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Abstract: While zinc oxide (ZnO) nanoparticles (NPs) have been recognized to have promising 

applications in biomedicine, their immunotoxicity has been inconsistent and even contradictory. 

To address this issue, we investigated whether ZnO NPs with different size (20 or 100 nm) and 

electrostatic charge (positive or negative) would cause immunotoxicity in vitro and in vivo, 

and explored their underlying molecular mechanism. Using Raw 264.7 cell line, we examined 

the immunotoxicity mechanism of ZnO NPs as cell viability. We found that in a cell viability 

assay, ZnO NPs with different size and charge could induce differential cytotoxicity to Raw 

264.7 cells. Specifically, the positively charged ZnO NPs exerted higher cytotoxicity than the 

negatively charged ones. Next, to gauge systemic immunotoxicity, we assessed immune responses 

of C57BL/6 mice after oral administration of 750 mg/kg/day dose of ZnO NPs for 2 weeks. 

In parallel, ZnO NPs did not alter the cell-mediated immune response in mice but suppressed 

innate immunity such as natural killer cell activity. The CD4+/CD8+ ratio, a marker for matured 

T-cells was slightly reduced, which implies the alteration of immune status induced by ZnO NPs. 

Accordingly, nitric oxide production from splenocyte culture supernatant in ZnO NP-fed mice 

was lower than control. Consistently, serum levels of pro/anti-inflammatory (interleukin [IL]-1β, 

tumor necrosis factor-α, and IL-10) and T helper-1 cytokines (interferon-γ and IL-12p70) in 

ZnO NP-fed mice were significantly suppressed. Collectively, our results indicate that different 

sized and charged ZnO NPs would cause in vitro and in vivo immunotoxicity, of which nature 

is an immunosuppression.
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Introduction
Nanotechnology has enabled nanoparticles (NPs) to be designed at the molecular 

 (nanometer) level. Thus, NPs have received the tremendous advantage of their small 

size, novel physicochemical properties, as well as their interactions with biological 

systems. In particular, inorganic NPs with metal oxides have been pre-clinically 

employed for diagnostic and therapeutic use in biomedicine.1–4 Of these metal oxides, 

zinc oxide (ZnO) NPs have received considerable attention, with a promising biological 

application for drug delivery and cancer therapy5–7 due to their great photo-catalytic 

and photo-oxidizing ability against chemical and biological species.

Despite the potential biomedical application of ZnO NPs, biohazards and toxicities 

of ZnO NPs remain unclear. Of these toxicities, the effects of ZnO NPs on the immune 

system are poorly documented. Here, immunotoxicity is defined as the adverse effects 

on the immune system such as hypersensitivity, chronic inflammation, immunosup-

pression, immunostimulation, and autoimmunity. Much evidence suggests that ZnO 
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NPs would function as immunotoxicants.8–11 ZnO NPs have 

unique physicochemical properties, therefore, they could eas-

ily access several immune tissues and cells through various 

routines such as inhalation, ingestion, skin uptake, and injec-

tion. ZnO NP oral administration could cause severe damage 

to heart, lung, liver, and kidney,12 consequently leading to 

inflammation. In addition, in vitro exposure of ZnO leads 

to generation of reactive oxygen species (ROS), upregula-

tion of genes involved in apoptosis, and cell death in human 

keratinocyte HaCaT cells.13,14 Likewise, profuse release of 

inflammatory mediators induced by ZnO NPs15,16 may result 

in immune stimulation or aggravation of immune diseases17 

or even break down T helper (Th)-1/Th-2 balance.18

It is well known that immunotoxicity of NPs is intimately 

linked to oxidative stress. For instance, the toxicity of ZnO 

NPs to immune cells is involved in ROS generation.19–22 

The high production of superoxide in mitochondria reduces 

the mitochondrial membrane potential,23 causing cell cycle 

arrest at S/G2 phase,24 and increases the ratio of Bax/Bcl-2, 

leading to the mitochondria-mediated pathway involved in 

apoptosis.25 However, the mechanism of immunotoxicity of 

ZnO NPs in relation to oxidative stress is unclear.

To trigger immunotoxicity, several traits or features of 

NPs are essential.26  Emerging evidence implies that the toxic-

ity of ZnO NPs could be affected by size and/or electrostatic 

charge.27,28 For instance, an increase of ZnO NPs size might 

conversely decrease their toxicities.19,29 Positively charged 

NPs could exert higher immunotoxicity than negatively 

charged NPs due to effective interaction with the nega-

tive charge of acidic acid on the surface of macrophages.30 

However, these studies27,28 failed to address whether immu-

notoxicity of ZnO NPs would be affected by the size and/or 

charge and whether this immunotoxicity could be categorize 

as immunostimulation and/or immunosuppression.

