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Abstract

Background: In vertebrates, the primordium of the brain is subdivided by the expression of Otx
genes (forebrain/anterior midbrain), Hox genes (posterior hindbrain), and the genes Pax2, Pax5 and
Pax8 (intervening region). The latter includes the midbrain/hindbrain boundary (MHB), which acts
as a key organizer during brain patterning. Recent studies in Drosophila revealed that orthologous
sets of genes are expressed in a similar tripartite pattern in the late embryonic brain, which
suggested correspondence between the Drosophila deutocerebral/tritocerebral boundary region
and the vertebrate MHB. To gain more insight into the evolution of brain regions, and particularly
the MHB, | examined the expression of a comprehensive array of MHB-specific gene orthologs in
the procephalic neuroectoderm and in individually identified neuroblasts during early embryonic
stages 8—1 1, at which the segmental organization of the brain is most clearly displayed.

Results and conclusion: | show that the early embryonic brain exhibits an anterior Otx/otd
domain and a posterior Hox//lab domain, but that Pax2/5/8 orthologs are not expressed in the
neuroectoderm and neuroblasts of the intervening territory. Furthermore, the expression domains
of Otx/otd and Gbx/unpg exhibit a small common interface within the anterior deutocerebrum. In
contrast to vertebrates, Fgf8-related genes are not expressed posterior to the otd/unpg interface.
However, at the otd/unpg interface the early expression of other MHB-specific genes (including btd,
wg, en), and of dorsoventral patterning genes, closely resembles the situation at the vertebrate
MHB. Altogether, these results suggest the existence of an ancestral territory within the
primordium of the deutocerebrum and adjacent protocerebrum, which might be the evolutionary
equivalent of the region of the vertebrate MHB. However, lack of expression of Pax2/5/8 and Fgf8-
related genes, and significant differences in the expression onset of other key regulators at the otd/
unpg interface, imply that genetic interactions crucial for the vertebrate organizer activity are

absent in the early embryonic brain of Drosophila.

Background conserved set of developmental genes before these brain
In vertebrates, the primordium of the brain is subdivided  regions become morphologically distinct. Otx genes are
along the anteroposterior (AP) axis into three basic  expressed in the anterior region, which comprises the
regions, reflected by the restricted expression of a highly ~ forebrain and anterior midbrain, Hox genes in the poste-
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rior region comprising the hindbrain, and the genes
Pax2,Pax5 and Pax8 in the intervening region. The inter-
vening region includes the territory of the midbrain/hind-
brain boundary (MHB), which encompasses the posterior
part of the midbrain and rhombomere 1 of the hindbrain.
The position of the MHB is controlled by the interface
between the expression domains of Otx2 and Gbx2. The
MHB exerts organizer properties that play an essential role
in patterning the midbrain and hindbrain [1,2]. These
organizer activities are mediated by fibroblast growth fac-
tor 8 (Fgf8) and Wntl proteins, which are secreted from
the MHB neuroectoderm. The MHB (or isthmic) organizer
arises in consecutive developmental steps that are mir-
rored by the ordered temporal sequence of MHB-specific
gene expression. Its development initiates with the forma-
tion of an Otx2/Gbx2 interface, where in a second step btd/
Sp-related 1 (Bts1), Pax2, Fgf8 and Wntl become
expressed. In a third step, in addition to the already acti-
vated genes, their downstream targets are upregulated,
among which are Pax5, Pax8, Enl and En2, whose path-
ways are mutually dependent with respect to maintaining
the boundary [1-5].

The brains of deuterostomes (for example, tunicates and
vertebrates) and protostomes (for example, arthropods
and annelids) both seem to contain a rostral domain spec-
ified by the Otx/otd family, and a caudal domain specified
by genes of the Hox family (for example, reviewed by [6-
10]). Expression of Pax2/5/8 in the intervening neck
region between the Otx and Hoxl domains has been
observed in vertebrates and in the closely related ascidian
tunicates, suggesting that this tripartite ground pattern of
the brain is conserved during evolution within the chor-
date lineage [11]. Moreover, in the ascidian Ciona, the
expression and activation of other crucial MHB determi-
nants in the neck region, such as of Fgf8/17/18 and
Engrailed (En) orthologs, are reminiscent of those in verte-
brates [12,13], suggesting that the conserved pattern of
their expression also pre-dates the splitting of the verte-
brates from the chordate lineage. However, since the
expression of Pax2/5/8 and En is absent in the intervening
neck of appendicularian tunicates [14], and the neck
region of another invertebrate chordate, amphioxus, lacks
expression of Pax2/5/8, En and Wnt [15-17], this has
raised doubt about the existence of a MHB territory in
invertebrate chordates (irrespective of whether it includes
organizer properties or not) [18,19]. On the other hand,
in the late embryonic brain of Drosophila, a tripartite pat-
tern of Otx, Pax2/5/8, and Hox1 expression has been
reported, with Pax2/5/8 expression located at the interface
between the domains of Otx/otd and Gbx/unpg, and coin-
ciding with the neuromeric border between deutocere-
brum and tritocerebrum. These findings have led to the
hypothesis that the Drosophila deutocerebral/tritocerebral
boundary region and the vertebrate MHB are correspond-

http://www.neuraldevelopment.com/content/2/1/23

ing structures, and that a basic tripartite regionalization of
the brain was existent already in the common ancestor of
the bilaterians [20,21].

To broaden the perspective on the evolution of brain
regions, and in particular the MHB, 1 have undertaken a
comprehensive analysis of orthologous factors of verte-
brate MHB-specific regulatory genes in the Drosophila
early embryonic brain. Since the specification of the MHB
is one of the earliest decisions in the developing vertebrate
brain, taking place before and during the formation of
neuroblasts, I focussed on the early period of embryonic
brain development. I describe the expression of MHB-spe-
cific marker genes at a resolution of identified neuroblasts
(NBs) and in relation to the segmental architecture of the
brain at stages when it is most clearly displayed. Based on
the expression of orthodenticle (otd (oc, Flybase)) and labial
(lab), the early brain principally exhibits a tripartite pat-
tern with an anterior otd domain, a posterior Hox (that is,
lab) domain, and a territory intervening between both
domains. However, the Pax2/5/8 orthologs, D-pax2 (sv,
Flybase) and pox neuro, are not expressed in the neuroec-
toderm and brain NBs of the intervening territory. More-
over, | identified a small interface between the
complementary procephalic domains of otd and unplugged
(unpg) that is located within the anterior deutocerebrum,
corresponding to the anterior border of the intervening
zone. The expression of these and further MHB-specific
genes (such as the Wntl ortholog wingless, the Enl,2
ortholog engrailed, and the zebrafish Bts1 ortholog button-
head), and of dorsoventral (DV) patterning genes (the Msx
ortholog muscle specific homeobox (msh (Dr, FlyBase)) and
the Nkx2 ortholog ventral nervous system defective) in rela-
tion to the otd/unpg interface suggests that the neuroecto-
derm around this interface may represent an ancestral
territory, evolutionarily equivalent to the neuroectoder-
mal region at the MHB in vertebrates. However, in this
part of the early embryonic brain, the expression of other
MHB-specific markers (the Fgf8-related genes, branchless,
pyramus, and thisbe) exhibits profound differences com-
pared to the embryonic MHB domain in vertebrates. This
suggests that, for the initial period of neurogenesis, the
expression and regulatory interactions of genes, and the
accompanying functional properties of the neuroectoder-
mal territory around this interface, have changed during
evolution.

