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Abstract

To understand how distinct memories are formed and stored in the brain is an important and fundamental question in neuroscience and
computational biology. A population of neurons, termed engram cells, represents the physiological manifestation of a specific memory
trace and is characterized by dynamic changes in gene expression, which in turn alters the synaptic connectivity and excitability of these
cells. Recent applications of single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) are promising
approaches for delineating the dynamic expression profiles in these subsets of neurons, and thus understanding memory-specific
genes, their combinatorial patterns and regulatory networks. The aim of this article is to review and discuss the experimental and
computational procedures of sc/snRNA-seq, new studies of molecular mechanisms of memory aided by sc/snRNA-seq in human brain
diseases and related mouse models, and computational challenges in understanding the regulatory mechanisms underlying long-term
memory formation.
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Introduction
The dynamic processes of memory formation, including encod-
ing, consolidation, storage and retrieval, are biologically essential
functions of mammals to maintain information and recall it at a
future time [1–3]. Many mammalian brain regions are involved
in memory-related functions, including the hippocampus, the
amygdala and the adjacent entorhinal, perirhinal and parahipp-
pocampal cortices, collectively known as medial temporal lobe
structures (MTL) [4]. Among MTL, a neural circuit of hippocam-
pus, retrosplenial cortex and anterior thalamus are considered
as key components involved in spatial, contextual and episodic
memory [5]. The encoding process of memory begins with per-
ception of sensory inputs along with interoceptive and emotional
states (Figure 1). Networks of neurons encoding these simultane-
ous inputs converge, and signaling dynamics can induce initial
cellular responses, such as long-term depression and long-term
potentiation that encode the initial engram.

Memory consolidation is the process by which transient short-
term memories are transformed into long-term memories, which
are first stored in the MTL and then delivered to cortical areas for
long-term storage. During consolidation, encoded memory traces
gradually transform from an initially vulnerable state to a more

permanent one by employing diverse genomic and epigenomic
mechanisms. Storage is mostly based on modifications in the pat-
tern of synaptic strength in specific groups of neurons. Alterations
in synaptic connections and changes in neuronal excitability
result from changes in gene transcription (and, thus, downstream
translation) and are regulated by a variety of epigenetic processes
[6, 7]. Recall and recognition are two main types of memory
retrieval. In recall, the information is retrieved from memories. In
recognition, the presentation of familiar external stimuli provides
a cue that the information has been seen before. The brain uses
three kinds of memory processes: sensory register, short-term
memory (STM) and long-term memory (LTM) (Figure 1). In the
sensory register process, the brain quickly acquires information
from the environment, which usually lasts a few seconds at most.
STM is the ability to hold and recall information for a short period
of time, on the order of seconds to minutes, while LTM stores
information for long-lasting periods, sometimes for an entire
lifetime [1]. LTMs do not form quickly: they must be consolidated
over time [2].

The excitability of neurons in the dentate gyrus of the hip-
pocampus is recognized as an essential factor underlying the
recruitment of a memory engram into engram cells [8, 9]. Once
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Figure 1. Summary of different memory processes and major neurotransmitters. NE: norepinephrine, GABA: gamma-aminobutyric acid, NMDA:
N-methyl-D-aspartate, NPS: neuropeptide S, ACTH: adrenocorticotropic hormone.

allocated, the successful consolidation of memory involves a
dynamic time-dependent process of transcription and translation
[10, 11]. During these processes, the activity of specific neuro-
modulators including acetylcholine (ACh), monoamines, lipids,
amino acids, neuropeptides and neurotrophic factors contributes
to many behaviorally relevant processes, including arousal, moti-
vation, sleep, emotion and memory. ACh and glutamate have been
broadly investigated as key neurotransmitters in learning and
memory. Recent evidence further reveals that several LTM-related
neurotransmitter systems, including gamma-aminobutyric acid
(GABA), dopamine, serotonin and norepinephrine (NE), are also
involved in the memory reconsolidation (Figure 1). Meanwhile,
many of these neurotransmitters appear capable of promoting
memory destabilization [12, 13], but more investigations of how
these neurotransmitters work coordinately to support destabi-
lization across different types of memory and in different brain
regions are crucially needed.

Transcriptional dynamics during LTM formation is a central
mechanism responding to these biological influences, maintain-
ing long-term transcriptional stability of memory-related genes.
Recent technological advancements now make it possible to
assess early transcriptional variations in sparsely distributed
neuronal ensembles through analysis of so-called immediate
early genes which are rapidly expressed following an activity-
inducing experience [14]. The enduring molecular dynamics
required for encoding contextual memory within engram cells
can be detected by various approaches used to detect differences
in DNA and RNA at the level of bulk tissue down to single cells
or nuclei. In this review, we summarize the basics of single-cell
and single-nuclei RNA sequencing (sc/snRNA-seq), and describe
experimental and computational workflows. We especially
emphasize the novel discoveries of brain long-term memory
formation facilitated by sc/snRNA-seq. Finally, we propose new
strategic insights into upcoming trends, and computational

challenges in the integrative analysis of single-cell sequencing
datasets.

