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Background: Cancer-associated fibroblasts (CAFs) are mainly involved in cancer

progression and treatment failure. However, the specific signature of CAFs and their

related clinicopathological parameters in renal cell carcinoma (RCC) remain unclear. Here,

methods to recognize gene signatures were employed to roughly assess the infiltration

of CAFs in RCC, based on the data from The Cancer Genome Atlas (TCGA). Weighted

Gene Coexpression Network Analysis (WGCNA) was used to cluster transcriptomes and

correlate with CAFs to identify the gene signature. Single-cell and cell line sequencing

data were used to verify the expression specificity of the gene signature in CAFs. The

gene signature was used to evaluate the infiltration of CAFs in each sample, and the

clinical significance of each key gene in the gene signature and CAFs was analyzed.

We observed that the CAF infiltration was higher in kidney cancer and advanced tumor

stage and grade than in normal tissues. The seven key genes of the CAF gene signature

identified using WGCNA showed high expression of CAF-related characteristics in

the cell clustering landscape and fibroblast cell lines; these genes were found to be

associated with extracellular matrix function, collagen synthesis, cell surface interaction,

and adhesion. The high CAF infiltration and the key genes were verified from the TCGA

and Gene Expression Omnibus data related to the advanced grade, advanced stage,

and poor prognosis of RCC. In summary, our findings indicate that the clinically significant

gene signature may serve as a potential biomarker of CAFs in RCC, and the infiltration

of CAFs is associated with the pathological grade, stage, and prognosis of RCC.

Keywords: renal cell carcinoma, cancer-associated fibroblast, weighted gene co-expression network analysis,

single sample gene set enrichment analysis, gene signature

INTRODUCTION

Renal cell carcinoma (RCC) is one of the 10 most deadly cancers globally, causing more than
140,000 deaths each year (Capitanio et al., 2019). Over the past decade, advanced RCC treatment
has changed from a nonspecific immune approach to vascular endothelial growth factor targeted
therapy, and now to immune checkpoint blockers (Barata and Rini, 2017). Nevertheless, the overall
prognosis for patients with advanced RCC remains poor (Bosse and Ong, 2020). Cancer-associated
fibroblasts (CAFs) are an important part of the tumor microenvironment (TME), and they can
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function as tumor promoters and inhibitors (Park et al., 2020).
Recently, the benefits of CAFs in tumor progression have been
identified (Saini et al., 2020), making them potential targets for
the development of novel therapies in the future (Chen and
Song, 2019). However, there are very few studies regarding CAFs
in RCC.

Previous reports have suggested that CAFs often carry
recognized markers for identification, such as α-smooth muscle
actin (αSMA) and fibroblast activation protein α (FAPα)
(Nurmik et al., 2020). There are specific CAF genes in different
cancer tissues; thus, research using these recognized markers as
gene signatures may cause deviations in the evaluation of CAFs
in the TME. Single-cell transcriptomes can reveal cell specificity
in specific tumor tissues, such as the cellular identity of human
kidney tumors, which contain fibroblasts (Young et al., 2018).
Although single-cell sequencing technology can classify cells and
identify specific markers, the number of cells measured and the
source of cases are limited, which may lead to bias.

The R package Weighted Gene Coexpression Network
Analysis (WGCNA), which has been widely used recently (Pan
et al., 2019a), has the potential to recognize CAF-specific
markers (Liu et al., 2021). In the TME, different cells have
varying specific gene expression, and the fluctuation of cell
class proportions affects the expression of their specific genes.
However, the expression of highly specific genes is less disturbed
by the proportion of other cells. These genes show a strong
correlation that cannot be offset as the fraction of cells changes.
WGCNA can make good use of the special properties of the
TME to identify cell-specific gene sets in a large number of
heterogeneous samples.

In our study, we evaluated the infiltration status of the stroma
and CAFs using previously identified gene signatures using
the R packages: Estimation of STromal and Immune cells in
MAlignant Tumor tissues with Expression data (ESTIMATE) and
Estimate the Proportion of Immune and Cancer cells (EPIC). By
correlating the fraction of CAFs with the gene module calculated
byWGCNA, the specific CAF gene set can be found. By verifying
the single-cell and cell line sequencing data, we proved the
expression specificity of the gene signature of the kidney renal
clear cell carcinoma (KIRC) CAFs. Finally, we verified the clinical
significance of gene signature and CAFs in KIRC, the main
pathological type of RCC.

