungal strain Alternaria sp. isolated from medicinal
plant M. officinalis.
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The chemical investigation of the endophytic fungus Trichoderma koningiopsis (Hypocreaceae),
also isolated from M. officinalis yielded three new diterpenes: koninginols A–C (74–76); two new
sesquiterpenoids, 11-hydroxy-15-drimeneoic acid (77) and koninginol D (78); as well as twelve known
metabolites identified as harziandione 2 (79), radianspene B (80), (S)-(-)-5-(hydroxymethyl)-2-(2′,6′,6′-
trimethyltetrahydro-2H-pyran-2-yl)phenol (81), hamanasol A (82), trichodermatide A (83), dihydropyran
(84), ketodiol (85), 7-O-methylkoninginin D (86), (1S,6R,7S,10R)-10- hydroxy-4(5)-muurolen-3-one (87),
1R,3S,6S,7R,10S-7-isopropyl-4,10-dimethylbicyclo[4.4.0]dec-4-en-3,10-diol (88), 1R,3R,6S,7R,10S-7-
isopropyl-4,10-dimethylbicyclo[4.4.0]dec-4-en-3,10-diol (89) and coprinol (90) [111]. Recently,
six polyketides, 6-hydroxy-4-isopropyl- 1,8-dimethylspiro[4.5]deca-1,8-dien-7-one (91), 2-hydroxy-2,5-
dimethyl-7-oxo-5,7-dihydro-2H-furo[3,4-b]pyran-4-carboxylicacid (92), 3-ethyl-4-hydroxy-6-methyl-
2H-pyran-2-one (93), harzialactone A (94), 3-hydroxy-5-(4-hydroxybenzyl)dihydrofuran-2(3H)-one (95),
and 4-acetyl-3-hydroxy-6-methyl-pyran-2-one (96) were isolated from T. spirale, another endophytes
from M. officinalis (Figure 8) [112].
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The endophytic fungi, Cytospora rhizophorae and Diaporthe lithocarpus (Diaporthaceae), were also 
obtained from M. officinalis. New metabolites isolated from C. rhizophorae included cytosporins A–D 
(97–100) meroterpenoids. These structures represent the first example of natural products that bear 
novel benzo[b][1,5]dioxocane framework embodying hemiterpene and benzophenone moieties [113]. 
Compounds 97–100 were evaluated for antimicrobial activities against Escherichia coli and 

Figure 8. Compounds extracted from endophytic fungus Trichoderma koningiopsis (Hypocreaceae), also
isolated from M. officinalis.

The endophytic fungi, Cytospora rhizophorae and Diaporthe lithocarpus (Diaporthaceae), were also
obtained from M. officinalis. New metabolites isolated from C. rhizophorae included cytosporins A–D
(97–100) meroterpenoids. These structures represent the first example of natural products that bear
novel benzo[b][1,5]dioxocane framework embodying hemiterpene and benzophenone moieties [113].
Compounds 97–100 were evaluated for antimicrobial activities against Escherichia coli and Staphylococcus
aureus. However, the compounds exhibited weak antibiotic activity with inhibition in concentrations
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above 250µg mL−1. The endophytic fungus, D. lithocarpus, yielded tenllone I (101), a new benzophenone
derivative; two new eremophilane derivatives, lithocarins B (102) and C (103); a new monoterpenoid,
lithocarin D (104); tenellone H (105); and phomopene (106) [114]. Studies of endophytic fungus of
Nigerian medicinal plants led to isolation of multiforisin I (107) and 4-hydroxyphenylacetic acid (108)
of Neurospora discreta (Sordariaceae) from leaves of M. lucida (Figure 9) [115].
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The curvularides A–E (109–113) are hybrid peptide–polyketides isolated from Curvularia
geniculata (Pleosporaceae), an endophytic fungus obtained from the twigs of Catunaregam tomentosa.
Their structures contain a 12-carbon atoms polyketide skeleton unit-linked, through an amide
bond, with a derivative of L-isoleucine, a rare compound class [116]. The endophytic fungus D.
pseudomangiferae retrieved from leaves of Sabicea cinerea species found along forest edges in the French
Guiana, produces four metabolites: mycoepoxydiene (114) and altiloxin A (115), as well as enamidin
(116) and eremofortin F (117) [117]. A filamentous fungus of the genus Diaporthe associated with
the seeds of Cinchona ledgeriana, from West Java–Indonesia, produces cinchona alkaloids: quinine
(118), quinidine (119), cinchonidine (120) and cinchonine (121), upon cultivation in a synthetic liquid
medium [118–122]. Quinine (118), an antimalarial drug, has also been found in chloroform extracts of
Colletotrichum spp. isolated from C. calisaya (Figure 10) [123].