Methods to detect genomic and epigenomic
changes underlying memory formation
The early introduction of DNA microarrays and bulk RNA
sequencing (RNA-seq) provided the possibility of evaluating
genome-wide expression patterns across heterogeneous popula-
tions of cells from essentially any tissue, bringing insights into the
transcriptional programs underlying cellular identity, function
and/or dysfunction for many biological systems [15, 16]. Data
from several studies suggest that memory formation is linked to
specific gene expression signatures that are detectable in bulk cell
preparations from cortical and subcortical brain regions [17]. For
example, upregulation of PRKCD, RAC1, LIMK1 and CDC42 shows
strong associations with cortical memory [18–21]. On the other
hand, significant changes in expression of CDK5, NLGN1, RAB3A,
STX1A, SNCA, SYT1 and UNC13A are strongly associated with
subcortical memory [22–25]. Genes whose changes in expression
are linked to memory formation and consolidation, in both
cortical and subcortical brain cells, include those involved in
processes such as protein localization, transcriptional regulation
and glutamate receptor signaling, cell functions previously proven
to be critical for memory formation [26]. These common genes
contribute to the Arp2/3 complex, and to GABA and AMPA ligand-
gated ion channels which are essential for memory function
[27]. Cerebral cortex-specific genes are primarily involved in DNA
repair, epigenetic regulation, immunity and IFN-gamma signaling,
processes also known to be related to memory [28]. Subcortex-
specific genes act in neurogenesis, dendrite morphogenesis, glial
cell differentiation and myelination [29].

Conditioning of fear memories in mice is an important research
model that is widely investigated by bulk RNA-seq. Sustained
upregulation of activity regulated cytoskeleton associated protein
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(Arc) mRNA is observed after fear conditioning (FC) [25], and
can be used as a marker gene for time-series experiments
of fear memory consolidation. Another example comes from
the studies of CREB protein. A CREB-dependent network of 50
differentially expressed genes (DEGs) is recruited in engram
neurons associated with fear memory after 24 h, indicating
engram-specific CREB transcription is required for memory
consolidation [30]. These results as well as the results of many
other studies indeed demonstrate that CREB plays a critical
role in the processes of memory allocation, acquisition and
consolidation [31–35]. However, bulk sequencing approaches
are limited to aggregate measurements across heterogeneous
groups of cells. Thus, it remains unclear which subtypes of
brain cells are responsible for producing the gene expression
signatures of these memory functions. Furthermore, although
bulk sequencing studies helped establish an outline of the
gene expression signature associated with memory processing,
important changes may occur only in specific cell subtypes,
and these would be potentially masked by lack of change in
the larger set of the cells sampled. Bulk transcriptional profiling
averages expression levels across all or most of the cells sampled
in any given experiment. This approach limits the ability to
determine which cell types are related to any specific response
or whether measured results across experimental conditions
derive from changes in gene expression or changes in cellular
composition of the tested samples. Overall, average expression
profiles may misrepresent the signal of interest, and lead to
erroneous biological interpretations.

Single-cell measurements hold the promise of specifying cellu-
lar types in measured responses, with greater integration of func-
tional and mechanistic data relevant to cell and tissue biology.
Single-cell technologies, mainly sc/snRNA-seq, offer new opportu-
nities to address memory-related research challenges by consid-
ering the transcriptomic profile of individual cells and cell types
within an engram. Since the scRNA-seq approach was first intro-
duced [36, 37], many alternative strategies have been developed
and applied to a variety of biological systems. scRNA-seq studies
in the mammalian brain reveal the complexity, connectivity and
functions of brain cell types [38]. So far, many sc/snRNA-seq
experiments have been applied to memory-related research and
provided biological insights related to memory formation.

Experimental procedures in scRNA-seq
Techniques for genome-wide expression profiling in single cells
were introduced in 2009 and expanded in the following years [36,
39–41]. Although early scRNA-seq techniques were limited to the
study of hundreds of cells, recent approaches that combine DNA
barcoding with microfluidics or combinatorial indexing provide
the possibility of massively parallel scRNA-seq of up to 100 000
cells in one experiment, which may then be combined into even
larger datasets [42–47]. In addition to improving statistical power
via scaling, these techniques avoid the massive amplification bias
and noise common in earlier approaches that did not use specific
molecular identifiers. A classic scRNA-seq experimental pipeline
starts with the dissociation of cells from a tissue and the isolation
of single cells with special device platforms; mRNAs are then
captured for reverse transcription (RT) and amplification; lastly,
the synthesized complementary DNA (cDNA) molecules undergo
library preparation for sequencing (Figure 2).

The leading step of scRNA-seq is cell isolation, and its ade-
quacy depends on the protocol being applied. Early techniques
for single-cell isolation comprise micropipetting, micromanipu-
lation and laser capture microdissection which are considered

low throughput. A high-throughput technique is fluorescence-
activated cell sorting in which fluorescently labeled antibodies
are used to isolate cells that express a specific protein from a
heterogeneous combinations of cells, one single cell at a time
[48]. A more recent development are microfluidic devices in which
a hydrodynamic flux allows isolation and processing of single
cells in channels with dimensions of tens to hundreds of microns,
comparable to the size of a single cell [49–53]. Instead of using
transcripts from the entire cell to profile gene expression as
in scRNA-seq, snRNA-seq mainly measures nuclear transcripts.
snRNA-seq is most valuable in assessing the transcriptome of
cells that are difficult to isolate such as neurons, adipocytes,
archived frozen specimens and other preserved tissues [54–57].
snRNA-seq is especially useful for investigating the transcriptome
of neurons as these cells are heterogenous in size and shape,
and thus difficult to capture whole from tissues. Furthermore,
isolating single cells for scRNA-seq involves extended incubations
and processing, which can result in artifactual changes in gene
expression [54]. On the other hand, large numbers of nuclei can
be obtained quickly and easily from fresh, lightly fixed or frozen
tissues [58–60]. Although nuclear transcripts comprise typically
less than 50% of all the RNA in the cell [54], snRNA-seq can
offer sufficient and robust markers to define broad cell classes in
human and mouse brains [55, 61, 62] with resolution comparable
to scRNA-seq [54, 61, 63]. Importantly, scRNA-seq and snRNA-seq
identify the same cell subtype profiles in brain tissue [54]. For the
purposes of clarity in this review because the technologies and
workflow are quite similar, scRNA-seq will be used to refer to both
sc/snRNA-seq unless specified.