Results

In vertebrates, the specification of the MHB is one of the
earliest steps in brain development, taking place before
and during the formation of NBs [4]. Therefore, in this
comparative study in Drosophila 1 largely focussed on the
early developmental period until embryonic stage 11,
throughout which the pattern of NBs in the brain and ven-
tral nerve cord (VNC) is fully established [22,23]. Further-
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more, stage 11 represents the phylotypic stage of
development [24] at which the segmental organization of
the brain is most clearly displayed [25], and to which the
expression patterns of MHB-specific gene orthologs can
most accurately be related.

Expression of Otd and Labial regionalizes the anlagen of

the embryonic brain and demarcates an intervening zone

In vertebrates and the closely related invertebrate chor-
dates (that is, urochordates or tunicates), the neuroecto-
derm exhibits a fundamental tripartite organization
already at early developmental stages: Otx is expressed in
an anterior domain, Hox1 in a posterior domain, and
Pax2/5/8 in an intervening territory [18,19]. In the late
embryonic brain of Drosophila, orthologous sets of genes
have been shown to be expressed in a tripartite pattern as
well [20]. To see if a comparable pattern of gene expres-
sion exists in the early anlagen of the Drosophila brain
(procephalic neuroectoderm (pNE) and NBs), I investi-
gated the expression of the orthologous genes orthodenticle
(otd) and labial (lab). The domain of Otd expression cov-
ers the anterior part of the antennal and most of the ocular
pNE, and is found in most NBs of the protocerebrum (PC)
and some anterior NBs of the deutocerebrum (DC; see
also [26]). The posterior border of Otd expression is posi-

Otd/Lab  sti1

Figure |
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tioned within the anterior DC (Figure 1a, b). The domain
of Lab expression covers the pNE of the intercalary seg-
ment and all NBs of the tritocerebrum (TC) as well as two
NBs of the DC (Dv2,4; see also [26]). The anterior limit of
the Lab domain is tightly linked to the segmental border
between TC and DC (Figure 1b).

Thus, the early embryonic Drosophila brain discloses an
anterior Otd domain, a posterior Hox domain (that is, of
Lab expression), and an 'intervening zone' (IZ) encom-
passing a fraction of deutocerebral NBs in which neither
gene is expressed (Figure 1c).

Expression of Pax2/5/8 orthologous genes is missing in the

PNE and NBs of the intervening zone

In the early embryonic brain of vertebrates, expression of
genes of the Pax2/5/8 subfamily is indicative for the region
of the presumptive mid-hindbrain domain, which is posi-
tioned in the intervening region between the Otx/otd and
Hoxb1/lab domains [4]. Therefore, I investigated the
expression of two orthologous genes in Drosophila, D-pax2
and the closely related pox-neuro (poxn) [27-29]. Expres-
sion of D-pax2 initiates at stages 10/11 in a few cells in the
truncal peripheral nervous system (most likely including
the sensory organ progenitors (SOPs) of the internal and

The brain anlagen in Drosophila is tripartite. (@) Flat preparation of the head of an Otd/Labial antibody double stained embryo at stage | I.
(b) Close-up of the region framed in (a) at the level of brain NBs. (c) Schematic summary of the expression of both genes in identified
brain NBs in the left hemisphere at late stage | |, corresponding to the boxed area in (d); red dashed lines indicate neuromeric bounda-
ries. An intervening zone can be identified between the domains of Otd and Lab expression, in which both genes are expressed neither in
the peripheral ectoderm (yellow arrowheads in (a)) nor in the deriving NBs (hatched area in (b,c)). Note that in the deutocerebrum (DC)
some anterior NBs (Dv5,6, Dd2,3,6) express Otd, and some posterior NBs (Dv2,4) express Labial (NB nomenclature according to [23]).
(d) Segmental topography of the Drosophila embryo at the phylotypic stage of development (stage | |); flat preparation (anterior to the
top), the head capsule has been opened dorsally. The pregnathal (labral (LR), ocular (OC), antennal (AN), intercalary (IC)) and gnathal
head segments are indicated on the right side. On the left side, the primordium of the CNS is outlined (PC, protocerebrum; DC, deu-
tocerebrum; TC, tritocerebrum; MD, mandibular, MX, maxillary, and LA, labial neuromere, respectively). Abbreviations: a, d, p, v, ante-
rior, dorsal, posterior, ventral; AN, antennal appendage; CL, clypeolabrum; FG, foregut; ML, midline; VNC, ventral nerve cord.

Page 3 of 15

(page number not for citation purposes)



Neural Development 2007, 2:23 http://www.neuraldevelopment.com/content/2/1/23

external sensory organs), and in SOPs of the antennal = pax2-positive progeny of the two SOPs of the hypopha-
(Dd9,11,12), labral, and ventral hypopharyngeal-/latero-  ryngeal-/latero-hypopharyngeal organ are positioned lat-
hypopharyngeal (Dv1,3) sensory organs (Figure 2a,b)  eroventrally to the foregut and, hence, are clearly
[23] (see also [30,31]). At later embryonic stages the D-  separated from the brain. Both SOPs lay ventrally adjacent

En-lacZ/D-pax2

En-lacZ/Poxn

Figure 2

Expression of Poxn and D-pax2 is lacking in NBs of the IZ. (a,b) D-pax2/En-lacZ double stainings; flat preparations of late stage | | (Istl1)
embryos. (b) Magnification of boxed area in (a) at the level of NBs. En-lacZ-positive NBs deriving from the antennal en stripe (as; Dv8,
Dd5) and en head spot (hs; Ppd5,8) are indicated. D-pax2 is detected in SOPs of the dorsal organ (blue arrowhead), the hypopharyngeal/
latero-hypopharyngeal organ (green arrowhead), and of the labral sensory organ (yellow arrowhead in (a)) [23]. Note that SOPs at posi-
tions corresponding to those of the dorsal organ within the developing antennal appendage (AN; outlined by black dashed line) are also
found in the appendage of the mandibular and maxillary segment (white arrows in (a)). (c) D-pax2 stained whole mount embryo at stage
15 (st15) with a focus on the brain (outlined by the white dashed lines). D-pax2 is found in the respective sensory organs. (d-h) Poxn/En-
lacZ double stained embryos. (d) Late stage || (IstlI). Few Poxn-positive cells contribute to the labral (yellow arrowhead) and antennal
(blue arrows) sensory organs. Poxn sensory founder cells arise at corresponding positions in the antennal, mandibular, maxillary, and
labial segments (white arrows), immediately anterior to the respective en stripes. Note that in the CNS, Poxn expression is not yet initi-
ated. (e) Close-up of boxed area in (d). Poxn expression initiates in peripheral ectodermal cells (group I, 2) positioned in the antennal
appendage, which are likely to contribute to the antennal dorsal organ. (f) By stage 12/4, Poxn expression comes up in cells of the DC
(group 3) immediately anterior to the antennal en stripe (as). (g) By stage |3, first en-coexpressing cells (group 4), descending from the
two head spot (hs) NBs, initiate Poxn expression. Note that the head spot NBs are Poxn-negative. (h) Stage 6. The number of Poxn-
positive cells in the deuto- and protocerebral cell cluster is increased. (i) Summary of D-pax2 expression at late stage | | in SOPs (orange)
of the hypopharyngeal organ (Dvl,3) and the dorsal organ (Dd9,11,12). Other abbreviations are as in Figure |.

