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Abstract

The Strandveld mediterranean-ecosystem of the west coast of South Africa supports floris-
tically diverse vegetation growing on mostly nutrient-poor aeolian sands and extending from
the Atlantic Ocean tens of kilometers inland. The cold Benguela current upwelling interacts
with warm onshore southerly winds in summer causing coastal fogs in this region. We hy-
pothesized that fog and other forms of occult precipitation contribute moisture and nutrients
to the vegetation. We measured occult precipitation over one year along a transect running
inland in the direction of the prevailing wind and compared the nutrient concentrations with
those in rainwater. Occult deposition rates of P, N, K, Mg, Ca, Na, Al and Fe all decreased
with distance from the ocean. Furthermore, ratios of cations to Na were similar to those of
seawater, suggesting a marine origin for these. In contrast, N and P ratios in occult precipi-
tation were higher than in seawater. We speculate that this is due to marine foam contribut-
ing to occult precipitation. Nutrient loss in leaf litter from dominant shrub species was
measured to indicate nutrient demand. We estimated that occult precipitation could meet
the demand of the dominant shrubby species for annual N, P, K and Ca. Of these species,
those with small leaves intercepted more moisture and nutrients than those with larger
leaves and could take up foliar deposits of glycine, NOs-, NH4* and Li (as tracer for K)
through leaf surfaces. We conclude that occult deposition together with rainfall deposition
are potentially important nutrient and moisture sources for the Strandveld vegetation that
contribute to this vegetation being floristically distinct from neighbouring nutrient-poor Fyn-
bos vegetation.

Introduction

The coastal Strandveld vegetation in the Cape Floristic Region (CFR) of South Africa is a rela-
tively dense shrubland containing sclerophyllous and drought deciduous shrubs and low trees
[1] occurring on sand dunes that extend up to tens of kilometers inland from the Atlantic
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Ocean. Unlike other low-nutrient status ecosystems of the CFR, the Strandveld is characterized
by comparatively high soil and plant P, base cations, and organic matter, despite having soils
that are 96-98% sand with very little clay [2, 3]. In contrast to the Strandveld sands, the recent-
ly deposited fore-dune sand nutrient contents are very low. For example, total N, available P,

K and C concentrations were 15-, 4.4-, 4- and 10-fold higher, respectively, in Strandveld soils
than in adjacent coastal dune sands [4]. The relatively nutrient-rich status of the Strandveld is
thus at odds with the high sand content and origins of these soils, and indicates that C and nu-
trients accumulate in these sands during pedogenesis.

Soils are the combined product of the regional climate, biota, topographic relief, the parent
geology and the age of the soil [5]. Additionally, wet and dry deposition of dust and atmospher-
ic nutrients can play a major role in determining soil characteristics [6, 7]. Wet deposition is
commonly an important source of nutrients for ecosystems around the world, and especially in
coastal areas [8]. In many instances precipitation is transported and deposited horizontally as
clouds, mist, drizzle and fog [9, 10, 11, 12, 13]. Sea spray aerosols form the largest component
of the marine boundary layer particulate concentrations [14] having relatively high concentra-
tions of some nutrients, especially base cations, N [15, 16], and P [17]. Marine aerosols are pro-
duced due to agitation of the surface waters by wind [18] and incorporation into fog allows
aerosols to be dissolved or suspended in the fog moisture [14]. This nutrient-rich moist air pre-
cipitation, referred to as occult deposition, may be carried onshore by winds and deposited in
terrestrial ecosystems where it may form an important nutrient source [9]. Sea spray may also
be blown directly off the sea surface onto the shore where it could also be an important nutrient
source for the terrestrial ecosystem [19].

Deposition of aerosols provides ecologically significant contributions of P (0.2 kgha™ a™)
and N (2 kg ha™ a™) to lowland Fynbos vegetation within the CFR [20, 21]. Furthermore, in-
land pans close to Strandveld vegetation have ratios of Cl to Na and Mg that indicate a predom-
inantly marine source for these ions [22]. The high cation content of Strandveld sands has
also been speculated to be attributable to marine aerosols [2], although wind-blown terrigenous
mineral dust may also contribute Ca, K, P and Fe [23]. Collectively, these prior studies and ob-
servations of soil nutrient characteristics in the Strandveld raise the question as to whether de-
position is an important component of the nutrient supply to the Strandveld vegetation of the
CFR.

In the Strandveld the intensity of herbivory is relatively low [24] and fires are relatively in-
frequent (2-0.5 per century; [25]). Strandveld grows to approximately 2 m tall [26] and thus
annual increases in woody biomass of vegetation that has not been burnt for a long time are
small. Therefore losses of nutrients from plants are mainly through above- and below-ground
tissue senescence. Although below-ground senescence is likely to be important, this is difficult
to assess [27]. The loss of nutrients in leaf litter depends both on the volume of litter and the
nutrient concentration of the litter, which is determined by the capacity of the plant for resorp-
tion of different nutrients and varies strongly between nutrients and species [28]. Nutrients
that are resorbed prior to litterfall are directly available for further growth, whereas nutrients
lost in litterfall need to be replaced from the soil. Recycling of nutrients in litterfall requires de-
composition over years [29] with potential losses from the ecosystem. Thus, in the short-term,
the flux of nutrients in litterfall constitutes a loss from the plant and provides a good approxi-
mation for annual plant nutrient demand [30]. In the absence of substantial woody biomass in-
crease, litterfall can also be used as an estimate of net primary productivity [31].

