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Abstract

We postulate that three fundamental elements underlie a decision making process: percep-

tion of time passing, information processing in multiple timescales and reward maximisation.

We build a simple reinforcement learning agent upon these principles that we train on a ran-

dom dot-like task. Our results, similar to the experimental data, demonstrate three emerging

signatures. (1) signal neutrality: insensitivity to the signal coherence in the interval preceding

the decision. (2) Scalar property: the mean of the response times varies widely for different

signal coherences, yet the shape of the distributions stays almost unchanged. (3) Collapsing

boundaries: the “effective” decision-making boundary changes over time in a manner remi-

niscent of the theoretical optimal. Removing the perception of time or the multiple timescales

from the model does not preserve the distinguishing signatures. Our results suggest an

alternative explanation for signal neutrality. We propose that it is not part of motor planning.

It is part of the decision-making process and emerges from information processing on multi-

ple timescales.

Author summary

Humans and animals integrate sensory information before making a decision. The inte-

gration rate varies depending on the task. While driving could require quick reactions,

evaluating the authenticity of a painting typically requires long observations. Conse-

quently, the concept of representations created over multiple timescales appears neces-

sary. Nevertheless, there is a lack of theoretical research that exploits multiple timescales,

despite experimental evidence for the variety of integration rates. We, therefore, devel-

oped a decision-making model based on simple integrators with multiple characteristic

times. We analysed its behaviour on a highly volatile, biologically relevant task. Through

reward maximisation based on trial and error, the model discovers an effective strategy

that is surprisingly different and more robust than the “classical” single timescale

approach. This learned strategy exhibits a remarkable agreement with experimental
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findings, suggesting a fundamental role of multiple timescales for decision-making. Our

abstract model achieves a degree of biological realism while performing robustly in differ-

ent environments.

1 Introduction

Perceptual decision-making is one of the most fundamental interactions of a biological agent

with its environment. Perceptual decision-making processes have been long studied in the

context of operant conditioning [1]. In these scenarios, an animal learns to associate choices

and consequences by trial and error. Sub-optimal performance is considered a consequence of

imperfect learning or the reflex of the learning strategy itself [2].

Outside this context, the research on perceptual decision-making has mainly focused on

tasks where uncertainty (typically in the form of noisy signals) and time (e.g., duration of the

observation and response delays) play a pivotal role [3–7]. In such scenarios, the errors made

by the subject at the end of a training phase, as well as the relevant performance metrics (e.g.
accuracy or speed of response), are deemed informative of the cognitive mechanisms involved

[8–11]. There have been numerous attempts to compare the behaviour of animal subjects to

the performance of different algorithms and determine how optimal the displayed behaviour

is [8, 12–16].

One of the key ideas in perceptual decision-making is accumulating evidence over time [6,

8, 17–20]. The drift-diffusion model (also known as the ‘bounded evidence accumulation’

model) consists of two or more competing traces. These traces accumulate sensory evidence

for different choices; the first trace to hit a threshold makes the associated option the final deci-

sion [21]. The drift-diffusion model is a continuous-time variant of the sequential probability

ratio test [22, 23]. In the case of two-alternative forced choices, it is optimal in selecting

between two hypotheses. Despite its simplicity, this model accounts for many psychophysical

and neural observations. Examples are the distribution of response times and performance

when varying sensory coherence [22, 23].

Notwithstanding its success, there are several alternatives to the standard drift-diffusion

model [8, 24, 25] to account for unexplained phenomena such as primacy and recency effects,

asymptotic accuracy, and “fast errors” [26–28]. Of notable importance is the Ornstein–Uhlen-

beck model, which modifies the standard drift-diffusion model by including a decay term in

the dynamics of the accumulation. Although the Ornstein–Uhlenbeck model can account for

many experimental observations, including neurophysiological ones [24, 28], it introduces a

characteristic timescale over which the model ‘forgets’ the past sensory information. A com-

mon approach in the literature is to treat the timescale of the accumulation as a free parameter

that is optimised to match experimental data [28, 29].

Here we take a different approach. We study a decision-making problem within the context

of reinforcement learning. The task is is intended to mimic a typical perceptual decision mak-

ing setup [30]: an actor-critic agent has the task of determining whether a noisy signal has a

positive or negative mean value. This agent can also decide when to decide, i.e., it can choose

to wait instead of making a decision. We, thereby, postulate that the concept of reward maxi-

misation is inherent in such problems.

Whilst not theoretically impossible, it is not straightforward to devise a biologically plausi-

ble mechanism to tune a single timescale parameter to the statistics of a task. To circumvent

this issue, we propose a more biologically plausible process. The agent receives the signal from

multiple integrators, each with a different time constant. Via reinforcement learning, the agent
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learns how to weigh them appropriately to maximise the collected reward. We hypothesise

that multiple timescales lead to robust performance across different tasks since it is unrealistic

to expect one time constant to fit any problem. In the context of our model, we will explore

robustness when varying the task difficulty, i.e. the signal to noise ratio, and contrast it with

models of one time constant.

Beyond the computational advantage, such approach is consistent with the ample evidence

of the coexistence of many timescales in brain functionality [31–35], even at the single neuron

level [36–38], and for reward memory in reinforcement learning [39].

Another fundamental element of our model is that the agent perceives the passage of time.

The agent has a “clock” available, several integrators with various time constants that increase by

a fixed amount at each time step. In our model, we pair the clock’s time constants with the time

constants of the signal integrators. We do this to facilitate our mathematical analysis. However,

we expect multiple time constants in the clock to implement a scalable population code for time,

akin to what experimentally observed [40]. And, more specifically, to allow for more complex

decision-making boundaries. We contrast an agent without any clock mechanism, an agent

with a “single time constant” clock, and an agent with a multiple timescales clock. Our results

highlight the performance advantages that a multiple timescales clock brings in.

We evaluate our agent concerning three properties observed in experimental data or theo-

retical analyses of decision-making processes. (1) Signal neutrality. We use this term as a short-

hand to denote the observation that, for several hundred of milliseconds before the decision,

the neurons in the lateral intraparietal cortex that correlate with the decision show the same

response to different signal-to-noise ratios, with a time course of the firing activity that is indis-

tinguishable in the different cases [5, 41]. One prior explanation is that the signals in that stage

prepare the motor action. Here we evaluate this behaviour as part of the decision making pro-

cess. (2) Scalar property or Weber’s law [42]. The coefficient of variation (CV, the ratio of the

standard deviation to the mean) remains constant as the task difficulty varies. (3) Collapsing

boundaries. In the beginning, the agent should wait to integrate information to make an

informed decision. However, the decision time is not unlimited; as time passes, the decision

boundaries decrease to force the agent to act.

Our setup has similarities to a Partially Observable Markov Decision Process [43] with

opportunity costs. The agent cannot access the real state of the world (in our case, the mean of

the noisy signal and the time elapsed from the beginning of the trial). Instead, it has access to

several observations at each time step. These observations are continuous variables that inte-

grate noisy information about the state in terms of signal information and the time passed.

These observations progressively correlate with the world’s true state as the integration filters

out the noise. The option to defer this decision in case of insufficient evidence complements

the desirable action to find the sign of the stimulus. Yet, the presence of a time limit effectively

imposes a cost on deferring the decision to accumulate more evidence.

2 Methods

2.1 Task definition

Inspired by classical random dots experiments [30], we model a two-alternative forced-choice

task as a decision over the sign of the mean value of a noisy signal s(t) (see Fig 1). The signal

(black line) consists of independent samples from a Gaussian distribution of mean μ and stan-

dard deviation σ, each drawn every time step Δt = 10 ms.

The agent is not required to decide at a prescribed time, it has the option to wait and then

see another sample, or to perform one of two actions, ‘left’ and ‘right’, respectively associated

with the decision μ< 0 and μ> 0 at each step. When an action is made, the episode ends, and
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a reward is delivered only if the agent correctly guessed the sign of μ; otherwise, the agent

receives nothing. Each episode has a maximum duration Tmax. When Tmax is reached, another

‘wait’ from the agent leads to the end of the episode and no reward is delivered.