Page 4 of 15

(page number not for citation purposes)



Neural Development 2007, 2:23

to the IZ of brain NBs (Figure 2b,c). In the brain, however,
I have not found D-pax2 before stage 14/15 (in cells of the
DC and PC) (Figure 2¢), when it is likewise metamerically
expressed in the ventral nerve cord [31]. These D-pax2-
expressing cells in the brain and ventral nerve cord origi-
nate from pNE and NB(s), which do not express D-pax2.
I therefore asked if, instead of D-pax2, the second Pax2/5/
8 ortholog, poxn, is expressed in NBs of the IZ. In the trunk
at stage 11, Poxn is segmentally expressed first in SOPs of
the external sensory organs and slightly later in NB 2-4
(Figure 2d; see also [28]). Likewise, in the head ectoderm,
Poxn is first expressed in a few cells of the developing
labral and antennal appendages (which presumably con-
tribute to the respective sensory organs) at about the same
time it is found in SOPs of the truncal segments (Figure
2d,e). However, in the brain, Poxn expression was first
found later (by stage 12/4) in a single cell of the DC (Fig-
ure 2f), and by stage 13 in 1-2 protocerebral cells that
coexpress En and descend from NBs of the en head spot
(hs; Figure 2g). The number of Poxn-positive cells in the
DC and PC increases during embryogenesis, but impor-
tantly, all these cells develop from Poxn-negative pNE and
NBs (Figure 2h).

Taken together, Poxn and D-pax2 are not expressed in
brain NBs but in certain progeny cells at later embryonic
stages. Despite this lack of early Poxn and D-pax2 in NBs
of the IZ, I suggest the brain anlagen to be tripartite, in the
sense of consisting of three spatially distinct regions: an
anterior Otd domain, a posterior Lab domain and an 1Z,
where, at the level of the pNE and brain NBs, neither gene
is expressed. In this regard it is worth noting that the D-
pax2 expressing SOPs of the hypopharyngeal organ
(Dv1,3) are localized immediately ventral, and the D-
pax2 expressing SOPs of the dorsal organ (Dd9,11,12,13)
immediately dorsal to the NBs of the IZ (Figure 2a,b,i).
However, these SOPs do not contribute to the brain. Con-
sidering these findings, I propose the 1Z to encompass
about eight NBs of the DC (Dd1,4,5,7,8,10, Dv7,8; Figure
2i).

Common interface of otd and unpg domains corresponds
to the anterior border of the intervening zone

Otx2 and Gbx2 are expressed in the region of the presump-
tive vertebrate midbrain/hindbrain domain. Their mutual
repressive interaction results in a clear interface between
the posterior Gbx2 and the adjacent anterior Otx2
domain, which has an important role in positioning the
isthmic organizer [4]. In the late embryonic Drosophila
brain (stage 14/15), the expression domains of the Otx2
ortholog, otd, and the Gbx2 ortholog, unplugged (unpg)
have been reported to form a common interface at the seg-
mental boundary between TC and DC [20]. Since in ver-
tebrates both genes are the first factors expressed in the
presumptive midbrain/hindbrain domain (from gastrula-

http://www.neuraldevelopment.com/content/2/1/23

tion onwards), I was interested to see if such an otd/unpg
interface is established in the early anlagen of the embry-
onic brain, at the level of NBs. By stage 11, unpg-lacZ (as
revealed in the enhancer trap line 1912) is expressed in
the antennal and adjacent ocular pNE, as well as in most
NBs in the DC and adjacent PC, as previously shown [26].
Consequently, unpg-lacZ and Otd are not complementa-
rily expressed, as they exhibit an overlap within the poste-
rior PC and anterior DC. This prompted me to investigate
if the lacZ pattern reliably represents the expression of the
unpg gene. In situ hybridizations showed that, in the pNE,
the pattern of unpg transcripts does not fully match the
pattern of unpg-lacZ (data not shown). Detectable levels of
unpg mRNA do not become visible before stage 11 and
then only in the part of the antennal ectoderm (and deu-
tocerebral NBs) where unpg-lacZ is expressed strongest
(Figure 3c). Accordingly, I found unpg mRNA only in the
DC, and in a significantly smaller subset of NBs (Dd1,
Dv7), immediately anterior to those deriving from the en
antennal stripe (Figure 3d). Interestingly, Dd1 and Dv7
exactly abut the posterior limit of the domain of Otd
expressing NBs (Figure 3a-c).

Taken together, procephalic Otd and unpg (mRNA) are
complementarily expressed, exhibiting a small common
interface at the anterior border of the IZ, which is posi-
tioned within the anterior half of the deutocerebral anla-
gen. These data suggest that the IZ and the anterior
adjacent pNE, which are separated by the otd/unpg inter-
face, represent an ancestral ectodermal territory, evolu-
tionarily equivalent to the early embryonic vertebrate
midbrain/hindbrain domain (including the Otx2/Gbx2
border).

Expression of other vertebrate MHB-specific orthologs in
the region around the Drosophila otd/unpg interface
Early in embryonic development, the region of the verte-
brate MHB is characterised by the expression of several
other genes, among which are En and Bts1, as well as the
secreted factors Wntl and Fgf8. These factors have been
shown to be involved in the patterning and differentiation
of the evolving structures of the midbrain and anterior
hindbrain [1,3,4,32]. I was interested to explore how far
the expression of orthologous genes is conserved in the
pPNE and NBs around the otd/unpg interface in Drosophila.