In this study, we explored the in vitro potential immuno-

toxicity of ZnO NPs on Raw 264.7 cells, and the systemic 

in vivo immunotoxicity of ZnO NPs using C57BL/6 mice. 

Further, we investigated the role of size and charge in ZnO 

NP-induced immunotoxicity.

Material and methods
Preparation of particle suspensions
ZnO (ZnO-310, Lot No 141319) was purchased from 

 Sumitomo Osaka Cement Co, Ltd, (Tokyo, Japan). ZnOAE100 

(Zn-OX-01-NP.100N, Lot No 1871511079-673) was pur-

chased from American Elements (Los Angeles, CA, USA). 

The ZnO NPs used in this study were sized at 20 nm (ZnOSM20, 

Sumitomo Osaka Cement Co, Ltd) and 100 nm (ZnOAE100; 

American Elements), with approximately 99.5% purity, 

milky white color, and nearly spherical shape. According 

to the manufacturer information, the actual size and zeta 

potential of the ZnO NPs used in this study were as follows: 

29±3 nm, −44.4±1 mV (ZnOSM20(−)); 35±5 nm, 26.3±0.5 mV 

(ZnOSM20(+)); 72±11 nm, −41.6±0.6 mV (ZnOAE100(−)); and 

79±12 nm, 26.1±0.4 mV (ZnOAE100(+)). The surface charge 

(zeta potential) was modified with coating reagents, citrate 

to make the ZnO NPs negatively charged and L-serine to 

make them positively charged, as reported previously.31 

In brief, 20 mg dry powder of ZnO NPs was dissolved 

into 100 mL of L-serine/HEPES (4-(2-hydroxyethyl)-1-

 piperazineethanesulfonic acid) pH 6.2, and citrate/HEPES 

pH 7.3 to make the NP surfaces electrostatically charged. 

Indicated buffers were made as follows: for the positive 

charge buffer, 99 mL of 20 mM HEPES pH 6, L-serine (1 g) 

adjusted to pH 6.2, and for the negative charge buffer, 99 mL 

of 20 mM HEPES pH 7, sodium citrate (1 g) adjusted to pH 

7.3. Subsequently, the ZnO NP suspension was vortexed for 

5 minutes at room temperature and then kept at 4°C until 

use. Before using, the suspension was sonicated at 4°C for 

10 minutes with a  sonicator (Hielscher-Ultrasound Technol-

ogy, Teltow, Germany).

cell culture
Raw 264.7, mouse macrophage cell line (American Type 

Culture Collection [ATCC], Manassas, VA, USA) was main-

tained in Dulbecco’s Modified Eagle’s Medium (DMEM; 

Hyclone Laboratories, Inc., South Logan, UT, USA) supple-

mented with 10% heat-activated fetal bovine serum (FBS, 

Hyclone Laboratories Inc.) and 1% antibiotic–antimycotic 

(Gibco®, Invitrogen Corporation, Carlsbad, CA, USA) at 

37°C in a 5% CO
2
 incubator.

In vitro cell viability study
A commercially available cell viability assay Cell  Counting 

Kit-8 (CCK-8; Dojindo Molecular Technologies, Inc., 

 Rockville, MD, USA) was employed to evaluate the cytotoxic 

effect of ZnO NPs. Approximately 1×105 of Raw 264.7 cells 

was seeded into 96-well plates then incubated with various 

concentrations of ZnO NPs for 24 hours at 37°C in a 5% CO
2
 

incubator. Cells not treated with ZnO NPs served as a control 

well in the experiment. Non-modified zinc chloride (ZnCl
2
) 

dissolved in 1X phosphate buffered saline (PBS) was used as a 

control, without modification of surface. Afterwards, 10 µL of 

CCK-8 solution was added to each well, incubated for 1 hour, 

and then absorbance was determined at 450 nm by a DTX-880 

multimode microplate reader (Beckman Coulter, Fullerton, 
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CA, USA). The percentage of cell viability was calculated by 

the following formula: cell viability (%) = (mean absorbency 

in test wells)/(mean absorbency in control wells) ×100. All 

experiments were performed in triplicate.

Maintenance of animals  
and ZnO NP treatment
Six-week-old inbred C57BL/6 mice (n=5) were purchased 

from Orient Bio Inc. (Seongnam, South Korea) and were 

maintained in a pathogen-free condition, and fed with a 

standard commercial diet. Mice were randomly assigned into 

five groups: normal control group, which was PBS treated, 

and four experimental groups treated with four types of ZnO 

NPs. Briefly, the ZnO NP suspension was orally administered 

in the mice with the dosage of 750 mg/kg every day continu-

ously for 14 days. All experiments were approved by the 

Institutional Animal Care and Use Committee (IACUC) at 

Wonju College of Medicine, Yonsei University.