MATERIALS AND METHODS

Data Download and Processing
RNA-seq and related clinical data for human KIRC samples
were obtained from The Cancer Genome Atlas (TCGA) database

Abbreviations:CAFs, cancer-associated fibroblasts; DEGs, differentially expressed

genes; EPIC, Estimate the Proportion of Immune and Cancer cells; ESTIMATE,

Estimation of STromal and Immune cells in MAlignant Tumor tissues using

Expression data; GEO, Gene Expression Omnibus; GS, gene significance;

IHC, immunohistochemistry; KIRC, kidney renal clear cell carcinoma; MM,

module membership; RCC, renal cell carcinoma; ROC, receiver operating

characteristic; scRNA, single-cell RNA; ssGSEA, single-sample gene set enrichment

analysis; TCGA, The Cancer Genome Atlas; TME, tumor microenvironment;

TOM, topological overlap matrix; WGCNA, Weighted Gene Coexpression

Network Analysis.

(portal.gdc.cancer.gov), containing 611 tissues and 530 cases.
These data were updated on April 10, 2020. RNA-seq data of 72
normal and 539 cancer samples were combined into matrix files.

A previous study using single-cell transcriptomes revealed the
cell-specific genes of different cells in RCC and summarized the
markers of canonical cell types known in the existing literature
(Young et al., 2018). To explore whether the gene signatures
screened by WGCNA are consistent with the cell-specific genes
revealed by single-cell transcriptomes, we downloaded and
analyzed the single-cell RNA (scRNA) sequencing data from
renal tumors (Young et al., 2018). Based on the Seurat R package
and Scanpy python package, we processed the scRNA sequencing
data and generated cell clustering FeaturePlot and TracksPlot.
FeaturePlot was used for Uniform Manifold Approximation and
Projection (UMAP) for dimension reduction.

To further prove the expression specificity of gene signatures
in fibroblasts, we downloaded gene expression data of cell lines
from the depmap portal (depmap.org/portal) containing 1,270
cell lines and 19,144 genes. According to the tumor environment
of kidney cancer, we selected cell lines labeled as blood, fibroblast,
kidney, lymphocyte, and plasma cells as the comparison objects.
We further obtained the transcriptome count data of the cell lines
from the Cancer Cell Line Encyclopedia (CCLE), and the data
version date is September 29, 2018. We extracted RNA-seq data
of 32 kidney cancer and 37 fibroblast cell lines and used the R
3.6.2 software to generate heatmap and volcano maps to show
the differentially expressed genes (DEGs).

To verify the clinical significance, series GSE29609 containing
various TNM-stage samples from 39 patients with survival
information, series GSE53757 containing 101 normal tissue-
tumor pair samples, and series GSE73731 containing 265 tumor
samples were downloaded from the Gene Expression Omnibus
(GEO) database.

Stromal and Immune Components
Stromal and immune fractions were evaluated by ESTIMATE
(Yoshihara et al., 2013). Using the ESTIMATE R package in R
3.6.2, tumor stromal and immune cell infiltrations of TCGA-
KIRC samples were calculated from the profiles of two gene
sets, including 141 genes. The preliminary calculated stromal and
immune scores are used to observe the differences between stage
and grade.

Fractions of Various Cells in the TME
In order to continue to explore the changes inmatrix components
in tumor tissues, EPIC (gfellerlab.shinyapps.io/EPIC_1-1/) was
used to estimate the fraction of CAFs. The EPIC application is
designed to estimate the proportion of immune and cancer cells
from the bulk tumor gene expression data (Racle et al., 2017).
This is done by fitting gene expression reference profiles from the
main nonmalignant cell types, simultaneously accounting for an
uncharacterized cell type without prior knowledge about it. EPIC
establishes reference gene expression profiles for major tumor-
invasive immune cell types (CD4+ T, CD8+ T, B, natural killer,
and macrophages) and further deduces the reference spectra of
CAFs and endothelial cells.
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WGCNA
According to the principle of WGCNA calculation, highly
coexpressed gene modules recognized by WGCNA can be
considered as a set of specifically expressed genes of a certain
type of cells in tumor tissues. More tissue samples and greater
fluctuations in the composition ratio make this method more
suitable for identifying cell-specific expression gene sets. In
a complex tumor environment, the detection of cell-specific
expression genes is mainly determined by the proportion of one
cell type, whereas other cells will have less interference with
such genes.