In vertebrates, Fgf8 is expressed in a narrow domain
immediately posterior to the border between the develop-
ing mid- and hindbrain [33]. Three Fgf8-related genes
have been described in Drosophila: branchless (bnl) [34],
and the more closely related pyramus (pyr) and thisbe (ths)
[35]. Using in situ hybridizations I found that, during
embryogenesis, the pattern of bnl [34], pyr and ths tran-
scripts [35] is the same as described previously. By stage
11, bnl transcripts were found at dorsal-most sites of the
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Otd / En

unpg ! En

Figure 3
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Otd and unpg form a common interface within the IZ. (a,b) Otd/En-lacZ double labelling. (c,d) unpg mRNA/En-lacZ double labelling in
the peripheral head ectoderm (a,c) and deriving brain NBs at stage |1 (b,d). (b,d) Close-ups of regions framed in (a,c), respectively. (b)
Note that Dd| and Dv7 do not express Otd. (d) In the brain, unpg mRNA is detected in only two deutocerebral NBs (Ddl, Dv7) imme-
diately anterior to the antennal en stripe (as) and bordering the Otd domain (b). () Summary of the expression of Otd, unpg, and En
according to the colour code. Note the complementary expression of Otd and unpg, and that Dd |, Dv7 are part of the NBs of the IZ (IZ
NBs). Red dashed lines indicate segmental borders. Other abbreviations are as in Figure |.

ocular pNE and in a few corresponding protocerebral NBs
(Figure 4a). In the examined period until stage 11, detect-
able levels of bnl mRNA were not observed in the remain-
der of the brain anlagen. pyr transcripts are prominently
expressed during stages 10/11 in one protocerebral NB,
but are not found in the region of the otd/unpg interface
(Figure 4b). ths mRNA is found in some protocerebral
NBs during stages 8/9, but becomes largely downregu-
lated by stage 10, when it is still found in low concentra-
tions at the level of the en head spot. By stage 11, ths
mRNA is restricted to a single anterior protocerebral NB
(Figure 4c,d), at a position comparable to that of the pyr
expressing NB (Figure 4b). Importantly, all procephalic
ths expression domains lie anterior to the otd/unpg inter-
face and partly within the Otd domain, which is dissimilar
to the situation in vertebrates. At later embryonic stages,
none of the Fgf8-related genes exhibit detectable levels of
transcripts in the vicinity of the otd/unpg interface (data
not shown). Hence, the expression of all three Fgf8-related
genes in Drosophila is in striking contrast to the expression
of Fgf8 at the embryonic vertebrate Otx2/Gbx2 border. In
vertebrates, Wntl is expressed in a narrow domain just
anterior to the Otx2/Gbx2 border and overlaps with
expression of Otx2 [1,32]. Comparably, Drosophila Wing-
less (Wg) is coexpressed with otd in a protocerebral
domain anterior to the otd/unpg interface; additionally,
Wg is found in a deutocerebral domain located immedi-
ately posterior to the otd/unpg interface (Figure 4e,f,i) [26].
En is found in two protocerebral NBs (Ppd5,8) deriving

from the en head spot immediately anterior to the otd/
unpg border, and in two deutocerebral NBs (Dd5, Dv8)
deriving from the antennal en stripe in the posterior vicin-
ity of the otd/unpg border (Figure 4i,m) [25]. This is simi-
lar to the expression of Eni,2, the domains of which in
vertebrates span large parts of the neuroectoderm adjacent
to the Otx2/Gbx2 border. In the zebrafish, Bts1, a member
of the Sp gene family, is one of the earliest genes expressed
at the presumptive midbrain/hindbrain domain [3]. In
Drosophila, 1 detected transcripts of the closely related
cephalic gap gene buttonhead (btd) in the same pattern as
described previously [36,37]. By stage 11, btd mRNA was
found in the dorsal antennal pNE and in one to two cor-
responding deutocerebral NBs located at the same AP
level as the otd/unpg interface (Figure 4gh,i). This again
corresponds to the situation at the vertebrate MHB.

Taken together, btd, en, and wg are expressed in the imme-
diate vicinity of the otd/unpg interface, corresponding to
the expression of orthologous genes at the vertebrate
Otx2/Gbx2 border. However, the Fgf8-related genes pyr
and bnl are not expressed in the area of the otd/unpg inter-
face, and ths is activated only transiently at low levels and
at an improper position in relation to the otd/unpg inter-
face and other MHB-specific marker genes, indicating cru-
cial differences to the situation in the vertebrate embryo.
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Figure 4

Expression of other vertebrate MHB-specific genes in the early Drosophila brain. Head flat preparations. (a-d) mRNA expression of
FGF8-related genes branchless (bnl; (a); stage | 1), pyramus (pyr; (b); stage 10), or thisbe (ths; (c), stage 10) in relation to Engrailed (En)-lacZ.
(a) In the pNE, bnl transcripts are confined to most dorsal sites of the ocular pNE (arrowheads). (b) pyr expression is detected in the
labral ectoderm (black arrowheads) and in one protocerebral NB in each hemibrain (white arrowheads). (c,d) Expression of ths, similar to
pyr, is found in the labral ectoderm (black arrowheads) and in one protocerebral NB (white arrowheads). ths is faintly detected in a fur-
ther pNE domain (red arrowheads), slightly anterior to the en head spot (hs) and the Ppd5 (in (d)). (d) Higher magnification of framed
area in (c). Protocerebral NBs (asterisks) emanating from that area express ths very faintly. (e,g,h) Expression of Wingless protein (Wg)
(e) or buttonhead mRNA (btd) (g,h) in combination with En-lacZ, or (f) only Wg. (e,f) Wg is expressed in the ocular (blue arrowheads)
and deutocerebral pNE (brown arrowheads) and (f) in the corresponding protocerebral and deutocerebral NBs (Dd1,7,8), respectively.
(g,h) btd is weakly expressed in a deutocerebral pNE domain ((g), purple arrowheads) and in the deutocerebral Dd8 (h) of the IZ. (i)
Scheme summarizing the expression of Wg, btd, ths,pyr, and En in brain NBs at stage | |. Red dashed lines indicate neuromeric boundaries,
the blue line the posterior border of the otd domain, which corresponds (at least partially) to the otd/unpg interface. Coloured hatched
areas indicate neuroectodermal regions in which yet unidentified NBs express btd (purple), or ths or pyr (brown). (j-n) Expression of
Muscle segment homeobox (Msh-lacZ) (j,k) or Ventral nervous system defective (Vnd) (I,m) and En (Inv in (j,k); En-lacZ in (I,m)). (j,k) The
anteriomost limit of Msh expression abuts the anterior border of the deutocerebrum (DC; red line), which roughly coincides with the
anterior border of the IZ. (k) Msh is expressed in dorsal NBs of the IZ (Dd4,5,7,8,10).(,m) Vnd expression is specifically lacking in the
ventral pNE (indicated by red brackets in (I)) and in all ventral NBs of the deutocerebrum (m), including Dv7 (of the 1Z) at the otd/unpg
interface (blue line in (n)). (n) Scheme summarizing the expression of Msh and Vnd in brain NBs at stage | I.