Whilst σ is constant, the value of μ is instead re-sampled at the beginning of each episode

from a Gaussian distribution p(μ) of zero mean and variance σμ. This second-order

Fig 1. Task and model schematic. The environment corresponds to the random movement of a group of dots on a screen, which is represented as a

uni-dimensional noisy signal s(t) (black line), sampled at discrete time steps Δt = 10 ms from a Gaussian distribution of mean μ and variance σ2. The

task requires the subject to guess the sign of μ, by moving a lever to the right (positive sign) or to the left (negative sign); the subject can ‘choose when to

choose’, within a maximum episode duration Tmax. The learning agent integrates the signal over different timescales τ (xs
t
ðtÞs, blue lines); the agent

integrates a constant input (depicted in red as a constant from the start of the episode) over the same timescales (xc
t
ðtÞs, yellow-red lines) to simulate an

internal clock mechanism estimating the passage of time. In both cases, the darker the colour the longer the corresponding timescale. At each time

instance, the weighted sums of the integrators (far right) are fed into a decision layer (the actor) that computes the probability of choosing ‘left’ and

‘right’, thus terminating the episode, or to ‘wait’ to see another sample of s(t). If the subject gives the correct answer (the guessed sign coincides with the

actual sign of μ) within the time limit, a reward is delivered; otherwise, nothing happens. In any case, a new episode starts. The agent learns by

observing the consequences (obtained rewards) of its actions, adapting the weights assigned to the xs
t
ðtÞs and xc

t
ðtÞs. During learning, the model

estimates at each step t the total future expected reward V(t) (the critic) for the current episode as a linear summation of the integrators. Learning of the

parameters is accomplished through a standard actor-critic reinforcement learning model, where the reward delivered by the environment is used to

update the V value function, which is then used to update the actor’s parameters (see S1 Text for more details)

https://doi.org/10.1371/journal.pcbi.1009393.g001
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uncertainty makes the agent experience a wide range of values of μ, putting severely to the test

its ability to generalise to episodes of varying signal-to-noise ratios.

2.2 Relationship between μ and random dots coherence

In random dots experiments, usually a number of dots moves randomly on a screen, with a

fraction of them moving instead coherently in one direction (either left or right in different

episodes). The percentage of coherently moving dots (‘coherence’) is a measure of how diffi-

cult an episode is, not unlike |μ| in the model (with sign of μ corresponding to a coherent

movement towards left or towards right respectively). To make the parallel between the pres-

ent task and the experimental settings more evident, in the following we will show results

using either |μ| or the coherence of the signal, the two measures being related by:

jmj ¼ 0:216
coherence

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100 � coherence
p : ð1Þ

In fact, in [5], every three frames on the screen, a fraction c (‘coherence’) of dots are moved

coherently in the chosen direction by dx, while the other 1 − c dots are randomly displaced.

We assume that each of the randomly moving dots is subjected to a change Δx in their position

following a probability distribution, with hdxi = 0 and Var½dx� ¼ s2
x. Imagining that neurons

with different receptive fields help to estimate the average movement of the dots at each time

step, we end up with a signal s of mean:

m � hsi ¼ c dx ð2Þ

and variance:

s2 � Var½s� ¼ ð1 � cÞ s2
x ð3Þ

Then, we have the relationship:

m

s
¼

c
ffiffiffiffiffiffiffiffiffiffiffi
1 � c
p

dx
sx

ð4Þ

or:

m /
coherence

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100 � coherence
p ; ð5Þ

where we have expressed the coherence as a percentage. Eq 1 is a special case of this one, with

a proportionality constant chosen to match experimental ranges.

2.3 An agent over multiple timescales

The section is dedicated to the definition of the proposed model. In contrast to previous

research works on the decision making process, the agent makes decisions thanks to a reser-

voir of multiple timescales of integration and an estimate of the passage of time. The agent

comprises nτ = 10 leaky integrators xs
t

(dark blue to cyan lines in Fig 1) that independently

integrate the noisy signal s(t) over different timescales τ:

_xs
t
¼ �

xs
t
� sðtÞ
t

; ð6Þ

and correspondingly nτ leaky integrators xc
t

(yellow to red lines in Fig 1) that integrate a con-

stant input (a ‘time signal’, here valued 1), to account for the possible effects of an internal
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‘clock’:

_xc
t
¼ �

xc
t
� 1

t
: ð7Þ

Both the xs
t

and the xc
t

are reset to 0 at the beginning of each episode (note, therefore, that

xc
t
ðtÞ ¼ 1 � e� t

t � 0 for all t). Moreover, we added noise to the values of the integrators at a

given time (Eqs 6 and 7) redefining:

xs
t
ðtÞ  xs

t
ðtÞ þ xs

t ð8Þ

xc
t
ðtÞ  xc

t
ðtÞ þ xc

t ð9Þ

x
s
t
ðtÞ and x

c
t
ðtÞ are drawn independently for each t and each τ from a Gaussian distribution

with zero mean and standard deviation σI. The x
s
t
ðtÞs and x

c
t
ðtÞs are introduced to model the

intrinsic noise implied in any plausible biological implementation of the integration process,

such as fluctuations in the instantaneous firing rate of a network of neurons.

The τs are chosen on a logarithmic scale (i.e., τi = α τi−1, with α a suitable constant), with τ1

= τmin = 100 ms and tnt ¼ tmax ¼ 10 s, so as to allow the agent to accumulate information over

a wide range of different timescales. The specific choice of the distribution of timescales is not

critical to the following results, assuming that the values of τs are densely spread over a wide

range (see Results and S1 Text).

At each time step t, the agent computes six weighted sums, three for the signal xs
t
ðtÞ and

three for the clock xc
t
ðtÞ. The first four of these weighted sums are related to the two possible

actions:

Ss
rightðtÞ �

X

t

y
s
right;t x

s
t
ðtÞ ð10Þ

Sc
rightðtÞ �

X

t

y
c
right;t x

c
t
ðtÞ þ bright ð11Þ

Ss
leftðtÞ �

X

t

y
s
left;t xtðtÞ ð12Þ

Sc
leftðtÞ �

X

t

y
c
left;t x

c
t
ðtÞ þ bleft ð13Þ

where bright and bleft are constants and can be described as the propensity of the agent to make

the corresponding actions before the beginning of an episode. The Sss and the Sc carry infor-

mation, respectively, on the signal and the time elapsed since the beginning of each episode.

Even though the xc
t

increase with time, the Scs can be non-monotonic, something that will

play an important role in implementing an effective ‘moving threshold’ for the decision

mechanism.

The other two sums are instead related to the ‘wait’ option:

Ss
waitðtÞ �

X

t

y
s
wait;t jx

s
t
ðtÞj ð14Þ

Sc
waitðtÞ �

X

t

y
c
wait;t x

c
t
ðtÞ þ bwait; ð15Þ
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where the absolute value in Eq 14 is taken to account for the intuition that a signal and its neg-

ative mirror should equally affect the agent’s propensity to defer a decision. The constant bwait
has similar meaning to the biases bright and bleft, but related to the ‘wait’ action. By setting:

Sx � Ss
x þ S

c
x ð16Þ

(with x 2 {left, right, wait}), the six sums are then non-linearly combined through a softmax

function (the circles corresponding to the actor on the right of Fig 1) to define a probability

distribution over the possible actions:

prightðtÞ ¼
eSrightðtÞ

eSleftðtÞ þ eSwaitðtÞ þ eSrightðtÞ
ð17Þ

and analogous expressions for ‘left’ and ‘wait’. By definition, pleft(t) + pwait(t) + pright(t) = 1 for

every t. The agent then randomly chooses an option according to the three probabilities.