Highly Coexpressed Gene Set–Gene
Module
The WGCNA package in R was used to perform a weighted
correlation network analysis (Langfelder and Horvath, 2008).
To exclude highly correlated genes with no significant changes
in expression, the genes with a high variance of 25% were
selected (Pan et al., 2019a,b). After filtering the RNA-seq data to
remove the outliers, we constructed a Pearson correlation matrix
and generated a weighted adjacency matrix emphasizing strong
correlations and penalizing weak correlations. After selecting
an appropriate β value via power calculation, a topological
overlap matrix (TOM) was produced (Botia et al., 2017). Based
on TOM-dependent dissimilaritymeasurements, average-linkage
hierarchical clustering and module dendrograms were used to
construct modules with a minimum gene dendrogram size of 30.

Identification of Interested Modules
Gene significance (GS) was calculated to measure the correlation
between genes and cell fractions and determine the significance
of eachmodule. The expression patterns of all module eigengenes
were summarized as a single feature within a given module (Pan
et al., 2019b). We selected a cutoff threshold of <0.25 to merge
some modules with similar heights and increase module capacity
(Pan et al., 2019a).

Representative Genes in a Module
GS and module membership (MM, the correlation between the
genes and gene expression profiles of a module) can be used to
assess the gene–phenotype relationships and their importance
in the modules. Similar to most previous studies, we defined
high MM and GS values (MM.cor and GS.cor, respectively)
as the threshold to identify representative genes in a module
(Pan et al., 2019a).

CAF-Specific Markers
The markers of CAFs have been collated and summarized
(Lennon et al., 2014; Gascard and Tlsty, 2016; Yu et al., 2019).
They comprise specific as well as nonspecific markers of CAFs.
Here, we carried out correlation analysis using TCGA data to
prove the reliability of the signature of CAFs in KIRC.

Pathway and Process Functional
Enrichment Analysis
To further verify the function of genes, a Metascape
(metascape.org) search was performed for gene enrichment

analysis. The Kyoto Encyclopedia of Genes and Genomes, Gene
Ontology, Reactome gene sets, and CORUM provide ontology
sources for pathway and process enrichment analysis (Zhou
et al., 2019). Terms with p < 0.01, a minimum count of 3, and an
enrichment factor > 1.5 were collected and grouped into clusters
based on their similarities. Subsets of enriched terms with a
similarity score > 0.3 were connected by the edges to render
a network plot and further capture the relationships between
the terms.

Analysis of the Clinical Significance of
Each Gene in the Gene Signature
To explore the clinical significance of each gene in the KIRC CAF
signature, we performed an overall survival analysis using the
median method and the best triple groups selected with the X-
tile tool (Camp et al., 2004). A receiver operating characteristic
(ROC) curve analysis was used to verify the diagnostic efficacy
of the gene signature in the high-stage-grade and low-stage-
grade groups.

Protein Expression of the Gene Signature
To explore the expression of key genes in kidney adenocarcinoma
and stromal cells, we obtained immunohistochemistry (IHC)
images of KIRC from The Human Protein Atlas (http://
www.proteinatlas.org), which aims to map human proteins in
pathology (Uhlen et al., 2017), and selected the images containing
both the cells with the assistance of expert pathologists. We
also used the markers fibronectin 1 (FN1) and FAP of CAFs
and desmin (DES), a smooth muscle cell marker, to confirm
the position and approximate shape of the stromal part
and exclude muscle tissues (Gascard and Tlsty, 2016; Lee et al.,
2020; Liu et al., 2021).

Single Sample Gene Set Enrichment
Analysis
Single-sample gene set enrichment analysis (ssGSEA) can
identify and distinguish the changes in a class of cells in
different samples based on gene signatures (Zhang et al., 2018;
Pan et al., 2019b). We used the GSEA program to obtain
the absolute enrichment scores from the CAF gene signature
previously identified using the WGCNA. The infiltration level
of one cell type was quantified by ssGSEA in the R package
gsva, where ssGSEA utilized a deconvolution approach including
myofibroblasts and fibroblasts.

Statistical Analysis
GraphPad Prism 8.4 (GraphPad Software, San Diego, CA,
USA) was used for statistical analysis. Statistical significance
was determined using the Student t test (two-tailed) for two
groups, one-way analysis of variance, and/or Tukey test for
more than two groups. Pearson χ2 test or Fisher exact test
was used to analyze the correlation between fibroblasts and
clinicopathological parameters. Kaplan–Meier log-rank test was
used to calculate the association of CAFs with overall survival.
Cox proportional hazards regression model was used to calculate
the association of the expression levels of genes with overall
survival. Each group of data is presented as mean ± SD. In the
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bar graphs of figures, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and
∗∗∗∗p < 0.0001, respectively. p < 0.05 was considered to indicate
a statistically significant difference.