Three new azaphilones with an unusual methylene bridge, named mycoleptones A, B, and
C (122–124), were obtained from cultures of Mycoleptodiscus indicus (Magnaporthaceae), a fungus
isolated from South American medicinal plant Borreria verticillate (Figure 10) [124]. Besides, other
polyketides, austidiol (125), eugenitin (126), 6-methoxieugenin (127), and 9-hydroxyeugenin (128),
were also produced (Figure 10) [124,125].

A fungus endophyte from Uncaria rhynchophylla, C. gloeosporioides (Glomerellaceae), produced four
novel lactams in culture broth, colletotrilactam A–D (129–132); colletotrichine A (133) and B (134); and
eleven more compounds: 2-isopropyl-5-methyl-2,4-cyclohexadien-1-ol (135), cis-4-hydroxymellein (9),
8-methyl-mellein(10), hederagonic acid (136), mellein (137) and blumenol A (138), aspergiketone (139),
djalonenol (140), (4S)-(+)-ascochin (141), 12,13-dihydroxyfumitremorgin C (142) and fumitremorgin
C (143) [124–126]. On the other hand, when grown in wheat bran medium, C. gloeosporioides
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produced nine compounds: 4-epi-14-hydroxy-10, 23-dihydro-24, 25-dehydroaflavinine (144), 10,
23-dihydro-24,25-dehydro-21–oxoaflavinine (145), ergosterol (146), ergosterol peroxide (147), mellein
(137), 4, 5-dihydroblumenol A (148), cyclo(L-leucyl-L-leucyl) (149), and brevianamide F (150). It was
the first report of isolation of the compounds 144, 145, 148, 149, and 150 from the Colletotrichum genus
(Figure 11) [127].
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However, the chemical investigation of the C. gloeosporioides ethyl acetate extract, obtained
from a solid culture, isolated from the leaves of Sabicea cinerea, led to the isolation of four new
acoranes (151–154) and other seven known compounds: 5-hydroxymethyl-furan-2-carboxylic acid
(155), 5-acetoxymethyl-furan-2-carboxylic acid (156), convolvulopyrone (157), p-hydroxybenzaldehyde
(158), 4-hydroxyphenyl acetic acid (159), indole-3-carboxylic acid (160) and indole-3-carboxaldehyde
(161) [128,129]. Recently, four cyclic tridepsipeptides, colletopeptides A−D (162–165), were isolated
from Colletotrichum species from stems of Rubia pondantha(Figure 12) [130].
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Guignardia sp. (Botryosphaeriaceae) isolated from the leaves of the mangrove plant Scyphiphora
hydrophyllacea Gaertn. F., produced six new meroterpenes, guignardones D–I (166–171); two known
compounds, guignardones A (172) and B (173), and the fatty acid glucoside identified as
(R)-3-hydroxyundecanoic acid methylester-3-O-α-L-rhamnopyranoside (174) [131–133]. Two other
antibiotics, brefeldin A (175) and trichodermol (176), were isolated from endophytic fungus (code C22)
from S. hydrophyllacea [134].

Analyzing the effect of the culture medium on the production of secondary metabolites by
Panamanian endophytic fungi, an antiparasitic compound was obtained, cercosporin (177); and
a new analog (178), isolated from endophytic fungus Mycosphaerella sp. (Mycosphaerellaceae),
associated with the foliage of Psychotria horizontalis [135]. The structures of minor compounds in the
extract were elucidated as 2-(2-butyl)-3-hydroxy-6-ethyl-6-methylcyclohex-2-ene-1,5-dione (179) and
3-(2-butyl)-6-ethyl-6- methyl-5-hydroxy-2-methoxy-cyclohex-2-eneone (180) (Figure 13) [136].
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In continuous studies on the chemistry of the endophytic fungus P. griseoroseum 
(Trichocomaceae), an endophyte isolated from fruits of C. arabica, produced dimethylated tetraketide 
diclavatol (181), clavatol (182) and two benzylated flavonoids (183–184) [137,138]. The studies also 
resulted in the identification of two known tetronic acids, viridicatic acid (185) and terrestric acid 
(186), found in ethyl acetate and n-butanol extract [138]. Mycophenolic acid (187), 5-hydroxi-7-
methoxy-4-methylphtalide (188) and ochratoxin A (189) were produced by P. crustosum obtained 
from coffee seeds [139,140]. After adding halides in a broth culture, two bromoroquefortines, 11-
bromoroquefortine D (190) and 11-bromo-17-hydroxybromoroquefortine C (191), were produced by 
P. chrysogenum from leaves of C. arabica (Figure 14) [141]. 
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In continuous studies on the chemistry of the endophytic fungus P. griseoroseum (Trichocomaceae),
an endophyte isolated from fruits of C. arabica, produced dimethylated tetraketide diclavatol (181),
clavatol (182) and two benzylated flavonoids (183–184) [137,138]. The studies also resulted in the
identification of two known tetronic acids, viridicatic acid (185) and terrestric acid (186), found in ethyl
acetate and n-butanol extract [138]. Mycophenolic acid (187), 5-hydroxi-7-methoxy-4-methylphtalide
(188) and ochratoxin A (189) were produced by P. crustosum obtained from coffee seeds [139,140].
After adding halides in a broth culture, two bromoroquefortines, 11-bromoroquefortine D (190) and
11-bromo-17-hydroxybromoroquefortine C (191), were produced by P. chrysogenum from leaves of C.
arabica (Figure 14) [141].J. Fungi 2020, 6, x FOR PEER REVIEW 13 of 31 
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An expedition to Yasuni National Park resulted in the isolation of endophytic Stelliosphaera 
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organism describes it as a specimen of a new genus within the order Pleosporales. Besides this 
organism being an example of new taxonomic diversity, it also produced stelliophaerols A (192) and 
B (193), two new sesquiterpene-polyol conjugates 1[142]. 