The agent is thus completely determined by the choice of the six sets of nτ weights: y
s
left;t,

y
s
wait;t, y

s
right;t, y

c
left;t, y

c
wait;t, y

c
right;t, and three constant offsets bleft, bwait, and bright. We note how

this set of parameters is redundant, because of the way they enter Eq 17. For example, we

could make the substitution bright bright − bwait, bleft bleft − bwait, and bwait = 0 and the

resulting agent would be mathematically equivalent to the original one. We use such redun-

dant definition in order to simplify the description of the model, making it the most symmetric

for ‘left’, ‘right’, and ‘wait’. These weights and offsets are learned by trial-and-error through a

reinforcement learning procedure aiming to maximise reward. All the results shown, if not

otherwise stated, are obtained using the same set of weights, at the end of the training proce-

dure, with Tmax = 2 s, s ¼ 0:18 s� 1
2, σμ = 0.25, and σI = 0.02. Training of the parameters of the

model is achieved through a standard actor-critic reinforcement learning algorithm [43],

which is described in S1 Text. During learning, the model estimates at each step t the total

future expected reward V(t) for the current episode. Such estimate is computed by a linear

summation of the integrators (Fig 1, bottom-right) and is used to establish a moving baseline

to modulate the changes in the model’s weights during training. The parameters of the actor

and the critic are then updated thanks to the utilisation of eligibility traces [43].

2.4 Comparative models

To understand the role of multiple timescales and of the internal clock in the results, we com-

pare the performance of the proposed agent with other decision making models.

1. Single integrator with optimised threshold. This refers to the Ornstein-Uhlenback decision

process [24, 28], which is a generalisation of the standard drift diffusion model [21]. The

model is composed by an integrator with one timescale and a threshold. The dynamic of

the integrator is given by Eqs 6 and 8. A decision is triggered when the latter activity

reaches ± a threshold value Θτ. In our case, the action ‘right’ is made when xs
t
ðtÞ � Yt,

while the agent performs the ‘left’ action when xs
t
ðtÞ � � Yt. Considering the presence of a

single timescale of integration, we will consider multiple versions of the process, each with

a different value of τ. For each model with a specific τ, the threshold Θτ will be optimised

through grid search by maximising the accuracy on the considered task. In this way, we are

certain that the process will exhibit the highest possible performance on the considered

task, or performance that are negligibly distant to its theoretical optimal.

2. Agent with a single timescale. The model refers to a reinforcement learning agent similar to

the proposed one, but with only one timescale of integration. Practically, the agent defini-

tion is again based on Eqs 10–14, but every summation over τ reduces to a single term. The
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total number of parameters in this case is thus nine (y
s
left, y

s
wait, y

s
right, y

c
left, y

c
wait, y

c
right, bleft,

bwait, and bright). As for the single integrator with optimised threshold, we will simulate mul-

tiple versions of the model to vary the timescale of integration τ. We note how, in contrast

to the previous comparative model, this process has an estimate of the passage of time over

one single time constant. For this feature, the process departs from the other decision mak-

ing models in the literature. This agent will help us to understand the role of multiple time-

scales further, providing a baseline where a basic knowledge of the internal clock is present,

but where integration occurs over a single τ.

3. Agent with multiple signal integrators, but without internal clock. The model is again

defined by Eqs 10–14, but without temporal information, that is y
c
left ¼ y

c
wait ¼ y

c
right � 0.

The model will constitute an additional comparison to separate the roles of the availability

of multiple timescales on the signal and on the internal clock mechanism.

Because of the presence of multiple integrators, the proposed agent effectively lowers the

total noise by summing up nτ integrators xs
t

affected by independent sources of noise x
s
t

(Eq 8).

Thus, when comparing the proposed agent with one of the above models that exploits a single

time constant, we rescaled the amount of noise σI affecting the single integrator by a factor αI,
defined as

aI ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
y2
�;t
=max

t
ðy2

�;t
Þ

q
� 1 ð18Þ

where y�;t refers to the optimal weights θright,τ found after training of the proposed model (we

could equivalently use the optimal y left;t, since after training y left;t ’ � yright;t, as it should be

considering the symmetry of the task considered). Thus, αI = 1 when just one of the y�;t is dif-

ferent from 0, i.e. when the agent utilises just one integrator. On the other hand, the maximum

aI ¼
1ffiffiffint
p is attained when the agent weights equally all the integrators. In this way, the total

amount of noise in the single timescale model is effectively equivalent to the one present in the

multiple timescales agent.

2.5 signal neutrality and scalar property measures

To measure signal neutrality, we take the average ΔSright(t) (see Eq 21), aligned to decision

time, for six different coherences (0%, 3.2%, 6.4%, 12.8%, 25.6%, 51.2%); each curve is consid-

ered for an interval between 0 and 600 ms before the decision is taken; if the number of points

to average for a given coherence drops below 100 before the 600 ms, the interval of definition

of that curve is shrunk accordingly. We then rescale all the curves to fit inside the range 0–1, so

that the minimum of the minimum values attained by each curve is 0; and the maximum of

the maxima is 1. Then we compute, for each time, the maximum distance between any pairs of

rescaled curves (this distance is of course always�1 thanks to the rescaling). Finally we take

the average of such maximum distance, and take the inverse: this is the operative measure of

signal neutrality used throughout the paper.

To give a measure of scalar property, we compute the coefficient of variation CV for the dis-

tribution of response times corresponding to six values of coherence (0%, 3.2%, 6.4%, 12.8%,

25.6%, 51.2%). We then take the inverse of the difference between the maximum and the mini-

mum value of CV: this is the reported measure of the scalar property.
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3 Results

First, we analyse how the behaviour of the optimised agent is different from the standard drift-

diffusion model by exploiting integration over a variety of timescales. Fig 2 shows the evolu-

tion of pright(t) (blue line) and pleft(t) (red) during an episode where the correct action is ‘right’

(that is, μ> 0). As expected, pright(t) is for the most part greater than pleft(t) (although this is

unnoticeable in the plot where the probabilities are very small), signalling that the agent

favours the action associated with the correct decision. Nevertheless, both probabilities are

very low most of the time, implying that pwait(t) is often close to one (not shown). Thus, the

agent appears to select a strategy in which decisions are made within short ‘active’ windows of

time during which fleeting bursts of pleft(t) or pright(t) make an action possible. Such strategy is

not trivially associated with the intuitive picture of a process accumulating information over

time until some threshold is met (for instance, see model 1. in section 2.4).

In fact, the agent exploits the information carried by the different integrators by waiting for

their consensus, akin to a majority vote. A short-lived fluctuation in the fastest integrators

would not be enough for a decision. Yet, in conjunction with a longer-lived fluctuation of the

slower integrators, a burst in one of the actions is triggered. Being the consensus fleeting, such

probability bursts are usually quite low (they often stay below a probability of 0.1) and

Fig 2. Learned decision strategy. Evolution of pright(t) (blue line) and pleft(t) (red) during an episode (signal s(t) in dashed grey) where the correct

action is ‘right’ (that is, μ> 0). Decisions are made within short ‘active’ windows of time during which fleeting bursts of pleft(t) or pright(t), corresponding

to the alignment of many integrators, make an action possible. The coloured circles correspond to the values of a subset of 5 of the 10 integrators (slow

to fast associated timescales from top to bottom). The colours (blue to red) represent the ‘tendency’ of an integrator toward a decision. Blues correspond

to positive (toward the ‘right’ action) values, while reds to negative values (toward the ‘left’ action). These tendencies are computed using the average

behaviour of the specific integrator as a reference value. In other words, if the circle is blue, it means that the value assumed by the integrator was higher

than usual at that specific time. Uniformly positive (negative) values for the integrators are associated with bursts of pright (pleft, see times denoted with 1

and 2 in the plot). Outside bursts (point 3) or when a burst withers (point 4), not all the integrators assume low absolute values.

https://doi.org/10.1371/journal.pcbi.1009393.g002
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therefore function as ‘open windows’ paving the way to a decision, more than as ‘funnels’ forc-

ing it. Decisions therefore happen when the different timescales stay in agreement for an

extended period (roughly 100 ms).