RESULTS

Changing Trends in the Stroma and CAFs
First, we used ESTIMATE and EPIC to approximately calculate
the infiltration of the stroma, CAFs, and immune cells in
KIRC. The ESTIMATE result found that tumor tissues had a
higher level of stromal and immune infiltration than normal
tissues (Figure 1A). In EPIC, the proportion of CAFs showed a
tendency to increase with tumor stage and grade progression,
but the proportion of CD4+ and CD8+ T cells had no
significant change in KIRC (Figure 1B). To visualize the scale
changes in all cells in EPIC, we show the proportion of CAFs
with the progression of stage and grade using the average
fraction pie chart (Figure 1C). Based on the above results, the
proportion of CAFs increases during tumor progression or can
be considered as an increase in the rate of proliferation of CAFs
(Figure 1D). Because the CAF fraction of EPIC is estimated
based on gene signatures from other tissues, we suspected that
this fraction may contain different cells and defined them as
rough CAFs.

Identification of Gene Modules and Gene
Signature Correlated to CAFs
TCGA-KIRC sequencing samples provided WGCNA with 530
cases to effectively and objectively identify cell-specific gene sets.
We chose β = 6 (no scale R2 = 0.814) as a soft threshold
to construct a scale-free network. Three modules correlated
with the CAF fraction of approximately 0.7. Among them,
dark turquoise and light green had a very close relationship
in the cluster tree, which could originate from the identical
type of cells; however, the grey60 module was not homologous
to them (Figure 2A). According to the canonical cell types
in normal human kidney tissue, except for the epithelial cells
of different microanatomical regions and immune cells, the
remaining cells are mainly vascular endothelial cells, fibroblasts,
and myofibroblasts (Young et al., 2018). We compared the
endothelium, fibroblast, and myofibroblast markers (Young
et al., 2018), with MM.cor of different modules. The results
show that the dark turquoise and light green modules are
closely related to fibroblasts and that the grey60 and royal blue
modules are closely related to myofibroblasts and endothelial
cells, respectively (Figure 2B). According to the fibroblast
modules, dark turquoise and light green, we defined the gene
signature or key genes of KIRC CAFs under the conditions
of GS.cor > 0.70 and MM.cor > 0.85 (Figure 2C). KIRC
CAF-specific gene signature contains seven genes, collagen
type i alpha 1 chain (COL1A1), collagen type I alpha 1
chain (COL1A2), collagen type V alpha 1 chain (COL5A1),
collagen type XVI alpha 1 chain (COL16A1), elastin microfibril
interfacer 1 (EMILIN1), lysyl oxidase like 1 (LOXL1), and
lumican (LUM).

WGCNA Can Sort Cell-Specific Expressed
Genes
In previous studies, we have demonstrated that WGCNA can
recognize genes specifically expressed by CAFs in bladder cancer
(Liu et al., 2021). Based on the same calculation principle,
WGCNA can also identify the cell-specific expression gene set
in KIRC. However, not all cells have cell-specific gene sets,
illustrated by the WGCNA KIRC results. We identified only
five specific gene modules for cells (Figure 2D). CAFs contain
two kinds of cells, myofibroblasts, and fibroblasts. According
to the clustering relationship of modules shown in Figure 2A

and the correlation between markers and modules shown in
Figure 2B, the grey60 module is a representative gene set
of myofibroblasts, and the dark turquoise and light green
modules are representative gene sets of fibroblasts. The WGCNA
calculation principle is to identify highly coexpressed gene sets,
while the expression of cell-specific genes changes according
to the change in the proportion of cells. Although other cells
may interfere with these gene expressions, the impact on their
highly coexpressed relationship is limited. We have drawn a
schematic diagram to show this WGCNA function (Figure 2D).
Obtaining cell-specific gene sets relies on a large number of
samples with high tumor heterogeneity and cells with specific
expression genes.

Distribution and Expression of the Key
Genes in the scRNA Sequencing
In order to confirm whether WGCNA can identify KIRC CAF-
specific genes, we observed the distribution and expression of
key genes in the cell landscape based on the scRNA sequencing
of renal tumors. According to the UMAP dimensionality
reduction algorithm, we used two-dimensional plots to display
the expression distribution of cells and used the same color to
label the cells in the same cluster (Figure 3A). In the 23 cell
clusters, we used the validated markers EMILIN1 and matrix
metallopeptidase 2 (MMP2) to label fibroblasts in cell cluster 7
(Figure 3B) (Young et al., 2018). In addition to EMILIN1, the
other six KIRC CAF-specific genes also showed consistently high
expression in cell cluster 7 in the cell FeaturePlot (Figure 3C).
Moreover, the TracksPlot showed that the seven key genes
have high expression in cell cluster 7 (Figure 3D). Because of
the low expression of collagen in other cells, changes in the
ratio of fibroblasts can significantly affect collagen expression
in tissues.