Discontinuous expression of DV patterning genes msh and along the DV axis is analogous to that of the orthologs
vnd at the otd/unpg interface ventral nervous system defective (vnd) and muscle specific
In the vertebrate neural tube, the order of expression of  homeobox in the Drosophila neuroectoderm: Nkx/vnd are
DV patterning genes of the Nkx and Msx gene families  expressed in ventral regions, and Msx/msh in dorsal
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regions [38,39]. Along the AP axis, Nkx2.2 and Msx3
(which presumably represents the ancestral Msx/msh
gene) have been reported to be discontinuously expressed
at the MHB. Nkx2.2 exhibits a gap of expression specifi-
cally at the MHB [40]. Moreover, the anteriomost sharp
limit of Msx3 abuts exactly the MHB [41,42]. In Dro-
sophila, the AP expression patterns of Vnd and Msh exhibit
striking similarities. Until stage 11, I observed a lack of
Vnd expression specifically at the AP level of the otd/unpg
interface (Figure 4l,m,n). In addition, Msh, which is
expressed in the dorsal NBs of the TC and DC [25], exhib-
its an anterior limit that largely coincides with the AP level
of the otd/unpg interface (Figure 4j,k,n). Thus, the discon-
tinuous expression of Vnd and Msh at the otd/unpg inter-
face is similar to Nkx2.2 and Msx3 at the Otx2/Gbx2
border. This lends further support to the proposed ancient
evolutionary origin of the pNE anteriorly and posteriorly
adjacent to the otd/unpg interface.

Discussion

This comprehensive expression analysis of factors orthol-
ogous to key regulatory genes of the embryonic vertebrate
MHB was aimed at clarifying whether the early embryonic

Deuterlostomia

http://www.neuraldevelopment.com/content/2/1/23

brain anlagen in Drosophila reveal a tripartite regionaliza-
tion, contain a conserved Otx/Gbx border and include an
ectodermal territory that shares similarities with the anla-
gen of the vertebrate MHB. I have focussed my study
mainly on the early phase of embryonic brain develop-
ment, because positioning and establishment of the MHB
region is a very early decision in vertebrate central nervous
system (CNS) development (taking place in the neuroec-
toderm before and during the formation of NBs). In addi-
tion, in Drosophila, the segmental organization of the
brain is most clearly displayed in this phase and the exam-
ination can be done at the highest resolution, at the level
of individually identifiable NBs.

Is a tripartite regionalization of the anterior CNS, based
on Otx, Pax2/5/8, and Hox| orthologous domains,
conserved in bilaterians?

Deuterostomes comprise the hemichordate/echinoderm
clade and the chordates, which include vertebrates and
the closely related invertebrates, amphioxus (cephalo-
chordates) and tunicates (urochordates) (Figure 5). On
the basis of the expression of highly conserved regulatory
genes, the anterior part of the early vertebrate CNS is con-

Bilateria
1
|
Protostomia

Veltelbrata

| | L

1
— Urochordata—\ Cephalochordata Hemichordata ~ Annelida Arthropoda
‘ Mouse ' | Ascidian ' ‘Appendicularian ‘ ‘ Amphioxus ‘ ‘ Saccoglossus ‘ ‘ Platynereis ' ‘Drosophila (st1 1)‘
Fore- Sensory Anterior brain Cerebral
brain ', Ent vesicle -En vesicle Cerebral PC +En
Mig- *En2 +En - Pax258 S5 Fgosgme. ganglion .- Pax258
brain_ + Pax2 i y .- Pax2s8 (Proboscis) 76n |DC iz +Wnt
+ Pax5 . | = - Wht 2 Pax258 +Ghx
‘ Y in + Paxs ! 2o " +Gbx iisosome ? M%f TC - Fgf8
L Wt - Trunk nerve ?Fgf8 Coll - +Gbx s0G
e Hind- ., Gpy Visceral \“fd {Gollar) ? Fgf8 3
\ rain -, FGFs ganglion Caudlal v En Tort o Thoracic
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Figure 5

Comparison of CNS regions and gene expression domains among chordates, hemichordates, annelids, and arthropods. Focus is on the
anteroposterior regionalization of the anterior CNS, including the brain. The schemes reflect the situation in the CNS of the vertebrate
mouse (at about embryonic day |0—-12.5), the ascidians Ciona and Halocynthia [11, 13, 43, 44, 54], the appendicularian Oikopleura (at the
late hatchling stage) [14], the amphioxus Branchiostoma (at the 10—13 somite stages) [I5, 16, 45, 76], the hemichordate Saccoglossus (at the
one gill slit stage) [48, 49], the polychaete annelid Platynereis (neuroectoderm at the metatrochophora stage) [46, 47], and the arthropod
Drosophila (at stage 11, stl I; this study). Expression of Otx/otd, Pax2,5,8, Hox I /lab, Hox5/scr, Hox6/Antp, and Hox7/Ubx genes is indicated
according to the colour code. The dashed line in red indicates the interface between Otx/otd and Gbx/unpg expression domains. The
expression of further genes within the gap (encircled in yellow) between the anterior Otx/otd and posterior Hox | /lab domains is noted: '+'
indicates expression of the respective gene; '-' absence of expression; and '?' expression is not yet determined. The phylogenetic tree is
based on [76]. For further details, see the text. IZ, intervening zone; MHB domain, midbrain/hindbrain boundary domain; NR, neck

region; Parap., Parapodial; Tent., Tentacular.
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sidered to exhibit a fundamentally tripartite regionaliza-
tion along the AP axis: Otx is expressed in the forebrain/
midbrain, Hox genes in the hindbrain/spinal cord, and
Pax2/5/8 genes in the intervening domain that constitutes
the MHB region [1] (Figure 5). This tripartite organization
of gene expression is also found in ascidian tunicates, that
is, in Halocynthia and Ciona. Tunicates, together with
amphioxus, represent the closest relatives of vertebrates
[43]. Expression of a Pax2/5/8 ortholog has been reported
for the ascidian neck region between the Otx and Hox1
domains [11,44] (Figure 5), leading to the speculation
that the neck region is orthologous to the vertebrate MHB
[11,19]. This is supported by the findings that Pax2/5/8 is
also expressed in the neck region of Ciona savingyi [45],
and Pax2/5/8, Fgf8/17/18, and En in Ciona intestinalis [13].
However, accumulating data show that the expression of
MHB-specific markers is already diverse among the tuni-
cates. In contrast to the ascidians, for example, the expres-
sion of Pax2/5/8 in the appendicularian tunicates (that is,
in Oikopleura) is lacking in the neck [14]. Furthermore,
whereas in C. savignyi En is found in the Pax2/5/8 express-
ing neck region [45], in C. intestinalis En is expressed in
two domains, anteriorly and posteriorly adjacent to the
Pax2/5/8 expressing neck [13]. Wnt orthologous genes
seem to be generally lost in the ascidian genome [46,47]
and, therefore, are not expressed in the neck region. Since
it has been difficult to deduce the ancestral pattern, the
existence of a MHB homologous region in tunicates is
controversial [14,48]. In the intervening region of the pro-
tochordate amphioxus, expression of Pax2/5/8 as well as
of Wntl and En is lacking, similar to the situation in the
appendicularian tunicate Oikopleura [15-17] (Figure 5).
However, a tripartite organization seems basically con-
served, considering the existence of an anterior Otx
domain, a posterior Hox1 domain, and an intervening
region in which neither of these genes is expressed [16].