In some Mediterranean coastal ecosystems, including the west coast of South Africa, occult
deposition is the primary form of precipitation during summer [9, 32] and may provide an im-
portant source of water [33; 34; 11] and nutrients [35, 36, 12]. Plant canopies may intercept
some of this precipitation where it coalesces into droplets that fall to the ground as “fog drip”
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[37; 9] providing moisture and nutrients to the plants through the soil [38]. Leaves may also di-
rectly absorb the moisture in occult deposition [39] and take up the nutrients [40, 41]. The ca-
pacity of leaves to intercept occult deposition varies with leaf morphology, with small narrow
leaves being more common in areas prone to frequent fog [42]. Small leaves intercept more
canopy fog than larger leaves [42], and it is possible that this interception contributes to ecosys-
tem nutrients [43]. These observations suggest that occult deposition may provide water and
nutrient to some ecosystems, such as the coastal Strandveld.

We hypothesized that the Strandveld vegetation depends on marine nutrient deposition and
that, over long periods of time, this source of nutrients has resulted in soil and vegetation nutri-
tional characteristics that are associated with the mainly marine origins of this deposition. To
test this we compared the soil and foliar nutrient compositions of Strandveld vegetation in the
West coast National Park (South Africa) to the nutrient composition of rainwater and occult de-
position measured at the site. We also used litterfall and the nutrient composition of the litter to
indicate plant nutrient demand and compared this to the rates of nutrient deposition. To deter-
mine whether the foliar properties and canopy architecture of the native vegetation contributed
to interception of occult deposition, we evaluated whether leaf size variations of Strandveld spe-
cies contribute to differential rates of canopy interception of occult water and nutrients.

Methods
Study site

The sampling was carried out in the West Coast National Park (-33.231183°, 18.164156°) on a
17 km migrating dune cordon running inland from the coast in a northerly direction (Fig 1A).
The South Africa National Parks provided permission and facilitated the research. The park is
approximately 100 km northwest of Cape Town along the Atlantic Ocean coastline. The area
has a Mediterranean climate with mild wet winters and hot dry summers, and experiences
strong southerly winds for most of the year, but particularly in summer. The autumn and
spring seasons are intermediate between winter and summer with respect to rainfall, tempera-
ture and wind. The coast is exposed to moderate- to high-wave energy, with 90% of waves hav-
ing heights of 1-3 m [44].

The geology of the area consists of basement rocks of the Malmesbury formation overlaid
by loose sand sculpted into flats, dunes and hollows by the strong southerly winds [45]. The ae-
olian sands are marine-derived and contain a large proportion of calcareous material [44]. The
main vegetation unit in the area is the Langebaan dune Strandveld, which dominates most of
the deep calcareous sands and consists mainly of sclerophyllous shrubs (ca. 2 m tall, Fig 1B)
and annual herbs [26]. The area near the ocean has been extensively invaded by a fast growing
alien N,-fixing Acacia cyclops (not sampled) which co-occurs with the indigenous Chrysanthe-
moides monilifera. Two Searsia spp. (S. lucida, S. glauca) dominate inland vegetation. Other
species common within the study site include Agathosma imbricata, Metalasia muricata and a
native N,-fixing species, Morella cordifolia. These six species were selected for green leaf and
litterfall sampling.

Precipitation and seawater sampling

Eight different sampling locations were established at varying distances from the beach, (0.1,
3.6,6.1,8.0,10.7, 12.5, 14.6 and 16.8 km) along the dune plume. Collectors (S1 Fig) consisted
of a screen (34.3 cm x 64.4 cm) made of 128 nylon lines reaching a height of ca. 2 m. The chan-
nel at the bottom of the screen was open and could directly intercept precipitation resulting in
the collector not differentiating between horizontal precipitation and rain. Thus we refer here
to the moisture collected by these contraptions as “horizontal precipitation” (HP), which
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Fig 1. A) Map of study site and B) typical low-stature Strandveld vegetation of the West Coast National
Park. The map shows the location of the Geelbek weather station at the West Coast National Park (square
symbol) that is 2.2 km from the mid-point of the sample sites (circular symbols). Inset map shows site location
within South Africa. The coastline and the regional vegetation types that include Strandveld (study site),
Fynbos and Renosterveld are shown [26].

doi:10.1371/journal.pone.0126225.g001

includes both sources of moisture. The surface area of the collector that was effective for col-
lecting occult deposition was estimated as the sum of the surface areas of all the 128 lines and
the channel below them creating a collecting surface of 1554 cm? that drained into a 27 cm®
channel. Stainless steel spikes were fitted on top of the screen to prevent birds perching, and
consequent contamination. Samples were discarded if there was any evidence of contamination
(e.g. bird droppings or insects) on the collectors (one sample was discarded). The collecting
channel was connected to a 2 L Schott bottle by a 6 mm ID tube that was looped to form a
moisture trap and thus reduce sample evaporation [46]. Rainfall collectors comprising 113 cm®
funnel similarly connected to a 2 L Schott bottle were installed with each HP collector and sam-
pled and analyzed as described for HP [47].

The sampling bottles were thoroughly cleaned and rinsed with Millipore water (Elix 20
water system, Merck Millipore, Darmstadt, Germany). A biocide, (200 mg of 2-isopropyl-
5-methylphenol) was added to each of the bottles (including blanks) prior to sample collection
to minimize microbial degradation of the sample [48]. They were changed monthly for 12 con-
secutive months (Jan-2011 to Dec-2011). Prior to sample removal, the screen was washed with
50 mL ultra-pure Millipore water using a squirt bottle to wash off dry deposition on the collec-
tor and this wash was included in the sample. Sample volumes and concentrations were then
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corrected for the volume of the water rinse by excluding the rinse volume from the collected
volume and correcting the concentration to the collected volume.

Between Aug-2011 and Dec-2011, ca. 200 mL of seawater was collected monthly ca. 50 m
offshore beyond breakers. Clean plastic containers pre-rinsed with Millipore water were used
in sampling and biocide added after collection. All samples were stored at 4°C for a maximum
of 2 d prior to transfer to 50 mL centrifuge tubes and storage at -20°C. Elemental values of sea
water were expressed relative to Na, as has been done previously [49].