Following isolation of single cells, mature mRNAs need to be
captured, reverse transcribed into cDNAs and amplified. Several
devices make use of genetic barcodes, which permit capturing
mRNAs from multiple samples and cells, simultaneously. This
procedure is called ‘multiplexing’ [64]. Another novel technique
is combinatorial in situ barcoding, adopted in the single-cell com-
binatorial indexing RNA-seq and SPLiT-Seq method [46], where
single cells follow several barcoding rounds and are uniquely
labeled at the end of the procedure [37]. Usually, RT of mRNA
transcripts to cDNA is performed by using an oligo-dT primer
to avoid the capture of structural RNAs which account for the
majority of cellular RNAs [65].

RT of mRNA to cDNA is required in scRNA-seq experiments as
well as in bulk RNA-seq. RNA instability generally obviates the
use of RNA-dependent polymerases. Therefore, cDNAs must be
amplified to obtain the required quantities for sequencing. The
major methods adopted for cDNA synthesis and amplification are
template-switching coupled with polymerase chain reaction (PCR)
and in vitro transcription [65–67]. The wide technical variability
that arises from the combination of processing steps hinders
accurate quantification of transcript abundance. Possible solu-
tions to overcome this difficulty include the addition of quanti-
tative standards such as RNA spike-ins or use of unique molec-
ular identifiers (UMIs). Spike-ins are defined as artificial RNA
molecules, which are added to cell lysate in specific quantities and
subjected to all experimental steps after cell isolation to measure
losses due to processing steps. The aim of using UMIs is to present
information related to the relationship between the number of
molecules of RNA input and the detected number of sequencing
reads [68], and thus it is critical for removing PCR duplicates and
obtaining an accurate measurement of gene expression levels.

Although most of scRNA-seq methods have similar procedures,
they often differ in how they tag transcripts to their cell of ori-
gin and generate libraries for sequencing. Recent benchmarking
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Figure 2. scRNA-seq experimental workflow. 1. Tissue dissection. 2. Cellular composition of dissected tissue. Cells are usually stained by marker genes.
3. Single-cell sorting by fluorescence-activated cell sorting. For neurons, the nuclei are typically obtained for snRNA-seq. 4. Library construction and
single-cell sequencing. 5. Single-cell expression profile. 6. Clustering and cell type identification.

studies provided systematic comparison for relative performance,
experimental protocols and application preference [62, 67, 69].
Overall, Smart-seq2 [70] and CEL-Seq2 [71] performed similarly
well among low-throughput methods, while10x Chromium was
the top performer among high-throughput methods. For library
preparation, Smart-seq2, CEL-Seq2 and Drop-seq [43] are most
time consuming while the 10x Chromium method [45] is more
automated and requires the least time. Sci-RNA-seq [46], Drop-
seq, Seq-Well [72] and inDrops [73] are cost-efficient, although sci-
RNA-seq would be more cost-effective with larger numbers of sin-
gle cells or nuclei. Meanwhile, Smart-seq2 is the most expensive,
primarily because there is no pooling during library preparation.
Thus, usage preference is based on different research aims as
Smart-seq2 and CEL-Seq2 are better than the high-throughput
methods to obtain the highest sensitivity. In particular, Smart-
seq2 can be used for calling genetic variants and alternative
splicing isoforms since its reads cover the whole gene body.

Preprocessing and quality control of scRNA-seq
data
The sequencing of scRNA-seq libraries generates FASTQ files,
which include thousands to millions of reads of RNA sequences
and add-on sequences (e.g. UMIs). The generic scRNA-seq analysis
workflow carries a further cell quality control (QC) step and the
analysis of quantitative standards (Figure 3). The initial step of
the scRNA-seq data analysis pipeline is the pre-processing of
sequencing reads. The developed tools for QC of bulk RNA-seq
data, including Falco [74], Trimmomatic [75] and Kraken [76], have
also been applied for scRNA-seq [38, 77]. Later, sinQC [78] and
Scater [79] were specifically designed for scRNA-seq reads QC.
For the reads alignment, STAR [80], GSNAP [81], Tophat2 [82],
HISAT [83] and the pseudo-aligner Kallisto [84] are most widely

used. After mapping and quality checking, reads are ready to be
summated to generate expression levels. This can be performed
in a standard way by summing the reads mapping on every
gene through use of operating tools such as HTSeq count [85],
FeatureCounts [86] or maxcounts [87].

In scRNA-seq analysis, every cell can be represented by a single
biological system reflecting different cellular processes, such as
differentiation, cellular reprogramming and disease transforma-
tions [88]. Under ideal conditions, there should be no fold differ-
ence in the levels of expression of the majority of genes for a spe-
cific cell type [89, 90]. However, read counts are usually affected by
sequencing depth, and/or different protocols, introducing dropout
noise in scRNA-seq data [91]. The dropout noise, reflected as a
large number of zeros in the dataset, is a major bioinformatics
challenge that is caused by high levels of technical variability
inherent indifferent protocols [75, 77, 92], and thus will affect
measurement of true gene expression levels [76, 79, 92]. The mix-
ture of dropouts and true mRNA expression signals are usually
described as zero-inflated negative binomial models by extending
regular negative binomial models with mixture components to
account for an excess frequency of zeros [93, 94]. To date, multiple
methods have been developed to correct systematic errors, which
routinely affect sequencing data. Data diversity is also due to
other confounding factors, such as the intrinsic transcriptional
variability and the extrinsic technical noise since they hamper the
biological signal of interest from being uncovered [77]. To obtain
valid analysis results, these sources of variation need to be better
modeled or controlled [64].