Induction and evaluation of delayed-type 
hypersensitivity (DTh)
Mice were orally administered with 750 mg/kg of different 

sized and charged ZnO NPs for 2 weeks. DTH assays were 

performed 4 days before sacrifice. To assess DTH response, 

mice were subcutaneously injected in the left footpad with 

20 µL of saline as a control, and in the right footpad with 

20 µL of ZnO NP suspension. At the indicated times after 

challenge (24 hours and 48 hours), footpad thickness was 

measured with a digital caliper (Mitutoyo Corporation, 

Tokyo, Japan). The level of the DTH response was deter-

mined as the difference between the left and right footpad.

Preparation of splenocytes
To isolate splenocytes, the spleen was removed aseptically 

from C57BL/6 mice at the endpoint treatment and was placed 

in a tube containing 1× PBS on ice. Splenocyte suspensions 

were prepared by gently pressing the spleen between the 

frosted ends of two sterile microscope slides into a 100 mm 

tissue culture grade petri dish. The slides were rinsed at regu-

lar intervals with 1×  PBS. Cell suspensions were filtered by 

a sterile plastic strainer and then centrifuged at 1,500 rpm for 

3 minutes. For optimal lysis of erythrocytes, the pellets were 

resuspended in 5 mL red blood cell lysis buffer and incubated 

on ice for 5 minutes with occasional shaking. The reaction 

was stopped by diluting the lysis buffer with 25 mL of 1× 

PBS. Thereafter, the cells were spun (1,500 rpm at 4°C for 

5 minutes), and the supernatant was carefully removed. The 

pellet was then washed two times in 1X PBS and resuspended 

in Roswell Park Memorial Institute (RPMI)-1640 supple-

mented with 3% FBS (Hyclone Laboratories Inc.) and 1% 

antibiotic-antimycotic (Invitrogen Corporation). Cells were 

then counted. The viability of the cells used in all the experi-

ments was higher than 95%, as measured by the trypan blue 

exclusion method (Sigma-Aldrich, St Louis, MO, USA).

Splenocyte proliferative responses  
to concanavalin a (con a)  
and lipopolysaccharide (lPS)
Splenocytes were seeded at 1×105 cells per well into a 

96-well, flat-bottom microtiter plate in 100 µL RPMI-1640 

(Hyclone Laboratories, Inc.) supplemented with 10% heat-

activated FBS (Hyclone Laboratories Inc.) and 1% antibiotic/

antimycotics. Thereafter, 1.25 µg/mL Con A (Sigma-Aldrich, 

St Louis, MO, USA) and 500 µg/mL of LPS (Sigma-Aldrich) 

were used. The plates were incubated at 37°C in a humidified 

atmosphere under 5% CO
2
 for 6 hours. Cell proliferation was 

evaluated using a CCK-8 (Dojindo Molecular  Technologies, 

Inc.) according to the manufacturer’s  instructions. Absor-

bance was measured at 450 nm by a DTX-880 multimode 

microplate reader  (Bechman Counter Inc.).

cytotoxicity assay of natural  
killer (NK)-cells
NK-enriched murine splenocytes were used as effector cells, 

and YAC-1 (ATCC) as target cells. Briefly, various effector 

cell dilutions were prepared: 1×106 cells/well for 100:1, 

5×105 cells/well for 50:1, and 2.5×105 cells/well for 25:1. 

A constant number of target cells (1×103 cells/well) were then 

co-cultured with the different effector cell dilutions prepared 

in a 96-well plate to test several effector/target cell ratios. 

The final combined volume was 100 µL/well. The effec-

tor/target cells were incubated 6 hours at 37°C humidified 

incubator with 5% CO
2
. The cytotoxic activity of NK-cells 

was assessed by a Cytotox 96 non-radioactive cytotoxicity 

assay (Promega Corporation, Fitchburg, WI, USA). Briefly, 

50 µL supernatant from the cell culture was collected and 

was moved to the new 96-well round-bottom plate. Then, 

50 µL of the lactate dehydrogenase (LDH) substrate mixture 

was added to each well and incubated for 30 minutes at room 

temperature, protected from light. The LDH that was released 

upon cell lysis was measured in the supernatant by optical 

density (OD) measurement at 490 nm. Target cell lysis was 

calculated as: (OD of sample − OD with spontaneous release 

of LDH from target cells − OD with spontaneous release of 

LDH from effector cells) × 100/(OD with maximal release 

of LDH from target cells − OD with spontaneous release of 
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LDH from target cells). All experiments were performed in 

triplicate.