Environmental variables

Daily rainfall, and hourly wind direction and wind speed data were obtained from the Geelbek
weather station located within the study area (West Coast National Park management), 2.2 km
west of the 14.6 km sampling site. Wind speed and direction was summed cumulatively for cal-
culation of the cardinal and intercardinal wind speed/directions for the wind roses.

Leaf litter and soil sampling

At the eight sampling locations, sampling plots measuring 50 m* were established in which at
least three of the selected study species were present. In each plot, we collected litterfall material
every month for 12 months (Jan-2011 to Dec-2011), and mature fully expanded green leaves in
Nov-2011. At least three replicates of each of the six study species (M. cordfolia, C. monelifera,
S. glauca, S. lucida, A. imbricate, M. muricata), distributed across the 8 locations, were selected
and tagged for repeat sampling. Litter traps made from a nylon mesh (0.2 mm) measuring
0.5x 0.5 m and 0.1 m deep were placed under each of the selected shrubs at the beginning of
the experiment. After clearing away any leaf litter, three replicate soil surface cores (<0.3 m
depth) were taken from each sampling location in Nov 2011 using a soil auger (10.2 cm inter-
nal diameter), and stored in plastic bags at 4°C prior to analysis.

Nutrient washing from leaf surfaces

Terminal twigs (0.05-0.1 m length) were cut from the six dominant woody species at the study
site in Nov-2011, bagged in plastic and stored in a cooler box. Leaves were then washed with
50 mL of Millipore water within the bag they were collected in, and the wash-samples stored at
-20°C prior to analysis.

Leaf and canopy water holding capacity

Potted plants (n = 3) of each of the six species were obtained from the Kirstenbosch nursery
(Cape Town) and kept in a greenhouse for 5 d. The plants were rooted in mixture of sand and
compost (ratio of 1:1) in 2 L plastic bags. Three mature green leaves from the sampled portions
of each of three replicate plants were weighed, their dimensions taken and areas determined
using a LI-3000 Area Meter (LICOR Lincoln, NE USA). Leaf dimension was determined as the
diameter of the largest circle that could fit in the leaf perimeter [50]. The leaves were dipped in
water and reweighed to determine their water holding capacity. Leaf water holding capacity
was expressed as the difference between the fresh weight and wetted weight and expressed per
leaf area (kg m™>).

The canopy water holding capacity was determined by gradually wetting a pre-weighed in-
tact branch obtained from each plant to saturation in a simulated horizontal precipitation ex-
periment inside a wind tunnel (1.5 m length x 0.3 m diameter). The branches were suspended
ca. 0.7 m from a fan generating a measured wind speed of ca. 10 m s', which was the maxi-
mum measured hourly wind speed at the study site in 2011. Thus the measured foliar
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interception of moisture and nutrients is likely the lower limit of what could be intercepted, al-
though wind gusts must exceed the maximum hourly average. A mist stream generated using a
pressurized sprayer was introduced between the fan and the suspended branches ca. 0.2 m
from the fan. Branches were saturated with water and reweighed, and the difference between
the fresh weight and wetted weight determined. The leaves were removed and the total leaf
area measured using LI-3000 Area Meter. The water holding capacity of the leaf surface was ex-
pressed per canopy area (kg m?).

Foliar nutrient uptake

""N-labeled NaNOs, NH,Cl and glycine (98% atom, Sigma-Aldrich, St. Louis Missouri,

USA) were separately dissolved in 100 mL of water to make 0.22, 0.35 and 0.25 mM solutions,
respectively, and applied to replicates of separate young fully expanded leaves of potted plants
(n = 3). The label was applied by covering the leaf with a blotting paper soaked in a solution of
the label for 6 h. Lithium chloride (0.089 mM) was applied in a similar procedure. Leaves were
harvested and rinsed thrice in 1 mM CaCl, to remove excess label, and then oven dried at 60°C
for 48 h and milled to fine powder (Mixer Mill MM400, Retsch GmbH, Haan, Germany). Sam-
ples (2.8-3.0 mg) of the ground sample were weighed in 5 x 9 mm tin capsules (Santis Analyti-
cal AG, Teufen, Switzerland) and analyzed for N isotopes by combustion methods [51] using a
Thermo Flash EA 1112 series elemental analyzer (Thermo Electron Corporation, Milan, Italy).
The stable N isotopes (8'°) were measured using a Delta Plus XP isotope ratio mass spectrome-
ter in the Archeometry laboratory at the University of Cape Town. The °N enrichment was ex-
pressed as the difference between the 5'°N values measured in the treated leaves compared to
unlabeled leaves. Foliar Li concentration was measured as described for leaf sample analysis
below, and the values reported on a dry-weight basis.

Leaf and soil analysis

Leaf and soil samples were oven dried at 60°C for 48 h. The total mass of collected leaf litter
was recorded monthly. Leaf litter and green tissue collected in Nov-2011 were milled to fine
powder (Mixer Mill MM400) for chemical analysis. Soils were sieved (2 mm) and a sub-sample
ground in a mortar for chemical analysis. Vegetation and soil samples were chemically digested
following methods used in [52]. All samples were analyzed for elemental composition by In-
ductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES, ARL 3410+) and Induc-
tively Coupled Plasma Mass Spectroscopy (ICP-MS, Perkin Elmer Elan DRC-E, Waltham,
Massachusetts, USA) at the Laboratory for Environmental Geoscience at the University of
Colorado. Two bedrock standards (Silver Plume Granodiorite and Hawaiian Basalt) were in-
cluded in each extraction simultaneously with the sample to check for any analytical uncertain-
ty (typically < 8%). Total N was analyzed with a TOC/TN high temperature combustion
analyzer (Shimadzu, Kyoto, Japan).