This is illustrated in Fig 2 with coloured circles, each row representing the evolution of one

integrator (for a subset of 5 of the 10 integrators, with slow to fast timescales from top to bot-

tom). As expected, inside a burst of pright(t) almost all the integrators present large positive val-

ues (dark blue, see for example temporal instance number 1 in Fig 2). On the other hand,

integrators typically assume negative values (light to dark red) in correspondence of bursts of

pleft(t), as it is shown in the temporal instance number 2. The converse is not true: in absence

of probability bursts, not all the integrators assume low absolute values (see, for example, col-

oured circles corresponding to number 3). This is due to the fact that the integrators, though

correlated, detect fluctuations in the signal over different timescales. Moreover, the non-linear

nature of the probability function (Eq 17) dampens integrators’ fluctuations falling below a

given range of values. When a burst fades away (see for example points between 2 and 4) not

all the integrators go down together. Initially the faster integrators become neutral or even

slightly change sign. Afterwards the slower integrators follow suit. Of course, the process is not

completely linear, and intermediate integrators can assume (see instance number 4 and neigh-

bouring points) higher values, while the slowest (fastest) ones are still decreasing (fluctuating

rapidly). A more detailed analysis of the behaviour of the agent can be found in S1 Text and S1

Fig.

3.1 Model’s performance

Fig 3A shows the fraction of correct choices as a function of the decision time, both for the

agent at the end of training (black line) and for the optimal fixed-t observer (blue line) that, at

each time t, simply chooses according to the sign of the sum of the signal up to time t. The lat-

ter’s performance can be derived analytically:

Fraction CorrectðtÞ ¼
1

2
þ

1

p
arctan

ffiffiffiffiffiffiffi

s2
m
t

s2

s

ð19Þ

If the task were to decide exactly at time t, no other decision maker could outperform it; for

this reason it is deemed optimal. The comparison with the fixed-t observer sheds light on the

agent’s strategy and the underlying trade-offs.

The agent is free to“choose when to choose”, thus it is not surprising that its performance is

higher than the optimal fixed-t observer for shorter decision times (the inset of Fig 3A shows

the distribution of decision times for the agent). We see that the two performances cross

slightly above the average decision time for the agent. Beyond this point, the fixed-t observer

dominates. Indeed, the agent can make the easy decisions early on and wait to see how the sig-

nal evolves when the choice appears more uncertain. In contrast, the fixed-t observer is bound

to decide at time t, no matter how clear or ambiguous the observed signal was up to that point.

The steep rise of the agent’s performance for very short decision times is mainly a reflection of

its ability to tell apart the easy episodes from the hard ones. The fixed-t observer catches up for

longer times, where the agent is left with only the most difficult decisions and its performance

consequently declines. For the fixed-t observer, instead, larger ts always mean more informa-

tion and therefore its performance monotonically increases. We notice how at the crossing

point, the agent has already made the large part of its decisions, as it is apparent from the dis-

tribution of decision times.

Fig 3B shows how the agent (horizontal line) outperforms all the single integrators with

optimised thresholds (circles, see section 2.4 for the model definition). The performance of the
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single-timescale integrator peaks for intermediate values of the associated timescale τ, though

it always stays well below the performance attained by the agent. The agent, therefore, is able

to leverage the information on multiple timescales from the signal and the internal clock to

gain a clear performance advantage with respect to the drift-diffusion model on the whole

Fig 3. Performance after training. A: Fraction of correct choices as a function of the decision time, both for the agent at end of training (black line)

and for optimal fixed-t observer (blue line) that simply chooses according to the sign of the accumulated signal up to time t(see text). The agent clearly

outperforms the fixed-t observer for shorter decision times, thanks to its freedom to ‘choose when to choose’. The steep rise of the agent’s performance

for very short decision times is mainly a reflection of its ability to tell apart the easy episodes from the hard ones. Inset: response time histograms for

correct (grey) and wrong (green) decisions B: the agent (horizontal line) outperforms, considering the fraction of correct choices on a sample of

episodes, all the single-timescale integrators with optimised decision threshold (dots; the continuous line is a second-degree polynomial fit for

illustration purposes). The performance of the single-timescale integrator peaks for intermediate values of the associated timescale τ, though it always

stays below the performance attained by the agent. The grey strip around the agent’s line marks the 25%-75% of the values obtained for the performance

upon 100 repetitions of the training procedure (see Fig 5 for further details). C and D: Accuracy and mean response times for different values of

coherence (dots). C: The accuracy curve for the agent is in very good agreement with experimental findings: the black line is the result of a fit on

experimental data ([5]; see text for more details). D: As accuracy increases, responses become faster, as found in experiments (black line: fit with a

sigmoid-like function).

https://doi.org/10.1371/journal.pcbi.1009393.g003
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spectrum of τs. A more detailed comparison between the performance of the different models

considered will be given in section 3.5.

Fig 3C and 3D show the accuracy and the mean response time of the agent as the coherence

of the signal varies (Eq 1). The black line in panel Fig 3C is computed as:

Fraction CorrectðcoherenceÞ ¼ 1 �
1

2
exp �

coherence
7:97

� �1:62
" #

ð20Þ

as in Fig 3 of [5], where the parameters of the curve were fitted to experimental data. The

match between the experimental fit and the result of the agent is striking. In Fig 3D, instead,

the black line is a generic sigmoidal function plotted for illustration purposes. As found in the

experiments, the agent’s responses become faster as the task becomes easier (larger

coherences).

3.2 Signal neutrality

A more microscopic look at the decision process surprisingly uncovers shared features

between the internal dynamics of the artificial agent and the activity observed in neurons in

the lateral intraparietal cortex (LIP) during a random dots task [5, 41].

We now define a key observable of the model that will be central in the following (see Eqs

16, 10 and 11):

DSrightðtÞ � SrightðtÞ � SwaitðtÞ ð21Þ

and its ‘left’ counterpart ΔSleft(t)� Sleft(t) − Swait(t). Eq 21 (ΔSleft) provides a direct measure

of the propensity of the agent to make a ‘right’ (‘left’) decision at time t.
Fig 4A shows the evolution of ΔSright, averaged over many episodes in which the agent has

made the correct decision ‘right’. The traces are grouped by signal coherence. The left part of

Fig 4A shows the evolution of the average ΔSright, with traces aligned to the beginning of the

episode (onset of the external signal). ΔSright shows a marked sensitivity to the coherence of

the signal. Moreover, the traces do not saturate over several hundreds of milliseconds,

highlighting how the agent is making use of its slower integrators.

Ramp-like changes in the discharge of LIP neurons have been repeatedly observed, with

steeper rise in spike rate for higher stimulus coherence (see, e.g., Figure 7 in [5]). Such ramps,

originating in the extrastriate visual cortex in the case of LIP neurons, have been interpreted as

a signature of the accumulation of evidence for or against a specific behavioural response [10,

17]. This interpretation is fully compatible with what is seen in the agent.

However, when the averages of the ΔSright traces (or of the activity of LIP neurons) are per-

formed by aligning the episodes to the time of the decision, a clear signature of signal neutral-

ity emerges. The sensitivity to the stimulus’s coherence is lost and all the lines surprisingly

collapse on the same curve for several hundreds of milliseconds (Fig 4A, right). We emphasise

that such collapse over an extended period of time is key to recognise signal neutrality: any

decision model with a deterministic threshold, for example, would display a collapse at deci-

sion time (exactly at the threshold), but not necessarily at previous times; in this case, accord-

ing to our definition, the model would not display signal neutrality.

For the experimental data, a reasonable explanation for such collapse is that the neuronal

circuitry is engaged in stereotyped dynamics, independent from the signal, just after a decision

is made and before it is manifested with a physical action, perhaps as the result of a feedback

from downstream areas.
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But this cannot hold for the agent, where instead signal neutrality arises precisely from the

presence of multiple timescales. Fig 4B and 4C show the time course of the equivalent of

ΔSright for the models with a single timescale (see Section 2.4). For both these models, we dis-

play the results obtained from an example time constants of τ = 2.0 s. In the single integrator

with optimised threshold, xs
t

plays the role that ΔSright has in the agent.

In the latter, the collapse of the curves for different signal coherences is not as evident (Fig

4B and 4C, rightmost part). To make this statement more systematic, we introduce an opera-

tive measure of signal neutrality. We computed the inverse of the maximum distance between

the curves for different coherences averaged over an interval of up to 600 ms prior to the deci-

sion (see Methods). In Fig 5A we report this measure for the agent (horizontal line) and the

models with a single timecale (coloured upper bars). The comparative models report lower val-

ues in terms of signal neutrality and accuracy (Fig 5B).