Immunophenotyping of splenocytes
Specific leukocyte subtypes of cells derived from mouse 

spleen were also determined by immunofluorescent antibody 

staining and analyzed with flow cytometry.  Lymphocyte 

subpopulations were identified and gated using forward 

versus side scatter characteristics. All monoclonals were 

directly conjugated and were obtained from BD Biosci-

ences (San Jose, CA, USA). Th cells (CD4+), cytotoxic 

T-cells (CD8+), T-cells (PE-CD4+, FITC-CD8+), B-cells 

(PE-CD19+, FITC-B220[CD45R+]), NK-cells (CD16+), 

macrophages (PE-CD11b+; FITC-CD14+), and monocytes 

(CD14+) were identified using the anti-mouse antibodies. 

 Thereafter, approximately 5×105 cells were resuspended in 

flow cytometry buffer (2% FBS, 0.02% sodium azide in PBS) 

containing Fc-block to reduce nonspecific antibody binding. 

Cells were then incubated in the dark with the appropriate 

fluorochrome-conjugated antibody (10 µL of 1 µg/mL) for 

30 minutes at 4°C. Afterwards, cells were washed twice with 

500 µL FACS (fluorescence activated cell sorter) buffer, and 

flow cytometry analysis was performed on the Cytomics™ 

FC 500 Flow Cytometer (Beckman Coulter). Control samples 

were matched for each fluorochrome. Data were analyzed 

using Modfit LT 3.2 (Verity Software House, Topsham, ME, 

USA) software.

Measurement of nitric oxide (NO)
NO production in the primary splenocyte culture medium 

was quantified spectrophotometrically using the Griess 

reagent G2930 (Promega Corporation). The nitrite (NO
2
−) 

present in the supernatant of splenocytes was used as an 

indicator of NO. Nitrite is a stable degradation product of 

NO. Briefly, 50 µL of the splenocyte supernatant was mixed 

with an equal  volume of Griess reagent in a 96-well round-

bottom microtiter plate and incubated at room temperature 

for 15 minutes. The absorbance at 540 nm was measured, 

and the NO concentration was determined using a calibration 

curve, with sodium nitrite as a standard chemical.

Measurement of serum cytokine level
The level of the cytokines (interleukin [IL]-1β, IL-6, tumor 

necrosis factor [TNF]-α, interferon [IFN]-γ, IL-12p70, 

and IL-10) in serum was determined using Multiplex Bead 

Suspension Array System (Bio-Rad Laboratories, Hercules, 

CA, USA). The cytokine multiplex bead suspension array 

kit was purchased from Bio-Rad Laboratories. Briefly, each 

set of premixed beads coated with the target antibodies was 

added to a well, and incubated with the sample in a 96-well 

round-bottomed microtiter plate to react with specific 

 analytes. Then, premixed detection antibodies were added 

to the wells followed by a fluorescently labeled reporter 

molecule that specifically binds the analyte. Standard curves 

for each cytokine were generated using the standard control 

concentrations provided in the kit. Each step requires specific 

incubation time, with shaking at room temperature and wash-

ing steps. All washes were performed using a Bio-Plex Pro™ 

(Bio-Rad Laboratories) wash station. Finally, the samples 

were then read using the Bio-Plex suspension array reader, 

and data acquisition and analysis were carried out with the 

five-parameter logistic method.

Statistical analysis
All data are presented as the mean ± standard error of the 

mean. The mean values among different groups were ana-

lyzed and compared using one-way analysis of variance 

(ANOVA) followed by subsequent multiple comparison 

test (Tukey) with Graph Prism (GraphPad Software, La 

Jolla, CA, USA) version 5.0 software packages. One-way 

ANOVA with repeated measurements followed by Tukey’s 

test was applied to test the influence of ZnO NPs on body-

weight gain. A P#0.05 was considered to be statistically 

significant.

Results
cell viability study
The influence of ZnO NP size and charge on immune cells 

remains unclear. To clarify this, using four types of ZnO 

NPs, we examined in vitro cell viability. The effect of ZnO 

NPs on the viability of Raw 264.7 cells was examined using 

CCK-8 assay, and ZnCl
2
 was used as a positive control group 

(Figure 1). ZnO NPs at the concentrations 0–5 µg/mL had 

minimal effect on the viability of Raw 264.7 cells, although 

they significantly reduced the viability at a higher concen-

tration range (10–80 µg/mL) after 24 hours incubation. To 

compare the potency of each ZnO NP, the half maximal 

effective concentration (EC
50

) value was calculated according 

to sigmoidal dose–response regression (Table 1). The range 

of EC
50

 of ZnO NPs was 6.584–8.413 µg/mL: ZnOAE100(+) 

exerted the highest cytotoxicity against Raw 264.7 cells 

(EC
50

 =7.499 µg/mL), while the cytotoxicity strength of 

other ZnO NPs was ZnOAE100(−) . ZnOSM20(+) . ZnOSM20(−) . 