Water sample analysis

All precipitation and leaf wash samples were analyzed for NO5’, NH," and PO, using colori-
metric procedures. Analysis for NH," followed the phenol-hypochlorite method [53], and NO5
analysis the vanadium chloride method [54]. Dissolved organic nitrogen (DON) was calculated
as the difference between total N and the sum of NH," and NOj;". The malachite green oxalate
method [55] was used to determine the concentration of PO,”", but other phosphates can be hy-
drolyzed to orthophosphate during this analysis. The measured P is thus reported as soluble re-
active P (SRP). A 1500 Multiskan spectrum plate reader (Thermo Electron Corporation, Vantaa,
Finland) was used to determine sample absorbencies. The detection limit for each analysis was
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determined by dividing the standard error of the standard sample absorbencies by the slope of
the standard curve [56]. Nutrient concentrations below the detection limit were assigned a value
of one half the detection limit. The detection limits for NH,", NO; and SRP were determined to
be (mg L") 0.0458,0.0251 and 0.01 respectively. Most NH, " values were found to be below the
detection limit. Five duplicate runs of a randomly selected sample produced analytical variances
of 7.8%, 5.0% and 4.3% for NH,", NO;™ and SRP analysis, respectively.

Precipitation samples were analyzed for total P, Na, Mg, Ca, Si, K, Fe and Al using
ICP-AES/MS. Values that were below the detection limits (mg L™: 0.077, dissolved P; 0.095,
Na; 0.005, Mg; 0.052, Ca; 0.141, K; 0.029, Si; 0.002, Mn; 0.009, Fe; 0.012, Al) were assigned a
value of one half the detection limit. A standard sample was analyzed alongside the water sam-
ples yielded analytical variances of 0.5% for dissolved total P, 3.37% for Mg, 1.43% for Ca,
3.19% for Na, 1.74% for K, 4.57% for Si, 4.56% for Mn, 4.54% for Fe, and 4.59% for Al (n = 6).
Total N was analyzed with a TOC/TN (Shimadzu) high temperature combustion analyzer with
detection limit of 0.05 mg L™".

Data analysis

The coastal site (0.1 km) was excluded from most analyses, apart from the analysis of variations
in deposition with distance from the ocean, due to the very high concentrations of nutrients

(S1 Table). Where appropriate, data were analyzed using Student’s t-tests, one-way ANOVA or
ANCOVA (categorical variable = season; continuous variable = distance from ocean) followed
by post-hoc Tukey tests (Statistica ver. 8, StatSoft, Inc., Tulsa, OK, USA), as detailed in table
and figure captions. Where no interactions were found between predictor variables, averages
were reported for both season and distance from the ocean.

Results
Nutrient deposition

The design of the HP collectors was intended to mimic the potential trapping of wind-blown
aerosols, fog and horizontal rainfall by vegetation. The design was such that wind blown rain
was included in the HP samples, and thus HP represents a summation of the deposition from
both rain and other forms of moisture. The volumes collected in the rainfall and HP collectors
both peaked in the winter months of May-Jul (Fig 2). The volume collected by the HP collec-
tors was lower than the rain volume when expressed per collector surface area. The rain vol-
umes were larger inland than at the coast, whereas HP variations with distance from the coast
were small. Nevertheless, variation in HP may be partially associated with the elevation of the
sampling sites with lower elevation sites away from the coast receiving less HP than those at
higher elevations (S2 Fig). Stronger winds occur in summer than other seasons (Fig 3). The
prevailing wind direction at this site is dominated by southerly winds that blow off the Atlantic
Ocean, but the southerly component abates in winter when there is a stronger northerly com-
ponent to winds. As a consequence of the focus of rainfall in the mid-winter period and wind
in the mid-summer period, we reported both annual and seasonal averages of deposition.

Over the course of an annual sampling cycle, the HP collectors collected substantially higher
concentrations of N and K than the rainfall collectors (Table 1). Deposition flux was higher in
HP than in rainfall for N, Mg, Na and K, but lower in SRP, Ca, Si, Mn and Al (Table 1). The an-
nual concentrations (Table 1) were influenced by a high degree of seasonality in the concentra-
tions of some nutrients in HP collectors (Table 2). Total N, NO3—DON, total P, SRP, Mg, Ca,
Na, K, Si, Mn all had significantly higher concentrations in summer, compared to winter, when
HP was highest (Table 2, Fig 2).
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excluding the site closest to the coast) and B) the variation in annual average precipitation (mean + SE; n=12

months) along the transect from the coast inland. The elevation of each of the collection points is also shown
in panel B.

doi:10.1371/journal.pone.0126225.9002

The site immediately adjacent to the beach (0.1 km inland) was particularly heavily influ-
enced by deposition, having higher concentrations of all elements apart from NO;™ (S1 Table)
and was thus excluded from statistical analyses in which the entire transect was considered.
Distance from the coast also played a role in determining HP deposition rates of all measured
elements, apart from Mn, which was at very low concentrations across all sites (Fig 4). Along
the transect of sites inland from the ocean, but excluding the site closest to the ocean, Mg, K,
Na, and Ca deposition all declined significantly, whereas there were no significant changes in
deposition of the other elements with distance from the ocean when excluding the coastal site.
Deposition rates of several elements 10.65 km inland were low. This was associated with lower
volumes of HP, possibly arising from differences in site topography (S2 Fig) and thus local re-
ductions in HP (Fig 2).