Chemical analyses of Phomopsis spp. (Valsaceae) isolated from tropical plants, including C. 
arabica, yielded alternariol (68), altenusin (194), altenuene (195), cytosporones C, O (196–197), and 
dothiorelones A–C (198–200) [143]. 
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2- dodecanol (204) (Figure 15) [144,145]. 

Figure 14. Compounds extracted from endophytic fungi, P. griseoroseum, P. crustosum and P. chrysogenum
obtained from C. arabica.

An expedition to Yasuni National Park resulted in the isolation of endophytic Stelliosphaera
formicum from Duroia hirsuta, an understory tree growing in Ecuador. Phylogenetic analysis of this
organism describes it as a specimen of a new genus within the order Pleosporales. Besides this
organism being an example of new taxonomic diversity, it also produced stelliophaerols A (192) and B
(193), two new sesquiterpene-polyol conjugates 1 [142].
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Chemical analyses of Phomopsis spp. (Valsaceae) isolated from tropical plants, including C. arabica,
yielded alternariol (68), altenusin (194), altenuene (195), cytosporones C, O (196–197), and dothiorelones
A–C (198–200) [143].

Recently, four secondary metabolites from C. cupreum associated with Mussaenda luteola
were characterized as resorcinol (201), 6-(heptacosa-18′Z enyl)-2-(18”hydroxyl-1” enyl-19”
oxy)-3-hydroxybenzoquinone (202), (3β–5α–dihydroxy–6β–phenylacetyloxy–ergosta–7, 22–diene)
(203) and 2- dodecanol (204) (Figure 15) [144,145].
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3. Biological Activities

Endophyte fungi are capable of synthesizing bioactive compounds, including alkaloids, terpenoids,
flavonoids and steroids. Hitherto, most of the secondary metabolites from endophytes are anticancer
agents, antibiotics, biological control agents, and other bioactive compounds determined by their
different functional roles. In this review, we highlight mainly bioactive natural products endophytically
synthetized by endophytic fungi associated with various genera of Rubiaceae (Table 1).
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Table 1. Compounds produced by endophytic fungi associated with various genera of Rubiaceae and their respectively biological activities.

Classification Compound Endophytic Species Biological Activities Refrence

alkaloid cytochalasin D (2) Xylaria sp. Palicourea marcgravii antifungal [97]
alkaloid quinine (118) Colletotrichum spp. Cinchona ledgeriana antiprotozoal [120,121,146]

alkaloid brevianamide F (150) Colletotrichum
gloeosporioides Uncaria rhynchophylla cytotoxic [127]

alkaloid 11-bromoroquefortine (190) Penicillium
chrysogenum Coffea arabica antibacterial, antiprotozoal,

cytotoxic [141]

coumarin 4-hydroxy-mellein (9) Penicillium sp. Alibertia macrophylla antifungal, acetylcholinesterase
inhibitor, anti-hyperglycemic [98]

coumarin 8-methyl-mellein (10) Penicillium sp. Alibertia macrophylla Antifungal [98]

coumarin (R)-7-hydroxymellein (12) Penicillium sp. Alibertia macrophylla antifungal, acetylcholinesterase
inhibitor [99]

coumarin (3R,4R)-4,7-dihydroxymellein (13) Penicillium sp. Alibertia macrophylla antifungal, acetylcholinesterase
inhibitor [99]

coumarin 3S,4R-(+)-4-hydroxymellein (46) Xylaria feejeensis Hintonia latiflora anti-hyperglycemic [108]