To address the dropout noise and sparsity commonly found
in scRNA-seq data, multiple imputation methods have been
proposed to impute the data before downstream analysis.
These imputation methods mainly employ statistical models
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Figure 3. scRNA-seq data quality control and pre-processing. Yellow boxes illustrate pivotal steps of scRNA-seq analysis. Boxes linked by dashed arrows
indicate optional steps, depending on the scRNA-seq experimental protocol used.

or smoothing/diffusing strategies to smooth/insert the gene
expression values in cells with similar expression profiles or
deep-learning-based methods are designed to reconstruct the
observed expression matrix from the estimated latent spaces.
A systematic evaluation of 18 scRNA-seq imputation methods
[95] shows that MAGIC [96] and SAVER [97] outperformed other
evaluated methods in producing coherent datasets, improving
downstream analysis. In particular, many deep-learning-based
methods, such as DeepImpute [98], AutoImpute [99], stPlus [100],
DCA [101], scScope [102], SAUCIE [103], scIGANs [104], scGNN
[105] and GraphSCI [106], are designed to improve the accuracy
of data imputation. Among them, MAGIC is highly scalable
and performs well and stably with the majority of benchmark
datasets, outperforming most deep learning algorithms in the
analysis of human and mouse brain single-cell datasets [95, 107].

To detect genes with expression levels that have higher vari-
ability than expected from technical sources (called ‘high variable
genes’), scientists modeled the relationship between gene expres-
sion level and the squared coefficient of variation, which reveals
the variability in expression level of the genes associated with the
mean expression level [108]. Another group of approaches has
been established to account for the noise related to oscillatory
behavior such as genes involved in the cell cycle. Indeed, within
the cell cycle, a cell grows, duplicates its DNA and divides into
daughter cells [109]. Various cells, even being of a similar type,
might be at different time points of the cell cycle, therefore,
having diverse gene expression profiles. Buettner and his co-
workers designed a Gaussian process latent variable model, which
estimates the covariance matrix allied with cell cycle alternations
by factoring the expression profiles of 892 annotated cell-cycle
genes [110]. They first adjust for technical variation using spike-
in parameters and then adjust the variation derived from the
oscillatory genes. Alternatively, the program ccRemover [109] may
be used to withdraw the principal components impacted by the
cell cycle. Another method, Oscope, is reported to identify genes
with oscillating behavior, without a priori insight into which are
the oscillatory genes, by combining a K-medoids clustering and
a paired-sine model [111]. Whereas cell cycle processes may not

influence the transcriptome of non-dividing cells such as neu-
rons, other oscillatory factors may be involved such as circadian
rhythms and these may require special consideration in certain
studies [112].

The large number of measured genes and cells in a typical
scRNA-seq experiment causes difficulties in visual presentation
of data which need to be reduced to lower dimensions and cells
clustered into putative subpopulations. A broadly used solution
to problems rendering single-cell data is dimensionality reduction
which indicates the presence of cell data in a lower-dimensional
space. This approach is valuable for cell quality monitoring, data
inspection before and after normalization, outlier detection and
confounding effect identification [77]. Principal component anal-
ysis [113, 114], t-distributed stochastic neighbor embedding [115],
UMAP [116] and diffusion maps [117] can be counted as the
most widespread dimensionality reduction approaches. Mean-
while, autoencoder methods are adapted to do dimensionality
reduction, e.g. DCA [101], scVI [118], scDeepCluster [119], SAUCIE
[103], scGAE [120] and SCDRHA [121].

Typically, scRNA-seq profiles single cells in the transcriptome
scale but will lose the spatial information of cells. As cell signaling
is confined by physical location in the cellular microenvironment,
it is valuable to obtain spatial information for communicating
cells that tend to be spatially adjacent, particularly relevant for
neuronal tissues. There are three main ways to capture and/or
reconstruct spatial information from scRNA-seq data. First, a new
technique, termed spatial scRNA-seq, is specifically designed to
obtain transcriptomes while keeping cell position information
during cell preparing and sorting. For example, targeted in situ
technologies such as multiplexed error-robust fluorescence in situ
hybridization (MERFISH) [122], cyclic-ouroboros single-molecule
FISH (osmFISH) [123], sequential FISH (seqFISH+) [124] and spa-
tially resolved transcript amplicon readout mapping (STARmap)
[125] can achieve cellular resolution but are limited to hun-
dreds of preselected genes. Spatial transcriptomics methods, such
as Spatial Transcriptomics (ST) [126], 10X Visium and Slide-seq
[127], can sequence entire transcriptomes, but with low spatial
resolution (10–100 μm). The computational toolbox Giotto [128]



6 | Sardoo et al.

was developed to implement a rich set of algorithms to perform
common tasks for spatial omics data analysis, involving cell-
type enrichment analysis, spatial pattern recognition, spatially
coherent gene detection, and cell neighborhood and interaction
analyses. Analysis of a variety of public datasets demonstrates
that Giotto can be applied widely in conjunction with a broad
range of spatial transcriptomic and proteomic approaches [128].
So far, although these methods can obtain spatial transcriptomes
at the single-cell level, they are limited in either gene throughput
or spatial resolution (neither transcriptome-wide in breadth nor
at cellular resolution in depth). Second, if there are no available
spatial transcriptomics data for specific tissues or diseases, some
algorithms can reconstruct spatial locations de novo from scRNA-
seq data (see more details in next section). Third, a number of
integration methods were designed to reconstruct spatial infor-
mation of scRNA-seq data from reference spatial data, such as
Tangram [129], Cell2location [130], SpaOTsc [131], DistMap [132],
SpaGE [133], SPOTlight [134], DSTG [135] and CellDART [136].
A recent paper [137] benchmarking 16 spatial and single-cell
transcriptomics integration methods shows that Tangram [129]
and SpaGE [133] outperformed other methods for predicting the
spatial distribution of RNA transcripts. We expect that improving
spatial sequencing methods will be extremely useful in mam-
malian memory studies as the engram cells of certain memory
patterns are typically highly interconnected as local clusters.