All elemental molar concentration ratios to Na, except those of SRP and Si to Na, varied sig-
nificantly through the year (Table 3). The ratios were generally low (expressed as mmol mol ")
indicating predominance of Na in HP. Among the components measured, total N, DON and
Mg had relatively high values (i.e. > 50 mmol mol™" Na). Seasonal differences in the ratios were

PLOS ONE | DOI:10.1371/journal.pone.0126225 May 27,2015

8/21



@'PLOS ‘ ONE

Occult Nutrient Deposition in South African Strandveld Vegetation

5.0

4.5

4.0

35

3.0

2.5

2.0

Wind speed (m s)

15

1.0

0.5

0.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig 3. The variation in monthly average wind speed from the Geelbek weather station at the West
Coast National Park that is 2.2 km from the mid-point of the transect (Fig 1). The wind-roses for each
month are shown with their center points being the average wind speed (grey point). The inset wind-rose
shows the average annual wind speed and direction on the same scale as used for the monthly data.

doi:10.1371/journal.pone.0126225.9g003

relatively small and not consistent between the nutrients. Comparison of the annual average ra-
tios with those of seawater revealed that ratios of Mg, Ca and K to Na were similar to those of
seawater (Table 3), but that ratios of other elements (e.g. N, P, Mn, Fe, Al) to Na were orders of
magnitude higher than those in seawater. For example total N:Na and total P:Na were 76- and
46-fold greater in HP than in seawater, respectively. There were also significant correlations be-
tween the concentrations of Na and base cations in HP (Mg, R® = 0.997, P < 0.001; Ca, R* =
0.82, P < 0.001; K, R* = 0.98, P < 0.001; data not shown).

Table 1. Monthly concentrations and deposition fluxes in horizontal precipitation (HP) and rain.

Element

total N
NO3z
DON
total P
SRP
Mg
Ca

Na

K

Si

Mn

Fe

Al

HP

27121
3.35+0.45
22.8+1.9
0.43+0.07
0.14+0.03
76%16
41+4
640+141
23.3+4.1
0.7+0.2
0.05+0
0.06+0.02
0.09+0.03

Elemental concentration (mg L™) Deposition flux (mg m2 month™)

Rain P HP Rain P

1.4+02 <0.001 85+8 32t4 <0.001
0.5+ 0.08 <0.001 8.56 £ 1.08 3.83+0.41 0.001
1+£0.2 <0.001 74+ 6 254 <0.001
0.32+0.2 0.622 1.27 £0.13 1.44 +0.19 0.467
0.16 £ 0.04 0.650 0.29 + 0.04 0.84 + 0.09 <0.001
42 + 25 0.268 193 £ 34 66+ 9 0.003
112 £ 64 0.287 111 £ 12 165+ 13 0.006
370 + 229 0.334 1604 + 303 572 + 88 0.006
44+0.8 <0.001 60+9 304 0.009
1.8+1.2 0.386 1.57 £ 0.42 2.59 +0.22 0.046
0.11 £ 0.07 0.356 0.145 £ 0.017 0.23 £ 0.03 0.041
0.02 £ 0.00 0.185 0.187 + 0.046 0.31 £0.05 0.078
0.16 £ 0.1 0.491 0.29 + 0.06 0.59 + 0.07 0.005

Depositional fluxes are the product of the total measured monthly precipitation volume, corrected for the wash water volume added, and concentration of
the nutrient in the sample. Annual values (Jan-Dec 2011) and across all sites (mean + SE, n = 7), but excluding the site closest to the coast (S1 Table).
Significant differences (P < 0.05) between rain and HP concentrations were determined using Student’s t-tests.

doi:10.1371/journal.pone.0126225.1001
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Table 2. Seasonal (i.e. over 3 months) horizontal precipitation (HP) volumes and elemental concentrations.

HP vol.

total N
NOz”
DON
total P
SRP
Mg
Ca

Na

K

Si

Mn

Fe

Al

Autumn

4.6+0.6a
26+3b
1.12+0.06a
25+3b
0.36+0.05b
0.06x0.01a
39+4ab
29+3ab
289+31a
11+1a
0.28+0.04a
0.051+0.008b
0.08+0.02b
0.15£0.03b

Winter Spring Summer P

8.91+0.8b 2.410.2a 2.8+0.5a <0.001
11t1a 32+3b 335b <0.001
1.91+0.65a 4.27+0.6ab 5.38+1.79b 0.003
9t1a 26+3b 2615b <0.001
0.15+0.02a 0.42+0.05b 0.65+0.09¢ <0.001
0.03x0.01a 0.12+0.02a 0.330.13b 0.002
20+3a 88+12bc 1214£30c <0.001
13+2a 4315b 75+14c <0.001
166+24a 764+95b 1015+260b <0.001
6t1a 27+3b 3918b <0.001
0.15+0.02a 0.63x0.13ab 1.1£0.29b <0.001
0.016+0.003a 0.041+0.005ab 0.092+0.016¢ <0.001
0.01+0a 0.050.02ab 0.03+0.02ab 0.027
0.02+0a 0.07+0.02ab 0.05+0.02a 0.001

Precipitation volume (L m? month™) and averaged elemental concentrations (mg L™ month™) of nutrients measured in HP collected for 12 consecutive
months (Jan—-Dec-2011) in the study area. The monthly data was grouped into four climatically distinct seasons of three months each: Autumn (Mar, Apr
and May), winter (Jun, Jul and Aug), spring (Sep, Oct and Nov) and summer (Dec, Jan and Feb) and averaged across the sites (mean + SE, n = 7), but
excluding the site closest to the coast (S1 Table). Different letters indicate significant seasonal differences (P < 0.05, bold text) determined using
ANCOVA (categorical variable = season; continuous variable = distance from ocean) followed by post-hoc Tukey tests. There were no significant distance
x season interaction effects on any of the nutrients except SRP.

doi:10.1371/journal.pone.0126225.t002

Soil nutrient concentrations

Concentrations of total P, Ca, Mg and Na in soils were high (Table 4), while total N and Fe
were low, relative to other soils in the CFR [57]. Because of the high Na concentration in
Strandveld soils, elemental ratios to Na (as an indicator of marine influences) were much lower
in Strandveld than Fynbos or Renosterveld soils, apart from the ratios for Ca and total P, which
were strongly influenced by the accumulation of these in the Strandveld soils. The elemental ra-
tios in Strandveld soils relative to Na were higher than those in HP, largely because soil Na was
not as big a component of the cations as it was in HP. The Strandveld soil cation concentration
is strongly influenced by high concentrations of Ca.