The propensity of the agent ΔSleft to make the erroneous ‘left’ decision does not display sig-

nal neutrality. The same holds true for its experimental counterpart, that is the activity of LIP

Fig 4. signal neutrality. ΔSright(t) (see Eq 21) provides a direct measure of the propensity of the agent to make a ‘right’ decision at time t. A Evolution

of ΔSright, averaged over many successful episodes with the same signal coherence. On the left, the episodes are aligned to the beginning of the episode

and ΔSright shows a marked sensitivity to the coherence of the signal. When the average is performed by aligning all the episodes to the time of the

decision (right), signal neutrality clearly appears: the sensitivity to the signal strength is completely lost and all the lines collapse on the same curve for

several hundreds of milliseconds. Inset: the same analysis on wrong episodes. The similarities with what is found in the discharge of LIP neurons during

a motion-discrimination task are striking (see, e.g., Figure 7 in [5]). B: Time course of xs
t

for a single-timescale integrator with τ = 2s and optimised

decision threshold (xs
t
, for an integrator with threshold, plays the role that ΔSright has in the agent). C: Time course of ΔSright (see Eq 21 for an agent

optimised with a single timescale τ = 2s). In both B and C the collapse of the curves for different signal coherences is imperfect (rightmost part of the

plots).

https://doi.org/10.1371/journal.pcbi.1009393.g004
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neurons when the random dot motion is away from their receptive field (see Figure 7 in [5],

dashed lines). Finally, the comparison between the models in Fig 4 emphasises how in our sim-

ulations the signal neutrality is a consequence of the availability of multiple timescales.

3.3 The scalar property

The agent’s behaviour conforms to one of the hallmarks of temporal cognition: the scalar

property or Weber’s law for interval timing [42]. This is illustrated in Fig 6A, where the distri-

butions of response times of the agent are shown for three different values of coherence. As the

coherence increases, the average response time of the agent decreases from 4.6 s to 370 ms.

Simply stated, the scalar property—as observed for example in interval timing [42], and

multistable perception [44]—implies that higher moments of the intervals’ distribution scale

as appropriate powers of the mean. This implies a constant coefficient of variation. In other

words, the shape of the distribution does not change when its mean varies even over wide

ranges.

Notwithstanding a mean value that varies by more than one order of magnitude, the coeffi-

cient of variation of the agent moves in a very narrow range which is compatible with the

experimental findings [42, 44]. The invariance of the shape of the distribution is made imme-

diately evident in the inset of Fig 6A. Here the fitted Gamma distributions (black lines in the

main plot) are rescaled to have mean equal to 1. The similarity of the three curves is striking.

Fig 6B shows the coefficient of variation CV as the coherence varies for the proposed agent

(black) and the comparative models (blue and red colours, see Section 2.4 for more details).

The coefficient of variation has an approximately constant value for the proposed agent only.

We remark that an agent with a single integrator has information regarding the passage of

time over a single time constant, and that the model depicted in blue has multiple integrators

Fig 5. Comparison of signal neutrality (A) and performance (B) for the single-τ agent and the single-timescale integrator as τ varies. The

proposed model (black horizontal lines) shows better accuracy while exhibiting the experimentally observed collapse of the time course of neuronal

activity aligned at the decision time. The grey area marks the 25%-75% of the values obtained for each of the two observables upon 100 repetitions of the

training procedure; more specifically, each independent training has been halted where signal neutrality peaked, conditioned to having already reached

a performance of 0.81 or above; this translates to an average training length of about 73000 episodes (10%-90% range: 39000–110000).

https://doi.org/10.1371/journal.pcbi.1009393.g005
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but lacks any explicit temporal information. Thus, the key ingredient for the scalar property is

again the availability of multiple timescales, in particular on the estimate of the passage of

time.

On the other hand, it is not surprising that the single integrator with optimised threshold is

unable to display the scalar property. In fact, for the pure drift-diffusion model (τ =1), the

coefficient of variation as a function of the coherence c can be computed analytically [45] (see

also Eq 1):

CV ¼
100 � c

c2

� �1=4

; ð22Þ

and it is clearly not constant.

Lastly, we note how the highest values of coherence reported in the plots are very unlikely

under the distribution used during the training phase. A coherence of 50% roughly corre-

sponds to a value of μ that is five times the standard deviation σμ of the distribution of μ. Thus,

the scalar property appears to be a very robust property of the learned decision strategy of the

proposed agent, holding well beyond the range of functioning to which the agent has been

accustomed during training.

In view of the above considerations, signal neutrality and the scalar property share a similar

origin. Further evidence of this can be found in the evolution of the two measures during the

training phase.

Fig 7 shows the average evolution of signal neutrality (black line; the same measure reported

in Fig 4D), scalar property (blue line; see Methods for the definition of the metric), and

Fig 6. Scalar property. A: The average response time of the agent decreases as the signal coherence increases; still the coefficient of variation of the

response times varies in a very narrow range (see legend). The black lines are the best fit of the simulation histograms with a Gamma distribution. Inset:

the fitted Gamma distributions are rescaled to have mean equal to 1, making immediately evident how the shape of the distribution stays almost

unchanged as its average moves over almost one order of magnitude (colours consistent with the histograms in the main plot). Note how the highest

value of coherence is very unlikely under the distribution used for training the agent (corresponding to a value of μ five times the standard deviation σμ
of the distribution of μ). The ‘invariant shape’ property of the response time distribution therefore holds well beyond the typical range of functioning of

the agent. B: Coefficient of variation (CV) of the different models as the coherence increases. The scalar property is satisfied exclusively by the proposed

agent (black line). The single timescale models are reported with two different values of τ. Other choices of τ give comparable results.

https://doi.org/10.1371/journal.pcbi.1009393.g006
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accuracy (dashed red line, scale on the right y-axis) during training. All the lines are computed

by averaging the results of 100 different realisations of the training.

The evolution of signal neutrality and the scalar property are highly correlated for much of

the training phase, with an initial fast increase that continues up to about 104 − 105 episodes,

where the accuracy has almost plateaued (the region used for the results of Figs 4A and 6; note

how, after the first 105 episodes, the following 9 � 105 lead to a modest performance gain of

’ 1%). Such correlated progress naturally hints to a common origin for the two measures, and

makes us advance the hypothesis that a behavioural policy displaying these two properties

could represent an ‘optimal’ information-extraction strategy for dealing with a decision task in

a volatile environment. It wouldn’t be by chance that the agent robustly finds such a strategy

by tuning its parameters in a ecologically plausible way.

Yet, after about 105 training episodes, and therefore probably far beyond the experimental

training duration, the behaviour of the two curves in Fig 7 starts to diverge. Whilst the scalar

property keeps improving, signal neutrality attains a broad peak, after which it gradually

breaks down in the face of very modest performance gains. Therefore, the scalar property

seems to be more fundamental than signal neutrality, at least for what concerns the strategy

asymptotically discovered by the learning agent.

In this sense, signal neutrality cannot be viewed per se as signature of an optimal strategy

for the agent, but rather of a ‘satisficing’ one [46]. Faced with a wide distribution of coherences,

Fig 7. Signal neutrality and scalar property during training. Evolution of signal neutrality (black line), scalar property (blue line), and accuracy

(dashed red line, scale on the right) as the training progresses. signal neutrality attains a broad maximum where the performance has almost plateaued.

Thus signal neutrality can be interpreted as the signature of a ‘satisficing’ strategy, rather than of an optimal one. The scalar property, on the other hand,

keeps growing even for very long training. Yet, the evolution of signal neutrality and the scalar property are highly correlated, suggesting a common

origin for the two (see text for discussion).

https://doi.org/10.1371/journal.pcbi.1009393.g007
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the agent pretty quickly finds a robust strategy that, at around decision time, disregards coher-

ence by relying on fluctuations to make decisions, and still ensures a very good performance.