ZnCl
2
 in descending order. Of note, ZnCl

2
 was less cytotoxic 

than ZnO NPs (EC
50

 =14.82 µg/mL). Additionally, EC
50

 

values of 100 nm-sized ZnO NPs were higher than those of 
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Figure 1 effect of different sized and electrostatically charged ZnO NPs on the viability of raw 264.7 cells. cells were incubated, with indicated concentrations of ZnO NPs 
for 24 hours: (A) ZnOSM20(+), (B) ZnOSM20(−), (C) ZnOae100(+), (D) ZnOae100(−), and (E) Zncl2. DMeM media was used as a negative control. cell viability was then determined 
by a ccK-8 assay.
Notes: all values are presented as mean ± SeM of three experiments conducted in triplicate. Percentages were also calculated in reference to the control well (0). *P,0.05; 
**P,0.01, and ***P,0.001 versus control well (0). ae = american elements (los angeles, ca, USa); ccK-8 = cell counting Kit-8 (Dojindo Molecular Technologies, Inc., 
rockville, MD, USa); SM = Sumitomo Osaka cement co, ltd, (Tokyo, Japan).
Abbreviations:  DMEM, Dulbecco’s Modified Eagle’s Medium; NP, nanoparticle; SEM, standard error of the mean; ZnCl2, zinc chloride; ZnO, zinc oxide.

20 nm-sized ZnO NPs. Moreover, positively charged NPs 

showed higher cytotoxicity compared with their positively 

charged counterpart, suggesting that the size and charge of 

ZnO NPs could affect their cytotoxicity.

Immunophenotyping
ZnO NP treatment slightly induced the alteration in cell 

distribution of splenocytes (Table 2). While Th (CD4+) 

and cytotoxic T (CD8+) cells accounted for 16.6% and 

9.1%, respectively, of the control, the distribution of Th 

cells and cytotoxic T-cells in splenocytes of treated groups 

(ZnOSM20(+/−), ZnOAE100(+/−)) was changed to 14.66%/9.18%, 

15.44%/11.62%, 14.53%/10.22%, 16.80%/11.60%, 

 respectively. Notably, the percentage of Th cells was signifi-

cantly reduced when treated with ZnOAE100(+) as compared 

with control (Table 2). Moreover, the ratio of CD4+ T-cells 

to CD8+ T-cells, which are subpopulations of T-cells (Th 

cells and cytotoxic T-cells), significantly changed from 

1.634-fold to 1.301-fold in ZnOAE100(+)-fed mice. However, 

little differences were noted in the proportion of B-cell, 

NK-cell, macrophage, and monocyte subpopulations.

Innate, cell-mediated immune response 
(DTh and mitogenic response)  
against ZnO NPs
To assess the effect of ZnO NPs on regulation of innate 

immune response, NK-cell activity was examined using 

NK-sensitive YAC-1 target cells. As shown in Figure 2, 

Table 1 ec50 values (24 hours growth inhibition) of ZnO NPs on raw 264.7 cells

ZnO ZnCl2
SM20(+) SM20(-) AE100(+) AE100(-)

ec50 (µg/ml) 8.419 10.710 7.499 8.166 14.820

95% confidence limit (µg/ml) 7.109–9.730 5.087–16.330 6.584–8.413 7.124–9.207 8.866–20.780

Notes: all values are presented as mean ± SeM of the three experiments conducted in triplicate; (+), positive charge; (−), negative charge. ae = american elements (los 
angeles, ca, USa); SM = Sumitomo Osaka cement co, ltd, (Tokyo, Japan).
Abbreviations: ec50, half maximal effective concentration; NP, nanoparticle; SeM, standard error of the mean;  Zncl2, zinc chloride; ZnO, zinc oxide.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2014:9 (Suppl 2) submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

200

Kim et al

a decrease of NK-cell activity was observed in the mice 

treated with ZnO NPs. At the ratio of 100:1, ZnO NPs sig-

nificantly inhibited NK-cell activity. Next, we examined the 

effect of ZnO NPs on cell-mediated immunity (CMI) using 

DTH response on C57BL/6 mice. The swelling volume was 

similar after 24-hour and 48-hour challenges (Table 3). An 

increased DTH response to ZnO NPs was observed. However 

these differences were not statistically significant. Further, 

we analyzed the mitogen-stimulated proliferative responses 

of T- and B-lymphocytes (Figure 3). These responses were 

elevated compared with control but not significant. Taken 

together, ZnO NPs affected NK activity but not CMI.