Leaf litter

The indigenous legume M. cordifolia and the non-legume C. monilifera had higher rates of lit-
terfall than the other indigenous species (S3 Fig). The concentrations of nutrients in foliage (ex-
pressed on the basis of dry weight) were only assessed during Nov (2011) representing the
nutrient status at the end of the growing season, prior to the onset of summer drought. The
concentrations of nutrients remaining in senesced foliage as a proportion of that in green tissue
was generally small (all < 28%), except for N of which 63% (averaged across species, and
62.8% excluding the legume) was retained in senesced foliage (S2 Table). The estimated pro-
portion of annual litter nutrient loss that could be supplied through HP was calculated as the
ratio of estimated plant nutrient demand to the estimated annual flux of the same nutrient in
HP. Annual HP nutrient input was close to plant N and P demand and in excess of estimated
nutrient demand for K and Ca (Table 5).
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Fig 4. Deposition rates (log, mg m? month™) of elements measured in horizontal precipitation (HP) at various distances from the ocean (n =8
sites). Data was collected between Jan-Dec 2011. All elements except Mn declined significantly (P < 0.05) with distance inland. Significance was assessed
using ANCOVA (categorical variable = season; continuous variable = distance from ocean).

doi:10.1371/journal.pone.0126225.g004

Foliar nutrient interception and uptake

Plant leaf size and canopy structure were closely associated with both water (Fig 5) and nutrient
(Fig 6) interception. The water holding capacities of both leaves and canopies were strongly
influenced by leaf diameter (i.e. size), with larger leaves retaining less moisture, expressed per
leaf area (Fig 5). Individual leaves had a higher water holding capacity than the canopy, espe-
cially for the smaller leaves, indicating that the dense packing of smaller leaves may have par-
tially limited water retention. Water holding capacities of individual leaves and canopies
followed similar logarithmic trajectories. The smallest leaves also had the largest amount of
NO;’, NH," and PO,* on leaf surfaces (Fig 6). All species absorbed 15N—compounds in the
form of glycine, NO;", NH," when these were applied to the leaves (Table 6). These plants also

PLOS ONE | DOI:10.1371/journal.pone.0126225 May 27,2015
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Table 3. Seasonal variations and annual concentration ratios relative to Na in horizontal deposition and in seawater.

Ratio Autumn
total N 159+20b
NOz” 7.9+1.1ab
DON 150+19b
total P 0.99+0.13b
SRP 0.15+0.03a
Mg 131+5b

Ca 58+4b

K 23t1a

Si 0.81+0.06a
Mn 0.072+0.006c
Fe 0.16+0.04b
Al 0.57+0.14b

Winter Spring Summer P Annual Seawater
160+38b 77+6a 103+21ab 0.029 122+12 1.6
15.1+£3.2b 11.4+2.2ab 6.3+1.2a 0.043 10.441.1 0.056
138+33b 61+4a 92+22ab 0.013 108+11 1.4
0.85+0.12b 0.44+0.03a 0.77+0.12ab 0.002 0.7440.06 0.016
0.22+0.07a 0.11+0.02a 0.25+0.05a 0.098 0.18+0.02 0.004
11543a 108+3a 116x7ab 0.002 1172 117
50+5b 34+2a 57+7b 0.001 49+2 34
23+0a 21+0a 27+2b <0.001 23+1 33
0.91+0.11a 0.65+0.07a 0.9+0.09a 0.081 0.8+0.04 0.27
0.047+0.009b 0.025+0.003a 0.053+0.006bc <0.001 0.048+0.004 0.004
0.0310a 0.02+0.01a 0.01+0a <0.001 0.06x0.01 0.003
0.15+0.03a 0.08+0.02a 0.04+0.01a <0.001 0.21+0.04 0.00009

The ratios are expressed as mmol mol”' Na (mean + SE; n = 7), but excluding the site closest to the coast (S1 Table). Different letters indicate significant
seasonal differences (P < 0.05, bold text) determined using ANCOVA (categorical variable = season; continuous variable = distance from ocean) followed
by post-hoc Tukey tests. There were no distance x season interaction effects on any of the nutrients except DON.

doi:10.1371/journal.pone.0126225.t003

took up Li through foliar surfaces. Compared to the other species, S. glauca and S. lucida took
up the smallest amount of glycine, NO;™ and Li.

Discussion

Several lines of evidence support the hypothesis that the Strandveld vegetation receives nutri-
tional inputs from predominantly marine-derived deposition. The deposition is unlikely to re-
sult from anthropogenic nutrient sources, given the limited industrial sources of aerosols and
nitrogen oxides in the region [47], strong on-shore prevailing winds and that the deposition
was chemically complex and contained several cations unlikely to be of industrial origin. The
Strandveld vegetation is relatively dense with aboveground biomass of up to 18.1 tons ha™" in
comparison to Fynbos vegetation of the CFR (6.5-11.6 tons ha™'; [58]). The largely marine-de-
rived aeolian sands have been leached of carbonate [2] leaving nearly pure (99.7% SiO,) fine

Table 4. Soil elemental concentrations and concentrations ratios to Na in soils from the Strandveld study area compared to values averaged for

Fynbos and Renosterveld [57].

Nutrient Strandveld
total N 0.21+£0.04
total P 1.5+0.05

K 0.15£0.0042
Ca 53.0+2.9
Mg 1.1+0.09

Na 0.54+0.03
Mn 0.006+0.002
Fe 0.52+0.020
Al 0.50+0.048

Concentration (mg g™') Ratio to Na (mmol mol™)
Fynbos Renosterveld Strandveld Fynbos Renosterveld
1.66 1.20 1342+269 53844 24235
0.25 0.28 30124176 3652 2536
0.09 0.15 331+33 1087 1068
1.5 21 1019651795 16663 14802
0.3 0.6 1910485 5870 6419
0.05 0.08 - - -
0.065 0.051 14£1.9 539 260
4.8 0.3 1229+187 38867 1492
- - 13254279 - -

Values for Strandveld are the mean + SE (n = 8 sites).

doi:10.1371/journal.pone.0126225.1004
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Table 5. The overall amount of leaf litterfall at the study site averaged across species and the estimated proportion of annual litterfall nutrient loss
that could be offset by horizontal precipitation (HP).