Nevertheless, the agent can do slightly better, given enough training time, by giving more

weight to the ‘drift’ component and less to the ‘diffusion’ component: this is what happens on

the far right of the plot. In this region, we postulate, the learning enters an ‘overfitting’ phase,

meaning that the agents become finely attuned to the exact statistics of the task: any slight

changes, for example, in the shape of p(μ) would require many training episodes to revert to a

good performance. In this sense, the signal neutral strategy generalises better to novel situa-

tions. This is something we plan to study elsewhere. Finally, it is tempting to hypothesise that

animal subjects, during perceptual decision experiments, display signal neutrality as a reflex of

adopting such a satisficing strategy, given also the high number of training episodes the model

needs to refine its strategy beyond signal neutrality.

3.4 Collapsing boundaries

It is known that in the presence of a distribution of signal-to-noise ratios and limited decision

time, as in the task at hand, the drift-diffusion model is not optimal anymore [15]. More spe-

cifically, one ingredient that allows to re-establish optimality is a time-varying threshold. As it

has been observed in [9] [11], the optimal decision threshold is not constant when the agent

has a finite amount of time to make decisions, but is characterised by a non-monotonic trend

across time. This optimal moving threshold is defined as collapsing boundaries. In this sense,

the hypothesised optimality of the agent’s strategy finds indirect support in the behaviour dis-

played by the component of ΔS that depends only on the passage of time and not on the signal.

As we will show, this perception of the passage of time, defined in the model as integration of a

constant input over multiple timescales, permits the agent to discover the collapsing bound-

aries. We rewrite Eq 21 as (see Eqs 10–16):

DSright ¼ DSs
c � DS

c
ð23Þ

where:

DSs
right � Ss

right � S
s
wait ð24Þ

is a term that provides information on the signal only. And:

DSc � Sc
wait � S

c
right ð25Þ

carries information on the passage of time only. We note that on the r.h.s. of Eq 25 we could

insert Sc
left in place of Sc

right with no notable numerical difference in the result. This is because

the right and left choices are a priori equivalent in the present task, and therefore the inferred

y
c
right;t and y

c
left;t are in fact very similar. For this reason ΔSc does not carry a ‘right’ label.

ΔSc(t) measures the propensity of the agent at time t to wait for another input instead of

making a (either right or left) decision, independently from the signal. Looking back at Eq 23,

ΔSc effectively acts as a time-dependent bias term that, in the context of a drift-diffusion

model, could be easily interpreted as a time-dependent threshold. Despite the lack of an

explicit threshold mechanism for the proposed agent, it is reasonable to expect that the range

of values attained by Ss
right at decision time shifts in accordance with the time-dependent bias.

This is indeed the case.

Fig 8A shows (black thick line) the evolution of ΔSc(t) from 0 to Tmax = 2 s for the proposed

agent. In addition, three sample trajectories of ΔSs(t) (coloured lines) are shown from t = 0 to

decision time (marked by the big coloured circles). The shaded grey area marks the region of
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values assumed by Ss
right where 80% of the (correct) decisions are made. As expected, this

region mostly run parallel to ΔSc(t), demonstrating how the latter observable can be inter-

preted as a soft threshold for the decision that arises from the time integrators. Such threshold

drops at longer times, a behaviour that finds normative support in the study of perceptual deci-

sion making [20, 47]. Conversely, looking at Eq 23, one can view − ΔSc as an ‘urgency’ signal

that pushes for a decision as the episode time elapses, not unlike what has been observed exper-

imentally in the lateral intraparietal area [48].

Fig 8B and 8C report the same analysis for an agent with a single timescale (panel B) and an

agent with multiple timescales on the signal but without the internal clock (panel C). It is evi-

dent how the agent in Fig 8B exploits the unique timescale available for the internal clock to

implement a monotonically decaying threshold. In contrast, the agent without internal clock is

unable to create such mechanism, considering that the large majority of the decisions occur in

Fig 8. Collapsing boundaries. ΔSright (see Eqs 21 and 23) can be decomposed in a signal-dependent part (DSs
right) and a time-dependent part (ΔSc; see

Eq 25), that measures the propensity of the agent at each time to wait for another input instead of making a decision. In all panels, DSs
right (coloured

lines) is depicted for three sample episodes, alongside ΔSc (thick black line). The big coloured circles correspond to the decision times. A: The

behaviour of the proposed agent. ΔSc acts as a time-dependent threshold: most of the decisions fall inside a strip running parallel to it (the grey area is

where 80% of the decisions are made). The resulting boundaries collapse for longer response times. Until about 200 ms, a rise of the effective threshold

discourages early decisions. This trend is analogous to the theoretically optimal decision threshold when the trial has a maximum allowed time to make

a decision [9, 11]. B: The behaviour of an agent with a single integrator (see Section 2.4). Thanks to the internal clock over a single timescale, the agent

can implement a suboptimal, monotonically decreasing threshold. C: Behaviour of the agent without internal clock, but with multiple signal integrators.

The model is unable to exhibit the collapsing boundaries.

https://doi.org/10.1371/journal.pcbi.1009393.g008
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an area that is parallel to the constant bias bwait − bright. The agent of panel C is unable to clearly

infer the passage of time from the multiple timescale of the signal. If this limited behaviour can

be surprising at first, it can be understood by considering that the present task is highly vola-

tile, with a broad range of signal to noise ratios. Since specific values of the signal integrators xs
t

can be reached rapidly (slowly) for episodes with high (low) coherences of the signal, such fea-

tures do not constitute a reliable estimate of the passage of time. Indeed, the model in panel C

fails in the implementation of any form of urgency signal.

In this respect we want to point out how the soft threshold ΔSc of the proposed model

(panel A) does not simply behave as an urgency signal. In fact the decision is made more and

more likely as the time passes only after about 200 ms (when ΔSc reaches a peak). Initially, ear-

lier decisions are discouraged by a rise of the threshold. Interestingly, such a non-monotonic

trend of the moving threshold has been demonstrated to be theoretically optimal in [9] (see

Fig 2B therein; see also [11]).

Even if the models in the references and in the present paper are not structurally equivalent,

it is nonetheless striking that the agent can approximate such optimal behaviour by trial-and-

error. We note how the monotonically decreasing ΔSc shown in panel B is consequently sub-

optimal. Thus, the results of Fig 8 demonstrate the necessity of multiple timescales also for an

efficient implementation of the collapsing boundaries.

3.5 Robustness

The utilisation of a wide range of timescales makes the performance of the agent robust to vari-

ation of the task and to the intrinsic noise. This is shown in Fig 9A and 9B. We varied Tmax

(the maximum duration of an episode) and σI (the standard deviation of the intrinsic noise,

x
s
t
s and x

c
t
s in Eqs 10–15) systematically and, for each value, run the learning process from

scratch. The results of the agent are then compared to the models of Section 2.4. While Fig 9

reports the comparison with the single integrators with optimised thresholds, the results for

the agent with a single timescale can be found in S1 Text and S1 Fig.

In Fig 9A, as Tmax increases (and σI stays at its reference point of 0.02), the fraction of cor-

rect responses rises monotonically for all models, with the performance of the agent staying

superior on the whole range of Tmax explored. Two features are noteworthy. First, the lines for

the single integrators (τ = 0.1 s and τ = 10 s respectively) cross at intermediate values of Tmax,

with the longer τ surpassing the shorter ones for higher episode durations. Second, the advan-

tage of the proposed agent shrinks in comparison to the longer τ for longer Tmax. These fea-

tures have a common origin. From Eq 6, a signal s(t) of mean μ will asymptotically lead all the

integrators to the same (statistically) stationary value of μ, but with different levels of noise.

Integrators with longer τs will have a smaller variance and thus will be more reliable in detect-

ing whether μ> 0 or μ< 0. On the other hand, the time needed to reach the stationary state

will be longer for larger τs. Slower integrators will still be integrating the signal for shorter

Tmax and, as a consequence, their value will carry less information on the μ. Hence, the smaller

τs will dominate for shorter Tmax, the larger τ for longer Tmax.