coumarin mellein (137) Colletotrichum
gloeosporioides Uncaria rhynchophylla monoamine oxidase inhibitor [127]

diketopiperazine cyclo-(L-Pro-L-Val) (7) Penicillium sp. Alibertia macrophylla acetylcholinesterase inhibitor [98]

diketopiperazine cyclo(L-Leu-L-Leu) (149) Colletotrichum
gloeosporioides Uncaria rhynchophylla cytotoxic [127]

diterpene koninginol A (74) Trichoderma
koningiopsis Morinda officinalis antifungal [111]

diterpene koninginol B (75) Trichoderma
koningiopsis Morinda officinalis antifungal, cytotoxic [111]

fatty acid (R)-3-hydroxyundecanoic acid methylester-3-O-α-L-rhamnopyranoside (174) Guignardia sp. Scyphiphora
hydrophyllacea antibacterial [133]

meroterpene guignardone I (171) Guignardia sp. Scyphiphora
hydrophyllacea antibacterial [132]

meroterpene guignardone B (173) Guignardia sp. Scyphiphora
hydrophyllacea antibacterial [132]

phenolic compound orcinol (6) Penicillium sp. Alibertia macrophylla antifungal [98]
phenolic compound thielavins A (42) Chaetomium sp. Hintonia latiflora anti-hyperglycemic [107]
phenolic compound thielavins J (43) Chaetomium sp. Hintonia latiflora anti-hyperglycemic [107]
phenolic compound thielavins K (44) Chaetomium sp. Hintonia latiflora anti-hyperglycemic [107]
phenolic compound cytosporaphenone A (50) Cytospora rhizophorae Morinda officinalis cytotoxic [109]
phenolic compound resorcinol (201) Chaetomium cupreum Mussaenda luteola antibacterial [145]

polyketide 2-hexyl-3-methyl-butanodioic acid (1) Xylaria sp. Palicourea marcgravii antifungal [97]
polyketide (2E,4R)-2,4-dimethylnon-2-enoic acid (22) Camarops sp. Alibertia macrophylla acetylcholinesterase inhibitor [102]
polyketide (2E,4S)-2,4-dimethyloct-2-enoic acid (30). Camarops sp. Alibertia macrophylla acetylcholinesterase inhibitor [102]
polyketide 5-hydroxy-2,7-dimethoxy-8-methylnaphthoquinone (33) Sporormiella minimoides Hintonia latiflora human calmodulin inhibitor [103]
polyketide minimoidione (34) Sporormiella minimoides Hintonia latiflora anti-hyperglycemic [104]
polyketide vermelhotin (41) Sporormiella minimoides Hintonia latiflora human calmodulin inhibitor [106]
polyketide 2,4,8-trihydroxy-1-tetralone (64) Alternaria sp. Morinda officinalis anti-hyperglycemic [110]
polyketide 3,4-dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone (65) Alternaria sp. Morinda officinalis anti-hyperglycemic [110]
polyketide 6-hydroxy-4-isopropyl-1,8-dimethylspiro[4.5]deca-1,8-dien-7-one (91) Trichoderma spirale Morinda officinalis cytotoxic [112]
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Table 1. Cont.

Classification Compound Endophytic Species Biological Activities Refrence

polyketide 2-hydroxy-2,5-dimethyl-7-oxo-5,7-dihydro-2H-furo[3,4-b]pyran-4-carboxylicacid (92) Trichoderma spirale Morinda officinalis cytotoxic [112]
polyketide 3-ethyl-4-hydroxy-6-methyl-2H-pyran-2-one (93) Trichoderma spirale Morinda officinalis cytotoxic [112]
polyketide harzialactone A (94) Trichoderma spirale Morinda officinalis cytotoxic [112]
polyketide 3-hydroxy-5-(4-hydroxybenzyl)dihydrofuran-2(3H)-one (95) Trichoderma spirale Morinda officinalis cytotoxic [112]
polyketide 4-acetyl-3-hydroxy-6-methyl-pyran-2-one (96) Trichoderma spirale Morinda officinalis cytotoxic [112]
polyketide multiforisin I (107) Neurospora discrete Morinda lucida cytotoxic [115]
polyketide curvularide B (110) Curvularia geniculata Catunaregam tomentosa antifungal [116]

polyketide mycoepoxydiene (114) Diaporthe
pseudomangiferae Cinchona ledgeriana cytotoxic [117]