Litterfall amount (g m? annum’™)
% Contribution of deposition in HP
total N
total P
K
Ca

5% Percentile Mean + SE 95% Percentile
50 185112 343

52 156+24 465

29 92+10 262

743 23394457 7734

206 692172 1813

Shown are the 5% percentiles, mean + SE (n = 7 sites, i.e. excluding coastal site) and 95% percentiles of dry leaf litterfall rates and potential percentage
contribution of HP deposition to annual nutrients lost in leaf litter across the six species sampled at the study site. Since not all species were present at
each site, leaf litter nutrient content (i.e. leaf litter mass per m? multiplied by litter nutrient concentration) was averaged across all species (S2 Table) and
compared to the annual deposition of nutrients.

doi:10.1371/journal.pone.0126225.t005

quartz sands in the surface soils [59] which should, in principle, leave the soils with few nutri-
ents to support plant growth. However, despite the tendency toward low nutrient content in
the soils of this region, we measured high soil total P, Ca, K, Mg, N and Mn concentrations in
these Strandveld soils compared to other parts of the CFR (Table 4) and in comparison to dune
sand [4]. P enrichment in these soils may result from long-term P deposition, with P being
bound to Ca to form Ca-P [60], thus stabilizing P against leaching. Although soil Na concentra-
tion was high in Strandveld soils relative to other regional soils, the ratios of nutrients other
than K to Na in the Strandveld soils were much higher than in HP. This is possibly the conse-
quence of leaching of Na and K from the soils. Lower soil total N in Strandveld compared to
other CFR soils may also reflect the relatively recent deposition of sands, which, as in chronose-
quences [61, 62], may accumulate N as C accumulates in the soil. The smaller concentration of
Fe in Strandveld compared to other CFR soils is probably due to the high sand and low clay
content of the Strandveld soils [2].

Although the Strandveld receives most (60%) of its rainfall May-]Jul, a variety of additional
mechanisms deliver moisture and nutrients to the ecosystem. The rough seas and extensive
wave action in the region generate marine aerosols [63]. Summer fogs form due to cooling ef-
fect of the cold Benguela upwellings and are advected inland [64, 65], accounting for a substan-
tial proportion annual precipitation [32]. In summer a low altitude haze frequently extends
several kilometers inland from the ocean (personal observation). This occult precipitation de-
livers moisture to both conventional rainfall collection instruments and to those designed to
capture HP. Although we cannot estimate the absolute fraction of precipitation that is related
to occult precipitation, the relative contribution of moisture shifts seasonally with a greater
fraction of moisture derived from HP in summer than in winter.

The variation of nutrient concentrations in HP across seasons and with distance from the
ocean provides some insight into the potential pathways of deposition. The significant decline
in deposition rates inland from the ocean and very high concentrations (particularly of Na) im-
mediately adjacent to the ocean and correlations of Mg, Ca and K with Na provide a strong in-
dication that the presence of these elements in HP is related to marine aerosol production. The
higher ratios of total N:Na and total P:Na in HP than in seawater was consistent across all sam-
pling sites and may indicate either that there are other terrestrial or marine inputs of N and P.
We suggested previously that N in rainfall collected at this site was from non-industrial sources
and that P in rain could be from terrestrial (dust and/or mining) or marine sources [47]. Here
we argue that HP is enriched with marine-derived N and P relative to seawater on the basis of
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Fig 5. The variation in the amount of water (kg m) held on A) individual leaves and B) branches of the
various species with leaf diameter (LD). Points represent mean + SE (n = 3). Individual leaves were wetted
by dipping them in water, whereas branches were wetted in a simulated horizontal precipitation experiment in
awind tunnel ata 10 m s™ wind speed until saturation. The relationship between water held on individual
leaves and by branches with LD were fitted by the equations 1.99 x LD7® and 1.12 x LD™5?, respectively.

doi:10.1371/journal.pone.0126225.9g005

three lines of evidence. Firstly, at the site 0.1 km from the ocean, N and P were much higher
than at other points along the transect. Secondly, dissolved organic N is common in marine
aerosols, although concentrations are typically much lower than those observed in this study
[66]; the proportion that DON constituted of total N in HP (81%) is similar to that measured
in rain water (84%) at this site, and within the range (15-97%) measured in cloud water at a re-
mote coastal site in Chile [12]. Thirdly, DON and SRP concentrations in HP are highest during
the months when HP is a larger fraction of total precipitation and southerly on-shore winds
are strongest. We speculate that the source of the DON and SRP is organic rich aerosols de-
rived from algae during sea-spray aerosol formation [67, 68]. This is also consistent with (per-
sonal) observations of wind blown sea foam deposited several kilometers inland. This foam has
been collected along the west coast of South Africa and found to be derived from coastal kelp
forests and contains large numbers of bacteria, 21% (w/w) protein, 6.1% lipid (triglycerides)
and 2.4% carbohydrate [67, 69]. Foam therefore has high concentrations of N and phospholip-
ids [70] and represents a potential source of high concentrations of N and P in HP.
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Fig 6. Concentrations expressed per leaf surface area of A) NO3", B) NH,* and C) PO, on leaves of
various diameters (LD). Points represent mean + SE (n = 3). The nutrients were measured in Millipore water
used to rinse leaves off the various plant species collected from the field in Nov 2011. The relationship
between NO5", NH," and PO,® and LD were fitted by the equations 91.57 x LD, 90.05 x LD-*2 and

4.46 x LD respectively.

doi:10.1371/journal.pone.0126225.9g006
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Table 6. The uptake of '*N-containing compounds and Li supplied to leaves of Strandveld species.