Expression of the Key Genes in Cell Lines
To verify the expression specificity of the seven key genes, we
compared the expression levels of the genes in the cell lines
existing in the renal tumor environment. According to the cells
contained in the KIRC tissue, we used the cell line classification
in the CCLE to select blood, fibroblast, kidney, lymphocyte,
and plasma cell lines that exist in the same TME to compare
the gene expression levels. The expression of the seven key
genes in fibroblasts was much higher than that in the other
cells (Figure 3E). We further applied the data of kidney cancer
and fibroblast cell lines in CCLE, using |fold change| >2 and
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FIGURE 1 | Stroma and CAFs in KIRC. (A) Stromal and immune scores in various stages and grades. (B) CAFs, CD4, and CD8T cells in various stages and grades.

(C) Cell fractions of fibroblasts or CAFs differ in tissue types, stages, and grades. (D) Increased proliferation rate of CAFs during tumor progression. ****p < 0.0001.

p < 0.01 as the threshold to identify the DEGs between the 2

types of cells (Figure 3F). The volcano map revealed that the key

genes show higher expression in fibroblasts than in kidney cancer

cells (Figure 3G).

Correlation Between the Key Genes and
CAF Markers
Among the CAF markers and CAF-specific markers, there were
three and two intersections with the signature of CAFs in KIRC,
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FIGURE 2 | WGCNA recognizes cell-specific gene modules. (A) Correlation between the gene modules and traits, including clinical parameters and cell fractions of

various cells estimated by EPIC. Correlation coefficients and P values are presented in each cell. The dendrogram on the left shows the degree of difference between

the modules. (B) MM.cor calculated by WGCNA of canonical markers and grey60, royal blue, dark turquoise, and light green modules. (C) Genes with MM.cor > 0.85

and GS.cor > 0.7 were defined as specific markers for CAFs in dark turquoise and light green modules. (D) Cell-specific genes can be recognized by WGCNA as a

highly coexpressed gene set.

respectively. The seven key genes showed very high coexpression
(Figure 4A). CAF-specific markers showed a significantly higher
correlation with the signature than did the nonspecific markers.

Functions of the KIRC CAF Gene Signature
After analyzing and identifying cell-specific genes, we used
Metascape (metascape.org) to further verify the functions of
these specific genes. First, we performed a functional analysis of
the specific modules, dark turquoise and light green, of CAFs, as

they are closely related to the extracellular matrix (Figure 4B).
Next, a functional analysis of the gene signature containing
the seven key genes also showed that these genes were highly
associated with extracellular matrix function, as well as collagen
synthesis, cell surface interaction, and adhesion (Figure 4C).

Clinical Significance of the Key Genes
Previous results have suggested that the proportion of CAFs
in pathological tissues in KIRC increases with the progression
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FIGURE 3 | The identified KIRC CAF gene signature is specifically expressed in CAFs. (A) Cell cluster feature plot constructed from renal tumor single-cell sequencing

data. (B) Fibroblast markers EMILIN1 and MMP2 are highly expressed in some cells, mainly in cell cluster 7. (C) In addition to EMILIN1, the other six key genes are

also highly expressed in some cells in cell cluster 7. (D) Trackplot shows that the seven key genes are mainly highly expressed in cell cluster 7. These genes are also

expressed in cell cluster 13 because the two groups of cells very similar and are located very close in the landscape. (E) Among the different cells in the renal cancer

microenvironment, the seven key genes all have the highest expression in fibroblasts. (F) The heatmap shows the differential genes between the fibroblast cell lines

and the renal cancer cell lines. The threshold of the differential gene is set to |fold change|> 2 and p < 0.01. (G) The volcano map shows the differential genes

between the kidney cancer cell lines and the fibroblast cell lines. The seven key genes are marked by black circles.