In Fig 9B, the level σI of intrinsic noise is varied, with Tmax kept constant at 2 s. The perfor-

mance of the agent (black line) is always substantially higher than that of the single integrators

(coloured lines). As expected, performance deteriorates as σI increases from 0 to 0.2; yet the

decrease is only surprisingly slight, considering that the maximum value attained by σI is com-

parable with the typical dynamical range of the integrators xτ. Such range is determined by the

distribution p(μ) (here, a Gaussian of standard deviation σμ = 0.25). It is then clear that the

highest levels of intrinsic noise really affect the typical value of the integrators. This is even

more true taking into account that the slowest integrators operate far from the asymptotic
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value, given the limited integration time. This consideration is clearly reflected in the behav-

iour of the single integrators. The fast integrators (τ = 0.1 s and τ = 2.1 s) indeed are scarcely

affected by the increase in noise. On the other hand, the slowest integrator (τ = 10 s) shows

good accuracy for very low levels of noise, but then becomes rapidly ineffective for higher val-

ues of σI.
The agent without the internal clock reports robust performance as Tmax and σI vary, dem-

onstrating its capability to select the appropriate signal integrator for different conditions.

Fig 9. The wide range of timescales makes the agent’s performance robust to variations of the task and to the intrinsic noise. A: as Tmax increases,

the fraction of correct responses rises monotonically both for the agent (dashed black line) and for all the single integrators, with the performance of the

agent staying superior on the whole range of Tmax explored. B: varying the level σI of intrinsic noise, the performance of the agent (dashed black line)

stays always substantially higher than that of the single integrators, notably for stronger noise. As expected, the performance does deteriorate, but the

decrease is surprisingly slight, considering that the maximum value attained by σI is comparable with the typical dynamical range of the integrators xτ.
The performance of the agent without internal clock (dashed blue in panels A and B) are close (or superior to) the best single integrators reported.

However, this agent is more robust than the single integrators over the range of parameters’ values considered. Thus, the results show how the model

(dashed blue) is able to select the appropriate timescale for different situations (see text for more details). C: evolution of the ‘moving threshold’ ΔSc (Eq

25) for three values of Tmax. For higher values of Tmax (see also Fig 8), the moving threshold presents a peak whose position shifts with Tmax. D: y
s
right;t

after training (Eq 10) for different values of intrinsic noise σI (continuous lines are fourth degree polynomial fits for illustrative purposes). The peak of

the lines, corresponding to the most exploited timescale, shifts towards lower τ values as σI increases.

https://doi.org/10.1371/journal.pcbi.1009393.g009
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However, this agent can also report lower performance in comparison to the best single inte-

grators. This phenomenon is a consequence of the reduction of the noise performed on the

model with optimised threshold. Indeed, integration of the signal over a single timescale can

carry the large majority of the relevant information for a specific simulation. In a specific

parameters’ setting and in terms of accuracy only, the performance of this agent can be conse-

quently inferior to the model with a single integrator with an optimal value of τ. However, it is

clear how the agent depicted in blue is more robust over the range of values shown in the fig-

ure, having the possibility to choose the appropriate integration time. For the sake of accuracy

optimisation, the role of the reservoir of integrators is to select the appropriate timescale for

the considered situation. Instead, the advantage of an internal clock parameterised by multiple

timescales is to implement the optimal shape of collapsing boundaries of Fig 8. The latter state-

ment is emphasised by the improved performance of the proposed model also over the agent

with a single timescale (S3 Fig), which has information about the passage of time limited over

a single τ.

Fig 9C shows the evolution of the ‘moving threshold’ ΔSc (Eq 25, proposed agent) for three

values of Tmax. For very low Tmax (black line) the threshold only decays, always pushing for a

decision. For higher values of Tmax, instead, as we have already seen in Fig 8, the moving

threshold initially rises; it reaches a peak and then decays afterwards, making a decision ever

more likely. Such peak shifts with Tmax and so does, even more clearly, the time at which the

threshold reaches back its initial value (around 1 s for Tmax = 2.0 s, and around 5 seconds for

Tmax = 10 s).

Fig 9D shows y
s
right;t after training (y

s
right;t ’ � y

s
left;t for the symmetry of the problem after

optimisation, as it is shown in Fig 10D) for different values of intrinsic noise σI (continuous

lines are fourth degree polynomial fits for illustrative purposes). Coherently with what we have

seen in Fig 9B, the peak of the lines, corresponding to the most exploited timescale, shifts

towards lower τ values as σI increases.

3.6 Evolution during training

Fig 10 illustrates how the behaviour of the agent evolves as it encounters new episodes during

learning. Fig 10A shows the performance attained on average for four different values of signal

coherence at different times during the training phase. The performance is of course always

higher for higher values of coherence (‘easier’ episodes), and tends to increase monotonically

for all the values of coherence during training.

This monotonic trend is not preserved, instead, looking at the average response time (Fig

10B). The response time drops at the beginning of training with values that are very close for

every value of coherence. The reason for such behaviour is related to how the agent is initia-

lised. At the beginning, the agent is ignorant about the rules of the task and pre-programmed

to make a random choice after having waited for a finite random length of time. Without such

random initialisation, the learning would not proceed, since the agent needs to perform

actions to learn the relative consequences. While the agent is unable to tell apart signals with

different coherences, the response time then decreases. In fact, longer average response times

are detrimental due to late responses (no decision before the maximum time allowed Tmax)

that are not rewarded.

This is made clear in Fig 10B, that shows how the fraction of late responses quickly drops to

almost zero, and it stays there. Afterwards, the model starts to statistically differentiate between

signals with different coherences (the four lines diverge in Fig 10B) and the response time

begins to rise. In this regime, waiting means accumulating more information and helps to

improve the performance.
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Fig 10D and 10E show the evolution of y
s
right;t, y

s
left;t, and of y

c
wait;t � y

c
right;t respectively (the

shape of y
c
wait;t � y

c
left;t is similar). The different colours (grey scale) and line styles correspond

to the training instances highlighted with the vertical lines of the above panels. Each set of

weights is separately rescaled, for each instance, by its absolute maximum value. This has been

done to emphasise the relative importance among the parameters rather than their magnitude.

At the beginning of training (light grey lines) and despite the rescaling, the weights are close to

zero because we initialised the biases of the model at higher absolute values. We chose this

initialisation so that the model could exhibit reasonable starting response times without

weighting the contribution of the different timescales a priori.
As the simulation progresses, the weights for the signal integration toward the ‘right’ and

‘left’ actions become stronger while maintaining an approximately symmetric trend with

respect to zero (panel D). Also the parameters reflecting the internal clock in panel E grow

across training, but fast (slow) timescales become positively (negatively) weighted. Thus, the

Fig 10. Learning is characterised by a non-monotonic adaptation of the average response time that is consequent to the necessity of finding a fine

balance between integrating information and the cost of waiting to make decisions. A: Accuracy of the model for signals with different coherences

across learning. B: Average response times. Trials with increasing level of coherences correspond to greater response times and greater probabilities of

‘late’ responses. The initial descending trend (around 100 episodes) of the response times common to all coherences is due to the initial ignorance of the

agent about the nature of the task, on the tendency to avoid late decisions and to prefer immediate rewards. C: Probability of not making a decision

before the end of the episode, i.e. after Tmax. D-E-F: Evolution of different parameters and of the collapsing boundaries for the training instances

corresponding to the vertical grey lines of the top panels. D: Evolution of the weights corresponding to the integrators of the signal. The weights are

positive (negative) for the ‘right’ (‘left’) action. E-F: Values of the parameters (E) defining the contribution of the internal clock to the decision making

process and relative collapsing boundaries (F).

https://doi.org/10.1371/journal.pcbi.1009393.g010
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weights at a given instance compose an overall descending trend. To understand this, we need

to make two simple observations. First, time integrators receive a constant positive signal of

one as input. Thus, the sign of the contribution of a time integrator to the decision process cor-

responds to the sign of its relative weight. Second, such weights are the ones responsible for

the implementation of the collapsing boundaries (Fig 10F shows the boundaries corresponding

to the considered training instances). By giving positive importance to the fast integrators,

which are dominant at the beginning of an episode, the agent is implementing the initial rise

of the effective, moving threshold (panel F). In contrast, the negative contribution from the

slow τs is responsible for the collapsing trends reported in panel F.

4 Discussion

Decision making and reinforcement learning are fields with overlapping contributions that

attempt to demystify how humans and animals make decisions. Our work unifies the two

approaches by using a reinforcement learning agent to solve a task reminiscent of a classical

perceptual decision making setup, similar to [10, 49–51].