polyketide mycoleptones A (122) Mycoleptodiscus indicus Borreria verticillata antiprotozoal, cytotoxic [146]
polyketide mycoleptones B (123) Mycoleptodiscus indicus Borreria verticillata antiprotozoal [130]
polyketide austidiol (125) Mycoleptodiscus indicus Borreria verticillata antiprotozoal [130]
polyketide colletopeptide A (162) Colletotrichum sp. Rubia pondantha anti-inflammatory, antioxidant [130]
polyketide colletopeptide B (163) Colletotrichum sp. Rubia pondantha anti-inflammatory, antioxidant [130]
polyketide colletopeptide C (164) Colletotrichum sp. Rubia pondantha anti-inflammatory, antioxidant [130]
polyketide colletopeptide D (165) Colletotrichum sp. Rubia pondantha anti-inflammatory, antioxidant [130]

quinone 6-epi-stemphytriol (69) Alternaria sp. Morinda officinalis anti-hyperglycemic [110]
quinone dihydroalterperylenol (70) Alternaria sp. Morinda officinalis anti-hyperglycemic, cytotoxic [110]
quinone alterperylenol (71) Alternaria sp. Morinda officinalis cytotoxic [110]
quinone altertoxin II (72) Alternaria sp. Morinda officinalis anti-hyperglycemic [110]
quinone stemphyperylenol (73) Alternaria sp. Morinda officinalis antifungal, anti-hyperglycemic [110]
quinone cercosporin (177) Mycosphaerella sp. Psychotria horizontalis antiprotozoal, cytotoxic [127,128,135]
quinone 6-(heptacosa-18′Zenyl)-2-(18”hydroxyl-1”enyl-19” oxy)-3-hydroxybenzoquinone (202) Chaetomium cupreum Mussaenda luteola antibacterial, cytotoxic [145]

sesquiterpene xylarenones G (18) Camarops sp. Alibertia macrophylla anti-inflammatory [100]

sesquiterpene 1R,3S,6S,7R,10S-7-isopropyl-4,10-dimethylbicyclo[4.4.0]dec-4-en-3,10-diol (88) Trichoderma
koningiopsis Morinda officinalis cytotoxic [111]

sesquiterpene 1R,3R,6S,7R,10S-7-isopropyl-4,10-dimethylbicyclo[4.4.0]dec-4-en-3,10-diol (89) Trichoderma
koningiopsis Morinda officinalis cytotoxic [111]

sesquiterpene lithocarin B (102) Diaporthe lithocarpus Morinda officinalis cytotoxic [114]
sesquiterpene lithocarin C (103) Diaporthe lithocarpus Morinda officinalis cytotoxic [114]
sesquiterpene tenellone H (105) Diaporthe lithocarpus Morinda officinalis cytotoxic [114]

sesquiterpene eremofortin F (117) Diaporthe
pseudomangiferae Cinchona ledgeriana cytotoxic [117]

sesquiterpene colletotrichine A (133) Colletotrichum
gloeosporioides Uncaria rhynchophylla acetylcholinesterase inhibitor [125]

sesquiterpene colletotrichine B (134) Colletotrichum
gloeosporioides Uncaria rhynchophylla acetylcholinesterase inhibitor [126]

sesquiterpene stelliophaerols A (192) Stelliosphaera formicum Duroia hirsuta antibacterial [142]
sesquiterpene stelliophaerols B (193) Stelliosphaera formicum Duroia hirsuta antibacterial [142]

steroid (3β–5α–dihydroxy–6β–phenylacetyloxy–ergosta–7, 22–diene) (203) Chaetomium cupreum Mussaenda luteola antibacterial, cytotoxic [145]
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3.1. Antifungal and Antibacterial Activity

Thin layer chromatography (TLC) bioautography indicated that compounds 1 and 2 (isolated
from Xylaria sp.) and compounds 6, 9, 10, 12, and 13 (isolated from Penicillium sp.) display activity
against Cladosporium cladosporioides and C. sphaerospermum. The most active compounds, orcinol (6),
4-hydroxymellein (9), (R)-7-hydroxymellein (12) and (3R,4R)-4,7-dihydroxymellein (13) showed a
potent effect exhibiting a detection limit of 5.0 and 10.0 µg mL−1 against C. cladosporioides and C.
sphaerospermum, respectively [97–99]. In a disk diffusion assay, curvularide B (110) exhibited activity
against Candida albicans with an inhibition zone diameter of 12.1 mm; it also showed synergistic effect
with a fluconazole drug [116].

Crude extracts of S. formicum from D. hirsuta showed specific activity against Staphylococcus
aureus. Stelliosphaerols A (192) and B (193) were subsequently isolated by bioassay-guided isolation
as causative agents of this activity. Following it, the growth inhibition assays revealed minimum
inhibitory concentration (MIC) values for stelliosphaerols A and B of approximately 250 µg mL−1 [142].
On the other hand, the meroterpene guignardone I (171), guignardone B (173) and the fatty acid
glucoside (174) produced by the endophytic fungal from S. hydrophyllacea showed modest inhibitory
effects on S. aureus and methicillin-resistant S. aureus (MRSA) [132,133].