Systematic analysis of scRNA-seq data
The downstream analyses of gene profiles include not only tra-
ditional procedures of differential gene expression analysis and
functional enrichment analysis that are carried out in bulk RNA-
seq analysis, but also novel analysis topics such as cell clustering
analysis, trajectory inference (TI), gene regulatory inference and
cell spatial localization analysis. Among all these topics, cell clus-
tering is a core and fundamental step to reveal known or novel cell
types [44, 49, 50]. There are two types of clustering methods, super-
vised clustering and unsupervised clustering. Supervised clus-
tering methods usually use prior knowledge of cell-type marker
genes to annotate scRNA-seq data into predefined cell types and
thus achieve higher precision in clustering known cell types [138];
however, unsupervised clustering is of central importance for
identifying novel cell types [44–46, 67, 68, 139]. There are many
unsupervised clustering tools available, including SNN-Cliq [140],
pcaReduce [141], scDEC [138], CIDR [142], SINCERA [143], GiniClust
[144], RaceID [145], SIMLR [146], SC3 [147], Seurat2/3/4 [148–150]
and SCANPY [151]. Recently, we designed a novel unsupervised
method, SCENA, that has superior performance compared to
existing methods based on large-scale validation with 13 publicly
accessible scRNA-seq datasets generated from diverse biological
systems [152]. SCENA has high accuracy in detecting cell popula-
tions, is robust against dropout noise and has high running speed
by integrating a CPU + GPU heterogeneous parallel computing
strategy. By applying it to scRNA-seq data of mouse brain cells,
we detected not only known cell types but also novel cell types of
interneurons that exhibit differential expression profiles of GABA
receptor subunits and transporters [152].

Differential expression analysis: Applying current best practices
in scRNA-seq methods and avoiding major pitfalls ultimately
permits analysis of differential gene expression values from mul-
tiple experiments or conditions. Currently, scRNA-seq is allowing
new insight into the dynamic molecular mechanisms underlying
processes such as cell differentiation, cell-specific gene clusters
and cancer driver genes [46, 77, 93, 140]. Several tools, including
DESeq [153] and edgeR [154] originally developed for differential

gene expression analysis on bulk RNA-seq data, are being applied
to scRNA-seq data [46, 47, 51, 155]. However, due to dropout noise,
low capture efficiency of RNA molecules and complicated gene
expression stochastic processes in single cells, scRNA-seq data
tend to exhibit more complicated distributions and huge hetero-
geneity compared to bulk RNA-seq data. To address these chal-
lenges, new strategies and models for differential gene expression
analysis of scRNA-seq data are developed, including SCDE [156],
MAST [157], Monocle2 [158], scDD [159], DEsingle [94], SigEMD
[160], EMDomics [161], D3E [162] and singleCellHaystack [163].
Compared to most of the methods that use normalized tran-
script counts as input, Monocle2 employs census counts to better
eliminate variability in different experiments. DEsingle performs
well in classifying DEGs by estimating the proportion of real and
drop-out zeros. Beside these model-based methods, nonparamet-
ric methods, such as SigEMD [160], EMDomics [161] and D3E
[162], detect DEGs by employing a distance metric between the
distributions of genes in two conditions. Recent benchmarking of
11 methods indicates that DEsingle and SigEMD achieve a better
trade-off between true positive rates and precision on simulated
datasets [93]. singleCellHaystack is used to find DEGs without
knowing the cell labels. According to our experiments, the run-
ning time of singleCellHaystack is short, while the sensitivity is
relatively low.

Trajectory inference: scRNA-seq data can provide insight into
cellular dynamic processes by using TI (or pseudotime analysis)
[164–166]. The basic idea of TI is to order cells along a trajectory
wherein cells in similar cellular stages or differentiation lineages
have high similarities in their expression patterns. TI is especially
useful for studying cell cycle stages, cell differentiation, cancer
development and immune responses whose gene patterns are
continuously changed. The trajectories of cells can then be visu-
alized as networks/graphs, presenting clear trajectory topologies.
Although tens of methods/models of TI in scRNA-seq data have
been invented and applied to divergent biological questions, a
recent evaluation of 45 TI methods showed that they exhibit
substantial complementarity, e.g. the optimal performance of
methods depends to a large extent upon the characteristics of the
dataset [164].

Gene–gene networks: An important perspective offered by
scRNA-seq studies is the gene interaction landscape in which
genes regulate expression of each other. scRNA-seq offers new
possibilities to infer gene regulation networks (GRN) for biological
processes that are time-dependent, such as the cell cycle or
differentiation [167]. Precisely, by observing how gene expression
differs among comparable cells subject to stochastic variations or
their contribution to a dynamic process, GRN provides biologically
based evidence for which transcription factors regulate which
genes. As an example, a novel tool named BEELINE is designed
to simulate single-cell transcriptional data from synthetic
and Boolean networks [120]. It avoids certain limitations of
existing methods, thus aiding the development of GRN inference
algorithms [168].