NO production of splenocytes
NO is a reactive form of nitrogen and is an important cel-

lular signaling molecule involved in several biological pro-

cesses, and moreover, serves as one of the key mediators of 

immune defense. To further explore the impact of ZnO NPs 

Table 2 Immunophenotype of splenocytes in c57Bl/6 mice fed with ZnO NPs for 14 days

Administration PBS ZnOSM20(+) ZnOSM20(-) ZnOAE100(+) ZnOAE100(-)

cD4+cD8− a 16.60±0.60 14.66±0.80 15.44±0.54 14.53±1.37* 16.80±0.69
cD4−cD8+ b 9.10±1.18 9.18±0.42 11.62±0.53 10.22±0.64 11.60±0.33
cD4+cD8+ c 0.40±0.04 0.32±0.04 0.32±0.04 0.38±0.11 0.28±0.05
B220+cD19− 0.78±0.09 0.68±0.04 0.80±0.07 0.83±0.09 0.60±0.03
B220−cD19+ 8.70±1.09 7.82±0.38 7.20±0.42 9.02±1.32 5.98±2.23
B220+cD19+ d 51.58±1.56 51.78±2.52 53.70±0.54 53.50±0.55 52.92±1.04
cD16+ e 58.55±1.30 59.02±2.26 59.88±0.53 55.44±6.69 58.76±1.17
cD11b+cD14− 6.80±0.27 6.54±0.22 6.80±0.34 6.52±0.71 5.56±0.23
cD11b−cD14+ 0.25±0.03 0.42±0.06 0.26±0.06 0.30±0.03 0.30±0.04
cD11b+cD14+ f,g 1.23±0.06 1.04±0.07 1.04±0.12 1.50±0.21 0.94±0.07

Notes: Values are presented as mean ± SeM, n=5; aT helper cells; bcytotoxic T-cells; cT-cells; dB-cells; eNK-cells; fMacrophages; gMonocytes; *Nonparametic Tukey’s multiple 
comparison test, P,0.05 versus PBS. ae = american elements (los angeles, ca, USa); SM = Sumitomo Osaka cement co, ltd, (Tokyo, Japan).
Abbreviations:  NP, nanoparticle; PBS, phosphate buffered saline; SeM, standard error of the mean;  ZnO, zinc oxide.
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Table 3 Delayed type hypersensitivity in ZnO NP-primed mice

Treatment Foot-pad swelling (mm)

24 hours 48 hours

Saline ZnO NPs Saline ZnO NPs

ZnOSM20(+) 6.780±1.484 7.242±1.318 6.8230±0.3485 7.8120±0.7510
ZnOSM20(−) 1.5230±0.9862 1.202±1.103 1.5570±0.3313 1.7060±0.5497
ZnOae100(+) 10.5500±0.4293 11.700±2.053 7.1400±0.6409 10.480±1.521
ZnOae100(−) 4.3170±0.8631 4.718±1.730 1.3400±0.7702 1.3380±0.6657

Notes: Measurement of footpad swelling in mice induced by DTh response after 24-hour and 48-hour challenges. Values are presented as mean ± SeM, n=5. ae = american 
elements (los angeles, ca, USa); SM = Sumitomo Osaka cement co, ltd, (Tokyo, Japan).
Abbreviations: DTh, delayed-type hypersensitivity; NP, nanoparticle; SeM, standard error of the mean; ZnO, zinc oxide.
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Figure 3 Mitogenic response of mouse splenocytes. Splenocytes (1×106 cells/ml) were incubated for 24 hours with concanavalin a or lipopolysacchride to evaluate 
T-lymphocyte (A) and B-lymphocyte (B) proliferation, respectively.
Notes: Values are presented as mean ± SeM, n=5. ae = american elements (los angeles, ca, USa); SM = Sumitomo Osaka cement co, ltd, (Tokyo, Japan). 
Abbreviations: Nc, normal control; SeM, standard error of the mean; ZnO, zinc oxide.

on immune defense, we measured the level of splenic NO 

production after 14 days treatment. As shown in Figure 4, a 

significant decrease in NO level occurred after administra-

tion of ZnOSM20(−) and ZnOAE100(+/−). However, there was no 

substantial difference of NO level in ZnOSM20(+)-fed mice as 

compared with the control.