Two new diterpenes, koninginols A (74) and B (75), isolated from the endophytic fungus T.
koningiopsis derived from M. officinalis, exhibited significant antibacterial activity against B. subtilis with
MIC values of 10 and 2 µg mL−1, respectively [111]. Moreover, the alkaloid 11-bromoroquefortine D
(190) was also able to inhibit this bacterium at a concentration of 15 mM [141]. Metabolites 201, 202 and
203 isolated from C. cupreum showed anti-mycobacterial activity against Mycobacterium tuberculosis,
with MIC values of 6.3, 6.25 and 25 µg mL−1 [145].

3.2. Neurodegenerative Diseases

Acetylcholinesterase (AChE) and monoamine oxidase (MAO) are enzymatic targets for the search
of new drugs for the treatment of neurodegenerative diseases [147–150]. Diketopiperazine 7 and
the dihydroisocoumarins 12, 13, and 9, isolated from Penicillium sp. associated with A. macrophylla,
exhibited AChE inhibitory activity and showed a detection limit of 10.0 µg (7, 12, 13) and 30.0 µg (9),
respectively [98,99]. On the other hand, xylarenone C (14) isolated from Camarops sp., had a minimum
AChE inhibitory concentration of 6.25 µg, while the others compound (15, 22, and 30) from Camarops
sp., showed weak acetylcholinesterase (AChE) inhibitory activity [101]. Recently, the sesquiterpenoids
colletotrichines A(133) and B (134) produced by C. gloeosporioides inhibited AChE activity with the
half-maximal inhibitory concentration IC50 values of 28.0 and 38.0 µg mL−1, respectively [125,126].

Monoamine oxidase (MAO) is an enzyme that catalyzes the oxidative deamination of biogenic
amines neurotransmitters. Besides, MAO plays an essential role in the central nervous system and
peripheral organs [151,152]. Compound mellein (137), produced by C. gloeosporioides, showed potent
MAO inhibitory activity with an IC50 value of 8.93 ± 0.34 µg mL−1, while the standard, iproniazid, was
1.80 ± 0.5 µg mL−1 [124].

3.3. Cytotoxic Activity

The eremophilane sesquiterpenes xylarenone C (14) and xylarenone D (15), isolated from Camarops
sp., exhibited cytotoxic activity against human tumor cell lines, such as leukemia (HL-60), melanoma
(MDA/MB-435), colon (HCT-8), and glioblastoma (SF-295). The antiproliferative effect was evaluated
following 72h of treatment, and the compounds 14 and 15 were more active against MDA/MB-435
(IC50 = 2.4 µg mL−1) and HL-60 (IC50 = 1.2 µg mL−1) cells, respectively [101]. Eremophilane
sesquiterpene compounds exhibit phytotoxic potential; antifungal, antibacterial, carcinostatic, and
cytotoxic activities; and can act as a phytohormone [100,153].

Cytosporaphenone A (50), produced by the fungus C. rhizophorae, which is derived from
M. officinalis, showed uncommon antiproliferative activity against MCF-7 and HepG-2 cell lines
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at a concentration of 100 µg mL−1, with inhibition rates of 91.0% and 80.5%, respectively [109].
The compounds 70 and 71 from the filamentous fungus Alternaria sp. reduced the viability of four
human tumor cells lines: MCF-7, HepG-2, NCI-H460, and SF-268 with IC50 values ranging from 1.91 to
9.67 µM [110]. In addition, the multiforisin I (107) produced by N. discreta showed moderate activity
against lymphoma cells, reducing 70% cell growth [115].

Bioassay-guided fractionation of ethyl acetate extract from D. pseudomangifera, by cytotoxic effects
against mammalian cancer cells allowed the isolation of the mycoepoxydien (114), which showed
cytotoxic activity with IC50 values of 7.5, 17.7, and 15.8 µM against against human uterine cervical
carcinoma KB and MDA-MB-435 cells, respectively. The compound eremofortin F (117) was cytotoxic
on KB (IC50 = 13.9 µM) and MRC5 (IC50 = 12.2 µM) cells [117]. The azaphilone mycoleptone B (122)
isolated from M. indicus associated with B. verticillata presented cytotoxic activity against human
prostate cancer (PC3) cells (IC50 = 7.1 ± 3.8 µM). However, when compared with doxorubicin, the
reference compound for cytotoxicity assays, its activity was lower [146]. Cercosporin (177), produced
by Mycosphaerella sp. associated with P. horizontalis, showed lower cytotoxicity to mammalian Vero cells
(1.54 µM) and high potency against MCF7 cancer cell lines (IC50 = 4.68 µM). The analog compound
(178) was not active in these assays [136].