Cell–cell networks: Dissociation of tissues into single cells
delivers high-throughput genomics measurements; however,
spatial data are generally lost. Recently, computational methods
have also been advanced to infer cell–cell communications from
both bulk RNA-seq and scRNA-seq data [37]. Whereas bulk
cell populations often mask the critical contribution of minor
subpopulations within the whole, the computational analysis of
scRNA-seq data allows identification of cells that are intimately
in contact. stLearn [169] and Squidpy [170] are two popular
pipelines for integrating scRNA-seq and spatial transcriptomics,
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which both use CellPhoneDB [171] to predict ligand-receptor-
mediated cell–cell interactions between identified cell clusters.
Spatially optimal transporting the single cells (SpaOTsc) [131] is
a method that enables mapping between scRNA-seq data and
spatial data, inference of spatial distances between single cells,
comparison of spatial gene expression patterns, reconstruction
of spatial cell–cell communications, estimation of the spatial
range of particular types of intercellular signaling and detection
of gene pairs that possibly intercellularly regulate each other.
Lastly, SpaOTsc is largely applicable to datasets where reasonable
similarity measurements between spatial positions and single
cells are attainable. Clark et al. developed a novel approach called
RABID-seq for barcoded viral tracing of cell–cell interactions
in central nervous system inflammation [172]. RABID-seq can
simultaneously investigate cell interactions and transcriptomes
of interacting cells in vivo; it successfully discovered signaling
pathways controlled by the axon guidance molecules Sema4D-
PlexinB1, Sema4D-PlexinB2 and Ephrin-B3/EphB3 as mediators of
microglia–astrocyte interactions [122].

Applications of scRNA-seq in studying brain
memory formation
scRNA-seq studies are especially useful for revealing detailed
characterization of brain cell types and developmental stages or
disease grades. Advances in single-cell methods are exponentially
scaling up the quantity of single cells profiled in each study,
empowering not only the characterization of a wide-ranging land-
scape of cell types in the brain, but also the comprehensive inves-
tigation of molecular mechanisms underlying memory formation
(Table 1). To monitor cells activated during a given experience
(such as a fearful condition), targeted recombination in active
populations (TRAP) is recognized as a promising method in which
the TMX-dependent recombinase creERT2 is expressed under
the control of the Arc or Fos promoter [173]. By using FosTRAP2
mice to label cells activated during memory recall in the medial
prefrontal cortex, Chen et al. [155] studied the transcriptional
signature 16 days after FC using scRNA-seq. Results unveiled
that heterogeneous transcriptional programs specific for different
neuronal and non-neuronal (e.g. astrocytes and microglia) cells
are involved in remote memory retrieval [155]. Bioinformatics
analysis revealed 99 DEGs in neurons by comparing FC neurons
with non-neurons and non-fear conditions. Although those genes
seem to be involved in multiple core biological functions related
to neuronal activity, there is no significant overlap with genes
reported in early memory studies. For example, among these
99 DEGs, there are 15 genes found in common in 1157 DEGs
reported in conditions of fear memory consolidation in hippocam-
pus [30], 5 genes found in common in 944 DEGs reported in
conditions of associative fear-learning in temporal association
cortex [174] and 10 genes found in common in 611 DEGs reported
in conditions of post-visual stimulus in visual cortex [175]. To
visualize expression patterns in bulk RNA-seq and scRNA-seq, we
checked 77 DEGs from bulk RNA-seq data in conditions of fear
memory consolidation [30] by considering smaller Fano factors
(variance/mean ratio) that have higher mean scores and/or small
variances (Figure 4). There are six major groups clustered by
using data from bulk RNA-seq Figure 4 left [30]. In FC-positive
and FC-negative conditions, the genes show smaller variances
in bulk RNA-seq data, but exhibit large divergence of expression
levels within cells in scRNA-seq Figure 4 right [155]. The 14 genes
(cluster 2) that are highly expressed under FC in the bulk RNA-seq
data seem to show no obvious differential expression in single-cell
profiles, including the marker gene Arc. The inconsistency could

be explained by (1) the genes/mechanisms of memory encoding
[174, 175] and consolidation [30], although they are connected,
are quite different; (2) the differences in the brain regions (e.g.
hippocampus, cortex), the experimental conditions to which the
mice were exposed, differences between Fos- and Arc-expressing
neurons; and/or (3) the different experimental background and
measurement limitation of scRNA-seq (e.g. dropouts for lowly
expressed genes and large variances for highly expressed genes).

Although the different gene sets are from different studies,
neuronal plasticity is found as one of the commonly enriched
biological processes, confirming that it is a critical mechanism
for memory formation and retrieval. To study the role of neu-
ronal plasticity in appropriate memory recall, scientists have
formulated a ‘lock-and-key’ hypothesis stating that the induc-
tion of plasticity is required but not adequate to modify motor
behavior [176]. There is the further requirement that plasticity
must form the dynamics of neural activity (the key) to match a
temporal filter (the lock) that selectively prevents inappropriate
motor responses to sensory stimuli. This idea is explored through
computational analysis of two cerebellar behaviors, assessing
whether deep cerebellar and vestibular nuclei neurons can filter
electrical signals from Purkinje cells that would otherwise drive
inappropriate motor responses. Results showed that, in different
conditions, reflex acquisition requires the conditioned stimulus
to precede the unconditioned stimulus. Hence, the suggested
lock-and-key mechanisms connect neuronal activity and channel
kinetics to recall performance and generate specific predictions
of how perturbations to rebound depolarization impact motor
expression [176]. More recently, Berto et al. investigated brain
memory-sensitive oscillations and gene expression profiles by
using both bulk and snRNA-seq techniques [177]. They identified
genes correlated with oscillatory signatures of memory formation
across six frequency bands and observed that isolated oscillatory
signature-specific modules are highly enriched for specific classes
of both excitatory and inhibitory neurons. This study establishes
an experimental and analytical approach for investigating mem-
ory formation by integrating human electrophysiology, scRNA-seq
and other omics techniques.