The situation in amphioxus and Oikopleura is comparable
to the findings made in Drosophila in this study (Figure 5).
The early embryonic brain can be subdivided into an ante-
rior domain of Otx/otd expression, encompassing most of
the PC and an adjacent part of the DC, and a posterior
domain of Hox1/lab expression, encompassing the TC.
Both domains are separated by an IZ, covering part of the
deutocerebral pNE and eight deutocerebral NBs, in which
neither gene is expressed. The two Pax2 genes (D-pax2 and
poxn) are not expressed in the early embryonic IZ, which
is a significant difference to the situation in vertebrates
and ascidian tunicates (Halocynthia and Ciona). However,
both Pax2 genes are expressed during later embryonic
brain development [20], when they are also expressed in
segmentally repetitive neuronal clusters in the VNC.
Importantly, at that time, AP patterning (that is, segmen-
tation) and early neurogenesis (that is, formation/specifi-
cation of NBs) are already completed. Thus, the later
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phase of expression of both genes is presumably involved
in specification/differentiation of neural progeny cells,
but is not compatible with an early function in patterning
or specification of the pNE or NBs at the IZ. Accordingly,
no obvious brain phenotype has been observed in poxn or
D-pax2 mutants [20]. On the other hand, early expression
of poxn and D-pax2 is found in progenitors of the periph-
eral nervous system, some of which are placed in immedi-
ate vicinity of NBs of the IZ, suggesting an early function
of both genes in the development of head sensory struc-
tures. This is in accordance with findings made in the
trunk, where poxn and D-pax2 are first expressed in the
precursors of the developing peripheral nervous system
[28,31] (Figure 2a,d), and later on in the ventral nerve
cord.

Similarly, in the neuroectoderm of another protostomia,
the polychaete annelid Platynereis dumerilii, an anterior
Otx domain [49] seems to be spatially separated from a
posterior Hox1 domain (Figure 5) [50]; although expres-
sion of a Pax2/5/8 ortholog has been reported in the trunk
nerve cord [51], it has not yet been described for the brain.
Hemichordates, distant deuterostomes, which do not
have an internalized CNS but a body-encircling basiepi-
thelial nerve net, reveal an anterior Otx and a posterior
Hox1 expression domain, comparable to the situation in
chordates, Platynereis, and Drosophila (Figure 5). A Poxn
ortholog has been identified in the hemichordate Sac-
coglossus kowalevskii, but it is distinct from the Pax2/5/8
group of genes; expression of Pax2/5/8 orthologs has not
yet been characterized [52]. Lastly, the MHB-specific
marker En is expressed in the intervening region between
the Otx and Hox1 domains [53].

Taken together, the data suggest that a tripartite ground
plan characterizing the development of the chordate (and
perhaps polycheate and hemichordate) brain is basically
also present in the insect brain, which is in agreement
with Hirth et al. [20]. However, in the early embryonic
Drosophila brain expression of Pax2/5/8 orthologs is
absent in the IZ. Nevertheless, the presence of a brain
region that expresses neither otd nor labial indicates that a
domain regionally homologous to the vertebrate MHB
domain may also exist in Drosophila (see also the follow-
ing discussion). Thus, it is tempting to speculate that a tri-
partite ground pattern (which lacks early Pax2/5/8
expression) was acquired already in the bilaterian ances-
tor.

Is the Otx/Gbx border an ancestral condition in
bilaterians?

In vertebrates,Otx2 and Gbx2 are among the earliest genes
expressed in the nervous system [33,54]. The establish-
ment of a border between the complementary neuroecto-
dermal domains of Otx2 (anterior) and Gbx2 (posterior)
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is the initial step in MHB development. The border, which
forms due to mutual repression of these genes, is crucial
for the proper positioning of the MHB [1,2]. In the early
amphioxus embryo, Gbx and Otx domains abut the cere-
bral vesicle and hindbrain; therefore, this border is likely
to be homologous to the vertebrate MHB (although it
seems unlikely that this boundary has organizer proper-
ties) [48]. Yet there are no Gbx genes in urochordates, sug-
gesting that they have been lost secondarily in this lineage
[14]. In hemichordates by contrast, the domains of Ox
and Gbx overlap considerably, indicating that these genes
do not antagonize each other [53]. This is reminiscent of
the initial phase of Otx and Gbx expression in amphioxus,
when the domains of both genes slightly overlap,
although they sharply abut later on [48].

Similar to the situation in vertebrates and amphioxus, in
Drosophila a common border can be recognized between
the procephalic expression domains of otd and unpg (the
Gbx2 ortholog). However, expression of unpg initiates sig-
nificantly later (by stage 11) than that of otd (by stage 6),
different to the situation in vertebrates (Additional file 1).
As shown at the level of NBs, the common border between
both expression domains is positioned in the anterior DC.
Thus, the otd/unpg interface is located more anterior and
does not coincide with the boundary between the TC and
DC as supposed previously [20]. Nevertheless, in the late
embryonic brain, there is evidence that otd and unpg neg-
atively regulate each other, similar to the genetic interac-
tion of their vertebrate orthologs [20]. In this regard it is
important to note that in the anterior neuroectoderm of
the polychaete Platynereis, a boundary between the ante-
rior domain of Otx expression and a posterior domain of
Gbx expression has also been reported recently [49], sup-
porting its ancient origin.

In summary, the border between the Otx/otd and Gbx/unpg
domains found in chordates, polychaetes, and Drosophila
(but not in hemichordates) suggests a homologous use of
both genes in AP patterning. The Otx2/Gbx2 border in ver-
tebrates determines the position of the MHB. Considering
that the otd/unpg border can be identified in the early
embryonic brain, and that the genetic interactions of otd
and unpg appear to be conserved [20], it seems likely that
at least the machinery for positioning the MHB might
already be existent in Drosophila. Therefore, the border
between the Otx/otd and Gbx/unpg domains may represent
an ancestral condition in bilaterians.

Does the pNE surrounding the otd/unpg interface share
homology with the vertebrate MHB organizer?

After the Otx2/Gbx2 border in vertebrates has been formed
at the prospective MHB, several other key genetic factors,
such as Pax2, En, Wntl, and Fgf8 are expressed in an
ordered spatial and temporal mode [1,2,4,5]. A compari-
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son of the spatial and temporal expression of those gene
orthologs at the vertebrate MHB and the Drosophila otd/
unpg interface is given in Figure 6 and Additional file 1,
respectively. As discussed above, the formation of the otd/
unpg interface within the 1Z already indicates that the cor-
responding neuroectodermal domain in Drosophila might
share basic similarities with the vertebrate MHB. Moreo-
ver, comparable to the situation in vertebrates, en is
expressed at the otd/unpg border, in a deutocerebral and in
a protocerebral domain. However, in contrast to verte-
brates [55,56], early expression of en cannot be activated
by Pax2 genes in Drosophila since the latter are not
expressed in the early brain. Nevertheless, from embry-
onic stage 13 onwards, some of the protocerebral en cells
coexpress poxn, suggesting possible genetic interactions at
those later stages (Figure 2g,h); interestingly, coexpression
of both genes is not observed elsewhere in the CNS. In
Ciona, two En domains have been recognized to be posi-
tioned similarly to those in Drosophila, in the immediate
vicinity of the neck region [13]. Since neither of the En
domains coexpresses Pax2/5/8, both in Drosophila and
Ciona, Pax2/5/8 is unlikely to activate En expression.