The reinforcement learning agent receives sensory information and information from vari-

ous “clocks” integrated on multiple timescales. Timescales have been implicit in the reinforce-

ment learning framework, in the context of propagating information about the success (or

failure) of the task in cases where the reward is not immediate, see eligibility traces [43, 52].

However, this is not the same as the concept of timescales in this model, where the emphasis is

on acquiring and retaining sensory information from the environment, not unlike what hap-

pens in the field of Reservoir Computing [53]. We argue that reward maximisation, multiple

time constants and perception of time are the fundamental ingredients for faithfully reproduc-

ing (i) an optimal decision-making boundary, (ii) the scalar property, and (iii) signal

neutrality.

Indeed, the agent learns to solve the task in a relatively small number of episodes, perform-

ing better than any single-timescale drift-diffusion integrator while fitting well the psycho-

physical data. The agent’s policy is markedly different from the drift-diffusion model, where a

decision happens when one of the integrating processes reach the decision threshold. The rein-

forcement learning agent makes decisions within short ‘active’ time windows when fleeting

bursts in the probability of choosing an action make that action possible. These “bursts” result

from the broad agreement on the decision of many integrators with different timescales, akin

to the concept of majority voting. The behaviour of our agent is compatible with the analysis

performed in [54] on single-neuron single-trial spike trains in LIP area to uncover sudden

activity jumps and their informativeness about choice.

The multiple clock time constants lead to a decision boundary with a shape similar to the

theoretical optimal for decisions with bounded time. We demonstrate in simulations that such

a complex boundary is not learnable with a single timescale in the clock or without using a

clock. The initial increment and then collapse of the decision boundary happen due to the

interplay of clock integrators with multiple time constants.

Another direct consequence of the clock with multiple timescales is the scalar property [42,

44], i.e. the ratio of the standard deviation over the mean of the response times remains con-

stant. The removal of the clock results in a fixed boundary over time and cannot exhibit the

scalar property. Even a single timescale clock, which leads to a non-optimal decaying decision

boundary, fails to capture the scalar property. Our results suggest that an optimal decision-

making boundary may lead to the scalar property.

As a side note, and contrary to [42, 44], the experimental results reported in [55] seem to

support a linear relationship between response means and standard deviations (y = ax + b)
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rather than an exact scalar property (y = ax). Yet the very low coefficients of variation for fast

responses could result from ignoring the effect of non-decision times, which can be assumed

to have low variability [20]. In principle, the drift-diffusion model is capable of exhibiting a lin-

ear relationship between the mean response time and its standard deviation [55]. Yet, it seems

difficult to display the scalar property (see Eq 22).

The multiple timescale signal integrators offer a way to “learn” the integration time con-

stant from the data instead of treating it as a free parameter. Their presence makes the agent

robust, as it can perform well with various task difficulties (expressed as a signal to noise ratio

or signal coherence). There are optimal integration time constants for specific task difficulties.

Varying much the signal to noise ratio would inevitably reduce the performance of an integra-

tor with a single time constant.

A consequence of signal integration with multiple time constants is signal neutrality, the

stereotypical collapse of the decision-making signal just before the agent decides. This charac-

teristic is noticeable in the activity of neurons in LIP area during a motion-discrimination task

[5, 41]. We can intuitively understand this characteristic in the following way. The agent has to

find a policy that works across various coherences. A strategy independent of the specific

coherences, if achievable, is an appropriate solution to the problem. The simulations suggest

the agent discovers such a policy. To some extent, also the single integrator agents find such a

policy. However, if we vary the coherence much, signal neutrality progressively fails.

Fluctuations play a significant role in signal neutrality. And indeed, as far as we can discern,

the observation of the phenomenon in [17], where no multiple timescales are present, is rooted

in the presence of large fluctuations in the activity traces being averaged. These fluctuations

are smoothed out by a first-order filter and a random post-decision time. Nonetheless, they

contribute significantly to the observed collapse, as testified by peak values well above the deci-

sion threshold.

In summary, our agent learns solely by maximising its reward. There is no strategy a priori
prescribed, similar to a biological agent during a perceptual decision-making experiment. And

yet, our model provides little information about the corresponding mechanisms at the circuit

level. Nevertheless, it offers insights into complex processes. We argue that it is a good trade-

off between complexity and simplicity [56]: the agent learns when to take actions in an “opti-

mal” way. The learning process suggests that the optimal decision boundary is a consequence

of time perception in multiple timescales.

We underline how the proposed agent could be extended to tackle different perceptual

decision tasks. For example, being probabilistic, the agent inherently computes an ongoing

estimate of the confidence related to each of the possible options. Thus the agent could be pre-

sented with the possibility to opt-out from a trial when the choice appears too uncertain. Con-

fidence has moreover been related, in the perceptual decision making literature, to optimal

learning [47, 57]. It is interesting to note, in this respect, that the learning rate for the proposed

agent is indeed strongly modulated by confidence: an easy correct decision would trigger little

learning; on the other hand, a confident but wrong decision would engender large changes in

the model’s parameters. In [47], moreover, parameters’ fluctuations due to the ongoing learn-

ing have been shown to account for differences in psychometric curves in an identification

task, not unlike the one examined here, versus a categorisation task, to which the multi-τ agent

could be adapted with minor modifications. Since we have largely focused the attention on the

post-learning phase, the role of such fluctuations in the agent remains an open, and stimulat-

ing, issue.

The building blocks of the present model, i.e. the signal accumulators, may have biological

counterparts [58, 59]. It is possible to use pools of noisy attractors to implement integrators

with wildly different timescales, as required by a multi-scale system. Attractor dynamics has
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been long one of the main staples of theoretical neuroscience [60]. Several winner-take-all

spiking networks capable of implementing a probabilistic classification of the noisy signal have

been described in the literature [61, 62]. Therefore we see no conceptual barriers to a more

detailed, spiking model mimicking the workings of the agent.

Beyond specific interpretations in this work, we would like to advocate the consideration of

multiple timescales in models handling non-stationary and noisy information. There is

increasing evidence that performance improves or becomes more robust to changes in the

environment when various elements are performing nearly the same task. Adapting to differ-

ent conditions becomes possible by selectively choosing among those. We notice this general

strategy, known as “degeneracy”, is present in many biological systems [63–66]. Degeneracy

permits rapid adaptation to novel conditions leading to robust performance, adaptability and

survivability.

Supporting information

S1 Text. Supplementary information containing three sections. In the first, the actor-critic

learning model is described. In the second, we analyse the interpretation of the strategy learned

by the agent as a majority vote. In the last, we show how the model maintains high perfor-

mance despite changes in the distribution of timescales.

(PDF)

S1 Fig. The agent waits for an alignment of the different integrators before making a deci-

sion. The measures are computed for the episodes where the agent correctly selects the ‘right’

action. A: Fraction of integrators that are positively contributing to the ‘right’ action. The mea-

sure is aligned with the decision time (extreme right at zero). When a decision is made, more

than nine (out of ten) integrators have a positive contribution to the decision on average. B:

Probability of the ‘right’ action as the fraction of positively contributing integrators changes.

The probability of making a decision is considerably different than zero when the majority of

the integrators align.

(TIF)

S2 Fig. Surface of accuracy as the number of integrators (x-axis) and maximum timescale

(y-axis) vary. For this specific result, the intrinsic noise has not been rescaled for the different

models.

(TIF)

S3 Fig. Robustness of the proposed model to different parameters’ settings and compari-

son with an agent that exploits a different distribution of characteristic times and an agent

with a single integrator (see Section 2.4, Main Text). A-B: The model with a linear distribu-

tion of timescales (red, dashed line) reports comparable performance to the one proposed

(black, exponential distribution). This demonstrates that the performance of the proposed

agent is robust with respect to changes in the distribution of timescales, assuming that the cho-

sen distribution has time constants over different orders of magnitudes and that is enough

dense to cover the range considered. The performance of the agents with single integrators

shows similar trends to the one reported in Fig 9 in the Main Text for the integrators with opti-

mised thresholds. Thus, we refer to Fig 9 in the Main Text (Panels A and B) for more detail.

(TIF)
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