Serum cytokine level
To explore immune status change induced by ZnO NPs we 

examined serum pro- and anti-inflammatory cytokine (IL-1β, 

IL-6, TNF-α, IL-12p70, IFN-γ, and IL-10) levels at the end-

point treatment. We found that overall, the level of serum 

cytokines in ZnO-fed mice was lower than saline-fed mice 

(Figure 5). In particular, serum levels of pro-inflammatory 

cytokines (IL-1β, TNF-α, and IL-12p70) in ZnO NP-fed mice 

were ZnOSM20(+) . ZnOSM20(−) . ZnOAE100(+) . ZnOAE100(−) in 

descending order. Accordingly, the level of IL-10, an anti-

inflammatory cytokine in ZnO NP-fed mice tended to be 

significantly lower than PBS-fed mice. By contrast, there 

was no significant change of cytokine level in ZnOSM20(+)-fed 

mice. In terms of size and charge effect on serum cytokine 

level, the size and charge were correlated to serum cytokine 

level. Further, the size appears more correlated to the serum 

cytokine than the charge. Taken together, our data show that 

oral intake of ZnO NPs in mice could drop the level of serum 

cytokines, importantly implying the possible suppression of 

immune status of C57BL/6 mice fed with ZnO NPs.

Discussion
Convincing evidence has shown that ZnO NPs would have a 

potential to be accumulated to several organs such as liver, 

spleen, kidneys, brain or heart after deliberately placed in 

the body.32 In this regard, ZnO NPs would encounter diverse 

immune cells in the human body, thus damaging immune 

tissues and organs. However, the immunotoxicity of ZnO 

NPs in relation to the size and charge of ZnO NPs is unclear. 

To address this issue, we assessed the immunotoxicity of 

ZnO NPs in vitro and in vivo and explored their underlying 

mechanism. First, the in vitro study indicates that ZnO NPs 

induce cytotoxicity to immunocytes via cell viability assay, 

which is influenced by the size and charge of ZnO NPs. To 

validate this, we examined cell viability using colorimetric 

(CCK-8 assay) in Raw 264.7, macrophage cell line.

Cell viability assay showed that ZnO NPs with different 

size and electrostatic charge have differential cytotoxicity 

to Raw 264.7 cells (Figure 1). Interestingly, the positively 
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Figure 5 ZnO NPs suppress cytokine release. after 14 days exposure, mice were retro-orbital bled, and serum was isolated by centrifugation and examined for levels of 
Il-1β (A), Il-10 (B), Il-12p70 (C), TNF-α (D), and IFN-γ (E) using Multiplex Bead array System (Bio-rad laboratories, hercules, ca, USa).
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charged NPs exerted higher cytotoxicity against Raw 264.7 

cells than the negatively charged ones. ZnO NP-induced 

cytotoxicity could be affected by the release of Zn2+ ions 

through the dissolution of ZnO NPs within aqueous culture 

media.33–35 In terms of EC
50

, we found that ZnO NPs would 

cause cytotoxicity at lower doses (Table 1). This difference 

might be due to inherent features of metal oxides: free Zn2+ 

ions and oxidative radical-generated oxide, and ZnO NP 

surface charge, would synergistically exert cytotoxicity to 

eukaryotic cells. In this experiment, another merit is the 
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validity of in vitro toxicity test using the Raw 264.7 cell 

line. While, this cell line is a well-known standard cell 

line for in vitro toxicity testing, in vitro toxicity testing for 

nanoparticles has not been established. Collectively, we have 

demonstrated that macrophage Raw 264.7 cells exposed 

to ZnO NPs show different sized- and charged-dependent 

cytotoxicity, as was observed by others.19,36,37 Further, the 

dose-dependent decrease in cell viability by exposure with 

ZnO NPs might be related to the dissolution and release of 

Zn2+ ions, as previously observed in in-vitro studies.33–35,38–40 

This Zn2+ ion would affect cellular differentiation and cel-

lular metabolism solely or via the interaction with proteins 

in vitro and in vivo.

Since, in vitro culture cannot reflect the complexity of 

an in vivo system, which is preferred for the toxicological 

evaluation, we next examined the immunotoxicological 

parameters induced by oral intake of ZnO NPs in mice. Our 

in vivo study indicates that the different sized- and charged-

ZnO NPs could cause immunotoxicity in ZnO NP-fed mice, 

of which nature is an immunosuppression. This stems from 

our immunotoxicological data. Prior to immunotoxicologi-

cal evaluation, we checked the weight-related parameters 

(bodyweight and coefficient of spleen to bodyweight). Of 

these, only the reduced bodyweight gain was noted (data not 

shown), suggesting the potential immunotoxicity of ZnO NPs 

in vivo. Since in vitro data showed ZnO-induced toxicity in 

immunocytes, bodyweight change coupled with in vitro data 

might be considered for predicting potential immunotoxicity 

of nanoparticles.