As shown above, the expression data for other conserved
key factors, such as wg,btd, and the DV patterning genes
msh and vnd, suggest that the pNE surrounding the otd/
unpg interface may represent an ancestral territory that
shares molecular similarities with the region around the
vertebrate MHB. Important differences are that, in Dro-
sophila, expression of Fgf8-related genes, bnl and pyr, and
early expression of Pax2/5/8 is not found at the otd/unpg
interface. In agreement with that, no obvious brain phe-
notype has been observed in bnl mutant embryos [20].
Only ths expression is detected, but it is very faint, tran-
sient, and anterior to the otd/unpg interface. Since ths
seems to be colocalized with wg expression in this region,
it is unlikely to serve the same function as Fgf8 at the ver-
tebrate MHB. These differences in the expression of Fgf8-
like genes in Drosophila are most significant, as Fgf8 is the
key player at the vertebrate MHB, eliciting the expression
of other organizer genes and exerting most of the organ-
izer functions [2].

In addition, the temporal gene expression profile of this
brain territory and the vertebrate MHB domain reveals
distinctions (Additional file 1); for example, unpg is
expressed significantly later than otd. Altogether, the spa-
tial and temporal dissimilarities indicate that during the
early period of neurogenesis, basic regulatory interactions
among these genes, crucial to exert organizer properties,
do not exist or are modified. In the light of these data, it is
therefore very unlikely that the pNE surrounding the otd/
unpg interface represents a functional homolog of the
MHB organizer. This supports the assumption (see work
on Amphioxus [48]) that during evolution the Otx/Gbx
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Comparison of brain organization and expression of key developmental genes involved in CNS regionalization and MHB formation in ver-
tebrates and Drosophila. Data for Drosophila reflect the situation at stage | |, data for vertebrates reflect the situation in mouse at about
embryonic day 10 (EI0; see [1]; Nkx2.2, [40]; Msx3, [41]; the data for Bts/ are from a comparable developmental stage in zebrafish [3]).
The boxed area coloured in light red indicates the neuroectodermal region around the MHB in vertebrates, according to the expression
domains of Pax2,5 and 8 and Enl and 2. Although early Pax2/5/8 gene expression is lacking in Drosophila, the corresponding box may indi-
cate a similar domain around the otd/unpg border. Identical colours indicate orthologous genes. Vertebrate gene names in red indicate
those genes that are not or differently expressed at the Drosophila otd/unpg interface. For details, see the text. PC, DC, TC; proto-,
deuto-, tritocerebrum; MD, MX, LA, mandibular, maxillary, labial neuromere, respectively; SOG, subesophageal ganglion. Di, Me, Te,

Dien-, Mesen-, Telencephalon, respectively; r|-8, rhombomeres 1-8.

border was established before it became equipped with
organizer function. Since there is also no convincing evi-
dence for an MHB organizer in any tunicate, it presuma-
bly first evolved in the vertebrate lineage.

Equivalents of 'hindbrain' and 'spinal cord' in Drosophila?
In the vertebrate neural tube, the border between hind-
brain and spinal cord is supposed to be approximately
indicated by the anterior limit of Hoxb5 expression [57-
59]. This molecular regionalization may be conserved
among chordates, since in the tunicates Ciona and Oikop-
leura the restricted expression of a Hox5 ortholog is also
suggested to coincide with the anterior border of the spi-
nal chord [14,19,60,61] (Figure 5). However, recent data
in vertebrates [59,62-64] show that the Hoxb5 domain,
although initially confined to the spinal cord, extends ros-

trally into the developing posterior hindbrain. Unlike
Hoxb5, the rostral borders of Hoxb6 and Hoxb7 domains
finally come to lie close to the transition between hind-
brain and spinal cord [65], and might, therefore, be more
suitable indicators to distinguish between both CNS
domains. In Drosophila, the anterior border of the Scr/
Hoxb5 domain maps within the maxillary neuromere,
those of Antp/Hoxb6 and Ubx/Hoxb7 domains within the
labial and third thoracic neuromere, respectively (Addi-
tional file 2). Assuming that, in analogy to vertebrates
[66], the posterior border of otd expression (within the
anterior DC) sets the anterior limit, the hindbrain equiva-
lent would comprise four neuromeres, when considering
the anterior border of Scr expression as its posterior limit,
or, what is more likely, up to eight neuromeres, when con-
sidering the anterior Ubx expression border as the poste-
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rior limit. Interestingly, a comparable number of seven to
eight rhombomeres comprises the vertebrate hindbrain
[67]. In this perspective, the CNS region posterior to the
anterior limit of the Scr or Ubx domain would be equiva-
lent to the vertebrate spinal cord.

The vertebrate hindbrain is clearly subdivided into seg-
mental units [67], as opposed to the mid- and forebrain
in which the wunderlying metamerism is unclear
[40,68,69]. Accordingly, the segmented part of the ante-
rior CNS is separated from the less overt segmented part
by the Otx2/Gbx2 border. The situation in Drosophila
exhibits similarities. Whereas the segmental characteris-
tics of DC, TC and ventral nerve cord are obvious, they are
cryptic in the PC [26,25]. Considering the position of the
otd/unpg border within the anterior DC, this border, as in
vertebrates, separates the segmented part of the CNS
(including the posterior DC, the TC, the gnathal, thoracic
and abdominal CNS) from an anterior part (the PC) in
which the metameric identity is less obvious.

Conclusion

Molecular characterization of the neuroectoderm and of
individually identified neural stem cells in the early Dro-
sophila embryo, indicate the existence of a non-segmental
Otx/Gbx orthologous interface located within the anterior
DC. Furthermore, my data support the idea that the area
surrounding this interface (encompassing the anterior
DC/posterior PC) may represent an ancestral territory that
shares molecular similarities with the region around the
vertebrate MHB. Otherwise, lack of expression of Pax2/5/
8 and Fgf8-related genes, and significant differences in the
expression onset of other key regulators at the otd/unpg
interface, imply that genetic interactions crucial to exert
vertebrate organizer activity do not exist or are modified
in the early embryonic brain of Drosophila.

Materials and methods

Drosophila strains

The following fly strains were used: Oregon R (wild type),
unplugged-lacZ [22], engrailed-lacZ [70].

Staging and mounting of embryos

Staging of the embryos was done according to [71]; addi-
tionally, the trunk NB pattern [22] was used as a further
reference for staging. Flat preparations of the head ecto-
derm of stained embryos and mounting were done as
described previously [23].