of tumors (Figure 1D), and the dark turquoise and light
green modules representing CAFs are significantly related to
stage, grade, and survival in KIRC (Figure 2A). Moreover, the
relationship between the seven genes of the KIRC CAF gene
signature and clinicopathological parameters and prognosis was

also significant. We defined the progressive group as stages I
and II and grades 1 and 2, and the nonprogressive group as
stages III and IV and grades 3 and 4. The progressive group
had higher key gene expression compared to the nonprogressive
group (Figure 5A). In the ROC analysis, the area under the curve
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FIGURE 4 | Correlation between KIRC CAF gene signature and CAF-specific markers, and functional analysis. (A) Correlation between KIRC CAF signature and CAF

markers. “X” represents FDR ≥ 0.05. (B) Functional enrichment analysis of dark turquoise and light green modules. (C) Functional enrichment analysis of KIRC CAF

gene signature.

of the progressive and nonprogressive tumors was mostly >0.6
(Figure 5B). In the survival analysis, all the seven key genes in the
median grouping method showed that the prognosis of the high

expression group was worse than that of the low expression group
(Figure 5C). In the survival analysis divided into three groups
with the assistance of X-tile, all the key genes showed significant
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FIGURE 5 | Clinical significance of seven key genes. (A) The expression of key genes in different pathological grades and stages. (B) ROC curve analysis. The

diagnostic efficacy of the nonprogressive group and progressive group was mostly >0.6. (C) Grouped survival analysis by the median. (D) Survival analysis of each

key gene using the best out-based cut-point calculated by X-tile. The higher the expression of all key genes, the worse the prognosis.

prognostic values (Figure 5D). In the univariate analysis, the
seven key genes showed remarkable prognostic significance in all
530 TCGA-KIRC cases. According to the multivariate analysis,
only LOXL1 had a prognostic value (Table 1).

To verify the external data, we identified seven key genes
with significantly high expression in grades 3 and 4 groups in
GSE40435 and a trend of high expression in grades 3 and 4 groups
in GSE29609 (Figure 6A). In the GSE73731 stage or GSE29609 T
stage analysis, all the key genes were overexpressed in the
relatively advanced renal tumors, and the expression of more
than half of the genes was statistically significant (Figure 6B).

Proteins of the Key Genes in Pathology
The results of previous analyses are based on transcriptome
data. In order to further explore the protein expression location
of the key gene, we used IHC images for preliminary analysis.
Except for COL16A1, which does not have the pathological
IHC of renal adenocarcinoma, the other six key gene proteins
showed consistent CAFs-containing stromal high expression
characteristics in IHC of renal adenocarcinoma (Figure 6C). The
CAFs-containing stroma without DES staining had higher FN1
and FAP staining than did the renal cancer cells (Figure 6C).

CAFs and Related Clinicopathological
Parameters
To determine the clinical significance of CAFs, we used the
seven genes of the KIRC CAF gene signature to calculate the
infiltration score of CAFs for each sample through ssGSEA.
Moreover, we used the ssGSEA score to calculate the infiltration
level of CAFs or fibroblasts in 611 samples of TCGA (Figure 7A).
By median grouping and triple grouping in 519 cases with
tumor stage and survival clinical information as available, the
patients with high CAF infiltration showed poor prognosis
(Figure 7B). The ssGSEA score of CAFs or fibroblasts was
grouped according to the median of the corresponding cases
of different clinicopathological parameters. Increased fibroblast
infiltration is related to age < 60 years, male, stages III and IV,
and grades 3 and 4 parameters (Figure 7C). Moreover, in the
data verification of series GSE29609 and GSE40435, we used
the same gene signatures to score CAF or fibroblast infiltration
(Figures 7D,E). In GSE29609, highly infiltrating fibroblasts were
related to a worse prognosis (Figure 7F). In the univariate
analysis, although only COL1A1 and EMILIN1 have significant
prognostic significance, which was applicable for only a few
cases, the hazard ratio of all genes was >1 (Table 2). Regarding
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FIGURE 6 | Key genes are specific markers of CAFs in KIRC. (A) The key genes are more highly expressed in grades 3 and 4. (B) The key genes are more highly

expressed in T stages 3 and 4 and stages 3 and 4. (C) The expression of the key genes, FN1 and FAP was higher in stromal cells than in kidney cancer cells. The

expression of DES was not detected in stromal cells and kidney cancer cells. The blue arrow indicates the stromal part. *p < 0.05, **p < 0.01, and ****p < 0.0001.
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TABLE 1 | Univariate and multivariate analyses of CAFs gene signature genes with overall survival in TCGA KIRC cohort.

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

TCGA KIRC (n = 530)

COL1A1 (≥median vs.