Species hame

M. muricata
A. imbricata
M. cordifolia
S. glauca
S. lucida
C. monilifera

Glycine AN (%.) Nitrate A'*N (%) Ammonium AN (%.) Li(mgg™)
4.0+0.28¢c 5.4+0.57a 0.70+0.20a 6.42.0b
4.5+0.28¢ 6.9+0.44a 1.0+0.24a 5.2+1.3ab
2.2+0.25b 3.7+0.22ab 2.2+0.083ab 6.441.2b
0.90+0.23ab 2.8+1.1bc 3.3+0.19bc 0.34+0.018a
0.82+0.37a 1.440.22a 1.2¢0.12a 0.39+0.060a
1.6£0.20ab 4.0£0.82¢c 3.9+1.0c 0.44+0.16a

Values are the mean  SE (n = 3) leaf N-isotope enrichments and foliar concentrations of Li after supply of **N-glycine ®NOg", >NH,* and LiCl,
respectively. The increase in 3'°N values of the treated leaves is shown relative to that of unlabeled control leaves (A'®N = 5'°Ntreated—3&'*Ncontrol).
The different letters represent significant differences between species determined by Tukey post-hoc test following a one-way ANOVA.

doi:10.1371/journal.pone.0126225.1006

Another line of evidence for the importance of occult deposition in water and nutrient sup-
ply to the Strandveld is the foliar chemistry of this vegetation. Concentrations of P, Na, Mg,
and Ca were all higher in Strandveld vegetation (S2 Table) than Fynbos components of the
CER [71]. In contrast, Strandveld foliar K was substantially lower than would be expected
based on deposition, soil K concentrations and in comparison to other CFR sites [71]. This is
possibly because the relatively high soil Na competitively inhibits K uptake at the root plasma-
lemma, which can lead to K deficiency in plants [72] and loss of K through leaching. The foliar
N:P ratios of non-N,-fixing (i.e. excluding M. cordifolia; [4]) Strandveld species were relatively
low (5.8), consistent with low concentrations of soil N relative to P (Table 4). Our measures of
nutrient loss in leaf litter of the dominant woody species provided an estimate of the potential
contribution of HP to ecosystem nutrient demand that indicated that HP could meet the de-
mands for N, P, K and Ca. Although it is unlikely that the plants depend extensively on HP
directly, this input of nutrients relative to ecosystem consumption perhaps explains why rela-
tively young and (recently) mobile dune sands have relatively high concentrations of some
nutrients.

HP is likely deposited directly both on leaves and on soil surfaces, contributing nutrients
and moisture. The vegetation of the area may intercept moisture and aerosols that drip from
leaves into the soil, resulting in the observed enrichment of soils around vegetation clumps [2].
We did not measure this throughfall of water and nutrients, but it is potentially an important
component of nutrient deposition. Occult deposition may also play an additional important
role in these ecosystems by providing both moisture and nutrients through foliar deposition.
Small leaved Strandveld species intercepted the most moisture on a per area basis. A. imbricata
is a low-stature perennial with an abundance of fine narrow leaves, while M. muricata has
small hairy leaves. These leaf traits may contribute to retention of depositional moisture by
these species, as previously suggested [42]. This intercepted moisture may be taken up directly
through the leaf surfaces [39, 11] or indirectly from the soil as fog drip and stem flow [9, 11].
Foliar uptake of nutrients is common, depending on the nutrient forms and concentrations
[40, 41] and, the duration of moisture on the leaf [9]. As with water retention, the smaller-
leaved Strandveld species had higher concentrations of nutrients deposited on the leaves per
unit surface area compared to the other species, indicating that nutrient deposition on leaf sur-
faces at least partially scales with water retention by the leaves. The uptake of °N-labelled gly-
cine, NO3;” and NH," and Li (as a tracer for K; [73]) also demonstrates that the plants have the
capacity to absorb these nutrients through their leaves. This shows the capacity for organic and
inorganic N uptake by all species, but the reasons for the differences are likely to be complicat-
ed and outside the scope of this study. The variations in uptake of glycine, NO;  and NH,"
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between species may be due to differences in leaf properties such as size, surface properties (e.g.
trichomes, waxiness), cuticular conductance, stomatal conductance and/or capacity to trans-
port the N into the leaf tissue [74, 75, 76, 77]. The uptake of "’N-glycine is particularly impor-
tant considering the high proportion of DON in HP. Direct leaf uptake of DON would allow
plants to avoid competitive interactions with other plants and microbes in the rooting zone
and may serve as a competitive advantage in these ecosystems [78]. Considering the significant
potential contribution of HP to nutrient deposition, it is likely that the vegetation participates
in both the direct interception of the nutrients, as well as increasing throughfall deposition to
the soil. Furthermore, selective plant uptake of some nutrients may enable retention of these
nutrients, whereas those not taken up are more susceptible to leaching.

Conclusions

The evidence presented indicates that deposition may be an important source of nutrients for
Strandveld ecosystems. The flux of nutrients in rainfall in the wet winter months combined
with inputs of HP, especially during the drier summers, suggests that atmospheric nutrient de-
position may play a potentially important, year-around, role in plant nutrition at these sites.
The depositional nutrient load and the ability of the vegetation to intercept and take up foliar
deposition may explain why this vegetation is distinct floristically from neighboring Fynbos
vegetation that occurs on less nutrient rich soils [79]. Although the relative lack of fire in
Strandveld may also be important in determining vegetation structure, floristic characteristics
and nutrition, we suggest that the name of this vegetation, meaning “beach vegetation” in Afri-
kaans, adequately describes the reason for the existence of this particular vegetation.
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$2 Table. Concentrations of nutrients measured in green and senesced foliar tissues of the
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