Antibodies and immunohistochemistry

Embryos were dechorionated, fixed and immunostained
according to previously published protocols [72]. The fol-
lowing primary antibodies were used: mouse-anti-Anten-
napedia (1:20; DSHB, Iowa City, IA, USA), rabbit-anti-
Atonal (1:5000; A Jarman, Edinburgh, UK), anti-DIG-AP
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(1:1,000; Roche, Mannheim, Germany), mouse-anti-
Engrailed/Invected (1:4; DSHB), mouse-anti-f-galactosi-
dase (1:500; Promega, Madison, WI, USA), rabbit-anti-p-
galactosidase (1:2,500; Cappel, Costa Mesa, CA, USA),
rat-anti-Labial (F Hirth, London, UK), rabbit-anti-Muscle
specific homeobox (1:500; MP Scott, Palo Alto, CA, USA),
rabbit-anti-Pax2 (1:50; M Noll, Ziirich, Switzerland),
mouse-anti-Pox-neuro (1:100; C Dambly-Chaudiere,
Montpellier, France), rabbit-anti-Sex comb reduced
(1:1,000, T Kaufman, Bloomington, IN, USA), mouse-
anti-Ultrabithorax (1:20; DSHB), rabbit-anti-Ventral
nervous system defective (1:500; CQ Doe, Eugene, OR,
USA), mouse-anti-Wingless (1:10; DSHB). The secondary
antibodies (all from Dianova, Hamburg, Germany) were
either biotinylated (goat anti-mouse, goat anti-rabbit) or
alkaline phosphatase-conjugated (goat anti-mouse, goat
anti-rabbit, goat anti-rat) and diluted 1:500.

Whole mount in situ hybridization

Dioxigenin (DIG)-labelled buttonhead RNA probe was
synthesized using HindlIIl linearised pBKS-btd [73] as a
template with T7 polymerase. Other DIG-labelled RNA
probes were synthesized using oligonucleotide primers
amplified by PCR on wild-type genomic DNA: branchless
(1,209 bp; forward primer CAGAACTACAACACITACTC-
CTCC, reverse primer CTCGTAGCTCGCATCITCTAGG);
pyramus (2,020 bp, forward primer GGCAATCAGAACTT-
TAGTAGCG, reverse primer CAGACCACCATCGTTAT-
GATTC);  thisbe (2,284 bp, forward primer
GCCCAATGTCAGCCACATCGG, reverse primer GTC-
GAGGTGGGCAGGAACC); unplugged (908 bp, forward
primer GTGTCTGCTCGGGAACA-GAAACG, reverse
primer GTCCATCTCGCCGITGTAGTTCC). In all cases,
the resulting PCR fragment was used as a template. All
DIG-labelled RNA probes were prepared using a DIG-
RNA-labelling mix (Roche) according to the manufac-
turer's protocol. The hybridization on embryos was per-
formed as described previously [74,75].

Documentation

Embryos were viewed under a Zeiss Axioplan equipped
with Nomarski optics using 40x, 63x and 100x oil immer-
sion objectives. Pictures were digitized with a CCD cam-
era (Contron progress 3012) and different focal planes
were combined using Adobe Photoshop 7.0. Semi-sche-
matic presentations are based on camera lucida drawings.
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Additional File 1

Expression onset of MHB-specific key developmental genes in three differ-
ent vertebrate species compared to orthologous factors around the otd/
unpg interface in Drosophila. In vertebrates, the temporal order of
genetic interactions among MHB-specific genes is closely reflected by the
temporal order of the onset of their expression. Otx2 and Gbx2 are the
first genes expressed (from gastrulation onwards), succeeded by the
expression of further genes in the following order: Bts1 [3], Pax2, En1/
2, Wntl and FGF8 [4]. In Drosophila, comparable to vertebrates, otd
is the first gene expressed at the presumptive region of the otd/unpg inter-
face, already before gastrulation (stage 6). In contrast, unpg is expressed
significantly later than otd, not before stage 11, when it is also found in
the TC and in a segmental pattern in the ventral nerve cord. Similar to
otd, the head gap gene btd is expressed before gastrulation; in the pNE
and NBs at the later otd/unpg interface it is not detected before stages 7/
8. Furthermore, wg and en are expressed in the region at about stage 8,
thus later than otd and btd, but before unpg. This indicates that head
segments can be distinguished already before unpg expression initiates. In
contrast to vertebrates, D-pax2 and poxn are expressed significantly later
than en, but neither in the pNE nor in brain NBs (indicated by the stip-
pled line for poxn). Moreover, expression of the Fgf8-related genes bnl
and pyr is lacking around the otd/unpg interface. Transient expression
of ths (indicated by stippled line), is unlikely to reflect MHB-specific
expression of Fgf8. The temporal onset of gene expression is in part remi-
niscent of the situation in vertebrates (for example, of otd,btd,en,wg),
but otherwise discloses significant differences (for example, unpg, D-
pax2,poxn, Fgf8-related genes), implying that the chronological order of
possible genetic interactions at the otd/unpg interface seems to be differ-
ent from those at the vertebrate MHB. Data for mouse, zebrafish and
chick are according to Figure 1 in [4] and references therein. Mouse:
HDF, head fold stage; s, somite stage. Zebrafish: tb, tail bud period; s, seg-
mentation period; h, hatching period. Chick: HH, stages after Hamburger
and Hamilton. n.e., not expressed in the investigated period until stage
13; n.d., not determined.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-2-23-S1.jpeg]

Additional File 2

Mapping of a ‘hindbrain-like' CNS domain in Drosophila. Expression of
(a,b) Scr, (c,d) Antp, or (e,f) Ubx in combination with En-lacZ (En) at
late stage 11. (b,d,f) Close-ups of the domains boxed in (a,c,e) at the level
of NBs. Scr, Antp, and Ubx are parasegmentally expressed. (a,b) The
anterior limit of the Scr expression coincides with the anterior border of
the maxillary en stripe (mxs); the Scr domain covers the posterior com-
partment of the maxillary and the anterior compartment of the labial neu-
romere (see also [77]). (c,d) The anterior limit of the Antp domain
coincides with the anterior border of the labial en stripe (las); the Antp
domain covers the posterior compartment of the labial, all thoracic, as well
as weakly all abdominal neuromeres (see also [78,79]). (e, f) The ante-
rior limit of the Ubx domain corresponds to the anterior border of the en
stripe in the third thoracic neuromere (t3s); Ubx is found in the posterior
compartment of the third thoracic neuromere and in the abdominal neu-
romeres 1-8. (g) Model of the extension of a hindbrain-like CNS domain
in Drosophila (corresponding NBs are encircled in grey). The expression
domains of En, Otd, Scr, as well as the anterior domains of Antp and Ubx
are indicated. Additionally, the SOPs of the dorsal organ and hypopha-
ryngeal/latero-hypopharyngeal organ are indicated. For further details, see
the text. T1-T3, first to third thoracic neuromeres; A1, first abdominal
neuromere. Other abbreviations are as in the figures.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1749-
8104-2-23-S2.jpeg|
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