<median)

1.398 (1.128–1.733) 0.002 1.273 (0.81–2) 0.295

COL1A2 (≥median vs.

<median)

1.24 (1.003–1.532) 0.047 0.718 (0.467–1.103) 0.13

COL5A1 (≥median vs.

<median)

1.377 (1.112–1.706) 0.003 1.323 (0.846–2.068) 0.22

COL16A1 (≥median

vs. <median)

1.256 (1.016–1.553) 0.035 1.005 (0.716–1.412) 0.976

EMILIN1 (≥median vs.

<median)

1.256 (1.016–1.552) 0.035 0.93 (0.636–1.358) 0.707

LOXL1 (≥median vs.

<median)

1.482 (1.195–1.837) <0.001 1.397 (1.053–1.853) 0.02

LUM (≥median vs.

<median)

1.271 (1.028–1.572) 0.027 0.99 (0.707–1.385) 0.952

clinicopathological parameters, a higher fibroblast count is
associated with grades 3 and 4, T stages 3 and 4, and N stages
1 and 2 (Figure 7G). In GSE40435, a higher fibroblast count is
associated with grades 3 and 4 and tumor tissue (Figure 7H).
Although age and fibroblast infiltration levels did not show
significant differences, the odds ratio value shows that their
trend is consistent, with age < 60 or 65 years related to high
CAF infiltration.

DISCUSSION

A prognosis of advanced renal cancer is difficult to be
significantly improved by drug treatment (Liu et al., 2018; Yang
et al., 2019). The mechanism of renal cancer progression is still
unclear; however, the role of TME in KIRC is gaining attention
(Vuong et al., 2019). CAFs are the main components of TME;
they exchange signals with cancer cells during tumor progression,
leading to a variety of treatment failures (Errarte et al., 2020).
In our work, we revealed that high CAF infiltration in KIRC
is related to poor prognosis and advanced pathological grade
and stage. The CAF-specific gene signature of KIRC recognized
by WGCNA was clinically significant. With the progression of
tumor pathological grade and stage, the infiltration level of CAFs
increased significantly. KIRC-specific CAF gene signature not
only can provide help for personalized research and treatment of
KIRC but may also serve as an essential basis for future treatment
of CAFs in KIRC.

It is vital to accurately define CAF markers within KIRC.
For CAFs related to tumor progression and prognosis in KIRC,
we identified specific markers of CAFs based on WGCNA with
advantageous characteristics. Compared with the previous CAF
infiltration level calculated based on universal markers, our
KIRC CAF-specific markers are more tumor-specific, and the
calculation of KIRC CAF infiltration based on the transcriptome
can be more accurate. The definition of KIRC CAF-specific

markers will provide more foundation and help for subsequent
research, such as the sorting of scRNAs, cell positioning, and
targeted cell therapy. In short, it is meaningful to accurately
define the markers of a class of cells related to staging and
prognosis in RCC.

The standard treatment of many advanced cancers, including
RCC, has changed from nonspecific immunotherapy or
chemotherapy to targeted therapy and immune checkpoint
block therapy, from a single treatment to a combined treatment,
and from a unified treatment to a personal treatment (Gotwals
et al., 2017). The combined precise treatment of cancer and
stroma should be the future treatment strategy, which may
greatly improve patient prognosis (Valkenburg et al., 2018). The
TME and heterogeneity within the tumor provide invasive cells
with advantageous conditions for cloning and growth (Parker
et al., 2020). In our research, we have shown that fibroblasts are
potential invasive cells in the stroma of RCC.

CAFs affect cancer patients’ prognosis and are related to
treatment resistance (Paulsson andMicke, 2014). The interaction
between tumor cells and CAFs may cause treatment failure
(Errarte et al., 2020). CAFs promote tumor matrix deposition
and remodeling in the TME (Sahai et al., 2020), help cancer
cells evade immune surveillance (De Jaeghere et al., 2019), and
achieve resistance to immunotherapy (Galvani et al., 2020). A
study showed that the extracellular matrix could reduce the
effectiveness of immune checkpoint blockers (Wang et al., 2018).
Because of the limited understanding of the origin and function
of CAFs, it will be a challenge to target them in the future
(Sahai et al., 2020).

It is imperative to accurately define the specific markers of
fibroblasts in various cancers, not only to identify fibroblasts
but also to accurately assess their infiltration level. Previous
cancer studies have always confirmed fibroblasts based on the
recognition of FAP and αSMA (Wu et al., 2020). However,
this only constitutes a basic distinction from cancer cells,
and CAFs cannot be further classified. For example, in
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FIGURE 7 | Clinical significance of CAFs. (A) Comparison of the infiltration level of CAFs or fibroblasts in each sample in KIRC according to gene signature.