The compounds isolated from the endophytic fungus T. koningiopsis were evaluated for cytotoxic
activity against HepG-2, MCF-7, SF-268 and A549 cells lines. The compounds koninginol B (75),
1R,3S,6S,7R,10S-7-isopropyl-4,10-dimethylbicyclo[4.4.0]dec-4-en-3,10-diol (88) and 1R,3R,6S,7R,10S-7-
isopropyl-4,10-dimethylbicyclo[4.4.0]dec-4-en-3,10-diol (89) showed antiproliferative activities against
A549 with IC50 values of 46.6, 31.3 and 22.2 µM, respectively [111]. However, none of the metabolites
isolated from T. spirale (91–96) presented cytotoxicity activity against cancer cell lines [112].

The compounds from D. lithocarpus, another endophyte also isolated from M. officinalis, were
tested for their cytotoxic activity by the sulforhodamine B method on four human tumor cell lines
(SF-268, MCF-7, HepG-2 and A549). The compounds lithocarin B (102), lithocarin C (103), and tenellone
H (105) presented IC50 values ranging from 30 to 100 µM in the four tumor cell lines selected [114].

Cancer human cell proliferation (SF-295 and HTC-116) was inhibited by 11-bromo-roquefortine
D (190) with rates of 63% and 6.7%, at a concentration of 5.3 µM, respectively [141]. The cytotoxicity
activity of 6-(heptacosa-18′Zenyl)-2-(18”hydroxyl-1”enyl-19”oxy)-3-hydroxybenzoquinone (202) and
(3β–5α–dihydroxy–6β–phenylacetyloxy–ergosta–7, 22–diene) (203) was evaluated against a breast
cancer cell line (MCF-7). They reduced the cell viability by 52% and 49%, respectively, at a concentration
of 100µg.mL−1 [145].

The PI3Kα inhibitory activity of compounds isolated from C. gloeosporioides, an endophytic fungus
from U. rhynchophylla, was evaluated. The phosphoinositide 3-kinases (PI3Ks), a family of lipid
kinases, showed a crucial regulatory role in many cellular processes, including cell proliferation,
especially PI3Kα as one of the main targets for therapeutic intervention in cancer [154]. Hence,
compounds from C. gloeosporioides were tested for their phosphoinositide 3-kinase (PI3Kα) inhibitory
activity. The compounds cyclo(L-leucyl-l-leucyl) (149) and brevianamide F (150) showed potent PI3Kα

inhibitory activity with IC50 values of 38.1 and 4.8 µM, respectively, while the other compounds
showed weak activity at a concentration of 20 µg·mL−1 [127].

3.4. Anti-Inflammatory and Antioxidant Activity

Xylarenones C, D, F, and G (14, 15, 17, 18) obtained from broth cultures by Camarops sp. showed
meaningful inhibitory effect of reactive oxygen species (ROS) produced by stimulated neutrophils.
The inhibitory concentrations of 14 (IC50 = 6.13 ± 0.41 µM), 15 (IC50 = 5.73 ± 0.42 µM), 17 (IC50 =

5.90 ± 0.70 µM), and 18 (IC50 = 4.17 ± 0.81 µM) were similar to those of quercetin and apocynin, an
efficient inhibitor of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex.
Furthermore, the compounds 14, 15, 17 and 18 were also evaluated for their radical scavenging
properties in different analytical methods, such as scavengers of superoxide anions (the first ROS
produced via the NADPH oxidase complex by stimulated neutrophils), HOCl (the main strong oxidant
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produced by myeloperoxidase (MPO)), and MPO enzymatic activity, however, the compounds were
inactive and had IC50 values of >100 µM [100].

Colletopeptide A (162) isolated from Colletotrichum sp. showed significant anti-inflammatory
activity; it inhibited the effects of lipopolysaccharide-induced nitric oxide production with an IC50 value
of 8.3 µM. The other colletopeptides, B (163), C (164) and D (165), also inhibited the lipopolysaccharide
(LPS)-induced nitric oxide production, with IC50 values of 38.7, 13.5 and 22.2 µM, respectively [130].