To explore the effect of ZnO NPs on the CMI, we mea-

sured the DTH reaction to ZnO NPs, splenocyte prolifera-

tion in response to Con A and LPS, NK-cell activity, and 

splenocyte phenotyping. Overall, no significant change was 

observed in DTH responses (Table 3) and T- and B-cell 

proliferation (Figure 3). By contrast, we found a slight 

change in splenocyte phenotypes (Table 2). Since CD4+ 

cells can help the proliferation and differentiation of Th 

cells, and CD8+ cells can exert cytotoxicity and regulate 

CD4+ cells, the ratio of CD4+/CD8+ can reflect the overall 

immune status in the host. Of note, there was the decreased 

percentage of CD4+ Th cell subpopulation in ZnOAE100(+)-fed 

mice as compared with control mice (Table 2). Consistently, 

the ratio of CD4+/CD8+ was reduced, which might imply 

systemic immune  suppression. These CMI variables do not 

reveal specific function of the innate arm in CMI.  Moreover, 

CD16 (FcγRIII) alone can be a marker for NK, as this 

surface marker is shed from the surface after activation of 

NK-cells.41,42 Only ZnOAE100(+)-fed mice showed a decreased 

level of CD16 among other groups fed with ZnO. Collective 

evidence showed that loss of CD16 on NK-cells is associ-

ated with reduced antibody-mediated cellular cytotoxic-

ity and weaker antitumor response.43 Therefore, levels of 

CD16 could influence NK-cell function. To address this, we 

checked NK-cell activity. Astonishingly, NK-cell activity at 

the ratio of 100:1 was significantly decreased in all ZnO NP-

fed mice compared with control (Figure 2) and most promi-

nent on the ZnOAE100(+)-fed group. However, further research 

is needed to prove this inference, such as development of 

tumors. NK-cells were defined as lymphocytes mediating 

cytotoxicity against certain tumors and virus-infected target 

cells. In this point, the suppression of NK-cell activity may 

reveal the weakened innate defense in CMI, consequently 

getting vulnerable to opportunistic dangers such as infec-

tion, cancer, and stress. Given this, we hypothesized that 

if these data would be valid, humoral immune mediators 

should be co-regulated toward the immune suppression. To 

verify this, we selected two humoral immune parameters 

(NO and cytokines).

First, we checked NO production from splenocytes of 

ZnO-fed mice. NO is a reactive nitrogen species which 

plays an important role in the destruction and suppression 

of many intracellular pathogenic organisms.44,45 NO acts as 

an effector molecule in macrophage-mediated cytotoxicity.46 

However, the NO production of macrophages was regulated 

and required to be optimized by CD4+ T-cells. We found that 

three oral intakes of ZnO NPs, except ZnOSM20(+), significantly 

decreased NO production of splenocytes (Figure 4). Viewed 

together, this is in line with the suppression of NK-cell activ-

ity and the ratio of CD4+/CD8+ observed.

Since NO could contribute to the regulation of immune 

reaction by modifying the release of cytokines,47–49 finally we 

quantified the serum cytokine release in ZnO-fed mice. To 

further analyze the several facets of in vivo immunotoxicity 

in ZnO NP-fed mice, we selected five kinds of pro- and anti-

inflammatory cytokines (IL-1β, TNF-α, IL-12p70, IFN-γ, 

and IL-10). Cytokine assay showed that the overall level of 

serum cytokines in ZnO-fed mice decreased as compared 

with control (Figure 5). Of these cytokines, in line with the 

concentration in serum, IL-1β and IL-10 were prominent in 

detecting the cytokine change in ZnO NP-fed mice. These 

cytokines were the representative pro- and anti-inflamma-

tory cytokines, respectively. The decreased level of these 

opposite cytokines in ZnO NP-fed mice might be ascribed 

to nonspecific immune suppression or even an imbalance 

between pro- and anti-inflammatory cytokine networks. The 

limitation of this study is the lack of different dose usage 
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in vivo. To gauge this phenomena in detail, further work is 

underway.

Conclusion
Synthesizing these immunotoxicological data in vivo 

and in vitro, our results indicate that different sized and 

charged ZnO NPs would cause in vitro and in vivo immu-

notoxicity, of which nature is a minor immunosuppression. 

This has important implications for individuals who may 

be chronically exposed to ZnO NPs. Further, this study 

might offer the possibility of the new immune parameters 

such as cytokine and NO for gauging immunotoxicity for 

nanoparticles.
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