(B) Survival analysis shows that high CAF infiltration correlates with poor prognosis. (C) χ2 test reveals the relationship between CAFs or fibroblasts and

clinicopathological parameters in KIRC. (D) The CAF infiltration level of each sample in series GSE29609. (E) The CAF infiltration level of each sample in series

GSE40435. (F) In GSE29609, patients with higher fibroblast infiltration had a worse prognosis. (G) Fisher exact test reveals a relationship between CAFs and

clinicopathological parameters in GSE29609. (H) χ2 test reveals the relationship between CAFs or fibroblasts and clinicopathological parameters in GSE40435.

kidney single-cell sequencing, EMILIN1, MMP2, and secreted
frizzled related protein 2 (SFRP2) are used to sort fibroblasts,
whereas αSMA and PDGFRB are used to sort myofibroblasts

(Young et al., 2018). In the TME of different cancers, fibroblasts
also have different specific expression markers from the
other surrounding cells. Therefore, identifying cancer-specific
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TABLE 2 | Univariate and multivariate analyses of CAFs gene signature genes

with overall survival in GSE29609 cohort.

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

GSE29609 (n = 39)

COL1A1 (≥median vs.

<median)

2.108

(1.03–4.315)

0.041 1.798

(0.854–3.782)

0.122

COL1A2 (≥median vs.

<median)

1.462

(0.734–2.91)

0.28

COL5A1 (≥median vs.

<median)

1.976

(0.972–4.019)

0.06

COL16A1 (≥median

vs. <median)

1.652

(0.816–3.346)

0.163

EMILIN1 (≥median vs.

<median)

2.102

(1.002–4.412)

0.049 1.788

(0.829–3.858)

0.138

LOXL1 (≥median vs.

<median)

1.924

(0.938–3.947)

0.074

LUM (≥median vs.

<median)

1.885

(0.925–3.843)

0.081

CAF markers as targets is a goal for precise treatment
or diagnosis.

With regard to CAFs, there is no definite classification
of related cell subgroups. At present, CAFs mainly include
fibroblasts and myofibroblasts, which can be distinguished
based on phenotype and related markers (Young et al.,
2018). In this study, we defined fibroblasts as CAFs
excluding myofibroblasts. Myofibroblasts, considered to
represent an activated fibroblast phenotype, were originally
identified as the cells responsible for wound contraction.
Myofibroblasts are large cells with long processes resembling
fibroblasts, commonly identified by the expression of αSMA.
Therefore, myofibroblasts have attracted much attention
in renal fibrosis (Strutz and Zeisberg, 2006); however,
research regarding the role of myofibroblasts in RCC is still
relatively limited.

WGCNA can even outperform single-cell sequencing in
identifying cell-specific markers. First, the number of samples
that WGCNA can process ranges from hundreds to thousands
of cases. The number of cells contained in all samples
far exceeds the processing capacity of scRNA sequencing.
Second, the module clustered by WGCNA is the specific
gene set of different cells, which can be calculated only
by high-throughput data sampling. However, to date, no
study using WGCNA has reached conclusive findings. Most
studies have used prognosis and tumor stage (Giulietti et al.,
2018; Jiang et al., 2020) or immune cells (Lin et al., 2020)
as the relevant phenotype to find the key cancer-related
immune genes.

Regarding cancer gene prognosis models, kidney cancer
research has been reported, but the genes used to build the
models were different (Zhang et al., 2020a,b). This is highly
related to the proportion of cells in the detected cancer tissue,
so the results will also vary greatly. Relying on gene prognostic
models presents very limited options for accurate prognosis.
Conversely, assessing the degree of tumor fibroblast infiltration
to determine prognosis is more widely applicable and stable.
Prognosis by fibroblasts intervention in KIRC patients was
confirmed in our study. However, further clinical studies are
warranted before this gene signature can be validated as a
potential biomarker of CAFs in KIRC.

CONCLUSION

In summary, we demonstrated that the increased infiltration
of fibroblasts in KIRC is significantly associated with tumor
stage, pathological grade, and prognosis. WGCNA is a robust
method for identifying the specifically expressed gene signature
of CAFs in the complex KIRC TME. Gene signature with clinical
significance is an important basis for our future research on
KIRC CAFs and lays the foundation for future tumor-targeted
CAF treatment.
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