Applications of scRNA-seq in studying memory
loss in Alzheimer disease
Memory dysfunction is associated with numerous brain patholo-
gies, including tumors, epilepsy and neurodegenerative diseases
such as Alzheimer disease (AD), Parkinson disease and amy-
otrophic lateral sclerosis. Among all these conditions, complaints
of memory failure in AD patients are among the most common
in clinics and hospital settings. Based on statistical data from
the World Health Organization (WHO, https://www.who.int/
news-room/fact-sheets/detail/dementia), currently more than 55
million people live with dementia worldwide, and there are nearly
10 million new cases every year. AD is the most common form
of dementia and may contribute to 60–80% of cases. However,
dementia, especially neurodegenerative dementias such as AD,
has no cure because of the lack of understanding of memory
formation/loss mechanisms, treatment strategies and drugs.
Here we focus on reviewing the latest results of AD research
by sc/snRNA-seq that have not only enhanced the understanding
of the molecular pathogenesis of neurodegenerative disorders,
but also helped to delineate the pathways and circuits related to
memory mechanisms.

Many snRNA-seq studies have been dedicated to understand-
ing the cell type and molecular changes in neurodegenerative
diseases, especially AD [178–181]. A recent large-scale study of 169

https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
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Table 1. Summary of studies that characterize the single-cell transcriptome in the brain memory

Year Experimental
model

Method Technique Brain region Developmental
stage

Condi-
tion/test

Number of
cells

Reference
(PMID)

2021 Mus musculus snRNA-seq 10X
Genomics

Hippocampus 8 weeks to
6 months

Barnes maze
test

15 900 33402532

2020 Mus. musculus scRNA-seq Smart-seq2 Hippocampus 42–49 days Fear
Conditioning

3691 33177708

2020 M. musculus snRNA-seq 10X
Genomics

Hippocampus 4 to 5 months Y-maze
spatial
recognition

15 573 33084572

2017 M. musculus snRNA-seq inDrop-seq Cortex 6–7 weeks Visual
stimulation

47 209 29752482

2016 M. musculus scRNA-seq Ovation
RNA-seq

Cortex 4 days Fear
conditioning

165 27557751

2016 Drosophila
melanogaster

scRNA-seq SMARTer Whole brain 24 h Foot shock 185 27160913

Figure 4. Comparison of gene expression in bulk RNA-seq and scRNA-seq. A total of 77 genes with small Fano factors (variance/mean ratio) in samples
under fear condition are selected from 1157 DEGs reported by bulk RNA-seq in conditions of fear memory retrieval [30]. Gene expression is normalized
by z-score transformation in each cell. The hierarchical clustering is performed using the python Seaborn package based on the bulk RNA-seq levels
(left). The expression levels from scRNA-seq are listed accordingly (right).
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496 nuclei from the prefrontal cortex of AD patients and healthy
controls revealed the loss of neuroprotective glial cells and
revealed a role of antigen presentation by angiogenic endothelial
cells in AD [178]. Cell type-specific transcriptomic changes are
reported to be associated with four major molecular pathways,
including angiogenesis in endothelial cells, immune response in
endothelial cells and microglia, myelination in oligodendrocytes,
and synaptic signaling in astrocytes and neurons. The DEGs
largely overlap with another independent snRNA-seq study
performed by Mathys et al. [179], exhibiting concordant pathway
changes of transsynaptic signaling in astrocytes, synaptic
signaling in excitatory neurons, mitochondrial functions in
inhibitory neurons, secretion in microglia and regulation of
axonogenesis by oligodendrocytes. By comparing these results
from AD research with the genes associated with remote memory
of fear conditions [155], we find that the synaptic signaling and
regulation of secretory vesicles in neurons are common pathways,
indicating they may be key steps in memory formation.

So far, 73 scRNA-seq datasets from 10 brain regions of AD
patients have been collected in the single-cell RNA-Seq database
for Alzheimer’s disease (scREAD) [182]. Although general analysis
of AD scRNA-seq data have focused on the development of AD
pathology, it is interesting to analyze these datasets by specifically
investigating how memory-related genes are altered by AD. Thus,
further integrative and comparative analysis should be performed
to precisely narrow the gene candidates and potential pathways
of memory formation.

Computational challenges and future studies
Overall, studies show scRNA-seq to be a powerful high-throughput
tool for analyzing individual brain cells, enabling comprehensive
and high-resolution cell type determination and identifying
new cell markers. Many methods and software tools have been
invented, employing diverse computational and/or statistical
strategies, providing great convenience in analyzing scRNA-
seq data for diverse analysis topics (Supplementary Table S1).
The remarkable potential of sc/snRNA-seq is also illustrated
in studies of cognitive function and memory including brain
diseases in which memory is disrupted, especially AD. However,
the increasing number of single cells being sequenced in current
studies is starting to overcome the capacity of available data
analysis approaches. Thus, new computational techniques and
mathematical modeling are needed to handle even larger datasets
[44, 49–51]. Here we highlight several promising topics (Figure 5).