3.5. Anti-Protozoal Activity

Azaphilones mycoleptones A and B (122–123) and the polyketide austidiol (125) isolated from M.
indicus presented in vitro leishmanicidal activity, being active against Leishmania donovani, with IC50

values of 28.5, 21.7 and 20.5 µM, respectively [146].
The in vitro assay results suggest that cercosporin (177) is highly active against Plasmodium

falciparum (IC50 = 1.03 µM), L. donovani (IC50 = 0.46 µM), and Trypanosoma cruzi (IC50 = 1.08 µM).
Nevertheless, the bioactivity profile observed for cercosporin indicated that it was not specific for
any the assayed parasites [127,128]. Compound 178, identified as a seven-membered dioxepane
ring-opened analogue of cercosporin, showed a significant reduction in activity in all these biological
assays (IC50 >10 µg mL−1), indicating the importance of the methylenedioxy functionality to the
biological properties of compound 177 [136]. On the other hand, the alkaloid quinine (118) produced
by Diaporthe sp. is a well-known antimalarial drug that is effective against the erythrocyte stage of the
parasite P. falciparum [120,121,146].

3.6. Hyperglycemic Control

The best treatment for type 2 diabetes mellitus (TII-DM) involves hyperglycemic control
using appropriate therapies. In recent years, substantial efforts to discover effective inhibitors
of α-glucosidases from natural sources have been made [103,104]. The polyketide mimimoidione A (34)
isolated from S. minimoides showed an excellent activity against Saccharomyces cerevisiae α-glucosidase
(α-GHY), with an IC50 of 2.9 µM [104]. One the other hand, the tridepsides thielavins A (42), J (43) and
K (44), isolated from Chaetomium sp. from H. latiflora, inhibited the α-GHY with IC50 values of 23.8, 15.8,
and 22.1µM, respectively. Their inhibitory action was better than the acarbose standard (IC50 = 545 µM).
Thielavin J (43) inhibited the activity of α-glucosidase from B. stearothermophilus (αGHBs) with an
IC50 = 30.5 µM, being less active than acarbose (IC50 = 0.015 µM) [107]. The thielavin K (44) reduced
fasting and postprandial glucose levels in a TII-DM animal model. Therefore, thielavin-type tridepsides
represent a new class of α-glucosidase inhibitors and can become hypoglycemic agents for the treatment
of TII-DM [107].

The compounds 3S,4R-(+)-4-hydroxymellein (46) and 3S,4S-(+)-4-hydroxymellein (9) inhibited
the activity of enzyme S. cerevisiae α-glucosidase, with IC50 values of 441 ± 23 and 549 ± 2.5 µM,
respectively [108]. Six compounds from Alternaria sp., namely, 2,4,8-trihydroxy-1-tetralone (64),
3,4-dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone (65), 6-epi-stemphytriol (69), dihydroalterperylenol
(70), altertoxin II (72) and stemphyperylenol (73), demonstrated prominent inhibitory activities against
α-glucosidase (αGHY). The IC50 values in the range of 12.05 to 166.13 µM, observed for these
compounds, were clearly better and more significant when compared to the positive control of acarbose
(IC50 = 427.34 µM) [110].

3.7. Other Activities

Proteases are relevant enzymatic targets because these proteins control the formation of functional
peptides that participate in physiological processes [155]. The protease inhibitory activity of compounds
xylarenones C–E (14–16) was evaluated in vitro using the enzymes subtilisin and pepsin. A potent
inhibitory activity for the pepsin and subtilisin in protease assays was observed for compound 14 with
an IC50 of 0.288 and 0.462 µM, respectively. However, compounds 15 and 16 displayed no inhibitory
activity on subtilisin (<10%) at any of the four concentrations tested (1.00, 0.1, 0.01, and 0.001 µM) [153].
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Metabolites produced by S. minimoides were evaluated as potential human calmodulin
(hCaM) inhibitors, and two compounds, 5-hydroxy-2,7-dimethoxy-8-methylnaphthoquinone (33) and
vermelhotin (41), quenched the extrinsic fluorescence of this biosensor significantly, with dissociation
constant (Kd) values of 1.55 µM and 0.25 µM, respectively. The docking displayed studies to predict
the interaction of 33 with hCaM and many hydrophobic interactions with Phe19, Phe68, Met51, Met71,
Met72 and Ile52. However, vermelhotin (41) showed hydrophobic interactions with Phe92, Met109,
Met124, Glu127, Ala128, and Met144 [103,106].

4. Conclusions

As demonstrated in this paper, an increasing number of publications revealed a significant interest
in endophytes from the Rubiaceae family in recent years due to pharmacological activities. This review
presents the chemical diversity and pharmacological properties of secondary metabolites produced by
endophyte fungi associated with various genera of Rubiaceae. Several classes of natural products are
described for this endophyte, although this study highlights the importance of some metabolites which
are involved in antifungal, antibacterial, and anti-protozoal activities; neurodegenerative diseases,
cytotoxic activity, anti-inflammatory and antioxidant activity; and hyperglycemic control.
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