Specific analysis of memory-related genes: scRNA-seq allows study
of the dynamic transcriptional response in memory formation. As
discussed previously, most genes whose expression is altered in
activated neurons in remote memory are rarely observed within
those DEGs discovered in early stages of learning and memory
encoding [30, 155, 174, 175]. Thus, comprehensive analysis of
single-cell RNA-seq datasets is needed to detect DEGs for different
memory conditions, and for different neuron and/or cell types.
Current strategies to detect DEGs mainly compare transcriptomes
of two or more conditions with regular significance testing [30,
155]. It is critical to further filter the DEGs with memory-specific
characteristics. Since remote memory-related genes are stably
regulated for long-term expression, studying LTM phenotypes or
phenotypes involving oscillatory behavior may facilitate detection
of DEGs with small variances in levels of expression in critical sub-
sets of neurons (Figure 5A). Another high-level analysis of scRNA-
seq data involves detecting neuronal circuits from cell–cell corre-
lation between neurons, between neurons and non-neurons, and

between brain regions (Figure 5B). The first step in studying cell–
cell communication using snRNA-seq data is to calculate gene–
gene correlations. For a given cell type, the conserved or different
gene modules can be detected computationally for experimental
and control conditions. A similar strategy can be used to detect
these modules by comparing neurons and non-neurons, or across
different brain regions.

Mathematical modeling: Although specific DEGs are already
known to be linked to fear memory or other memory conditions,
deep analysis of these genes and engram cells is lacking. Some of
the main questions that need to be answered are the following:
How are DEGs coordinated to encode specific memory engrams?
Is there a common coding strategy at the molecular level to
convert certain memory signals into specific gene expression
profiles? How does establishment of a transcriptional regulation
network relate to stable memory-specific connections among
engram cells? To answer these questions, new mathematical
models are required to delineate the dynamic processes of
memory-related gene regulation and neuron–neuron commu-
nication. For example, based on the gene–gene network among
DEGs, or the cell–cell network among engram cells, pseudotime
methods can be established to simulate the dynamics of these
interactions (Figure 5B). Ordinary differential equations and
stochastic differential equations can be applied to single-cell
transcriptome data of engram cells with some adjustment. For
example, differential equation methods have been used to model
the forgetting curves with and without anterograde amnesia and
learning and forgetting curves with impaired cortical plasticity
[183]. A biochemical mechanism for time-encoding memory
formation within individual synapses of Purkinje cells is also
studied by establishing differential equations for a set of proteins
including mGluR7, G-protein, G-protein-coupled inward rectifier
potassium ion channel, protein kinase A, protein phosphatase
and other associated biomolecules [184]. A positive feedback
loop within the molecular cascade of pCREB, C/RBP and BDNF
was investigated by a differential equation-based model [185].
A potential limitation of applying differential equation methods
is that current scRNA-seq data are only obtained with limited
time steps of hours, days and weeks. In theory, more time points
can deliver more precise information. An alternative way is to
do pseudotime analysis of scRNA-seq data to achieve potential
orders of cells over time. Several pseudo-temporal analysis
algorithms, including Monocle [166], scTDA [186] and Waterfall
[187], have been applied to study lineage relations among neurons,
stem cells and complete organisms [46, 188]. New models and
methods are expected to describe the dynamic processes of
engram cells from the pre-memory state to the terminal condition
of an established stable memory.

Integrative analysis: Current applications of divergent experi-
mental protocols involving scRNA-seq are generating numerous
brain-focused datasets. It is valuable to design methodologies
and computational frameworks to integrate and compare scRNA-
seq data from multiple platforms, and biological and clinical
conditions. Chen et al. [155] identified 99 genes in specific cell
types by comparing multiple remote memory fear conditions.
Similar comparisons may be done using sc/snRNA-seq datasets
from neurodegenerative diseases such as AD. Several large-scale
databases of healthy reference cell atlases are publicly available,
including Single Cell Expression Atlas by EMBL-EBI [189], Human
Cell Atlas [190], Allen Brain Atlas [191], Mouse Cell Atlas [192],
and Mouse Organs and Tissues [193]. Such resources may be
used to detect memory-related genes and pathways by filter-
ing the transcriptome background obtained from heathy brain

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac412#supplementary-data
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Figure 5. Schematic research topics from scRNA-seq data analysis to mathematical modeling of memory-related gene regulation. (A) The different
engram cells are extracted, sequenced, and analyzed for gene regulatory network. (B) The cell–cell coupling/connection is to be analyzed for same cell
types/regions or cross different regions. AHC: active hippocampus cell, APFC: active prefrontal cortex cell.

cells. Another type of data integration involves incorporation
of multiple types of single-cell omics data. The epigenome and
three-dimensional (3D) genomic architecture are emerging as
vital factors in the dynamic regulation of transcriptional pro-
grams essential for neuronal functions. Asaf Marco and his co-
workers [194] utilized an activity-dependent tagging system in
mice to determine the epigenetic state, 3D genome architecture
and transcriptional landscape of engram cells within memory
formation and recall. Their bulk sequencing-based discoveries
revealed that memory encoding ends in an epigenetic priming
event, marked by boosted accessibility of enhancers without the
corresponding transcriptional variations. Memory consolidation
consequently ends in spatial re-organization of large chromatin
segments and promoter–enhancer interactions. Single-cell-based
application of high-throughput chromosome conformation cap-
ture is required for elucidating the comprehensive transcriptional
and epigenomic landscape across the lifespan of memory for-
mation and recall in the hippocampal engram ensemble. Thus,
integrating scRNA-seq with epigenomic (3D chromatin interac-
tions and histone modifications), proteomic and metabolomic
represents a potential strategy for delineating the full dynamic
nature of memory engram cells, leading to a more systematic
understanding of the processes determining memory formation.
Overall, rapidly emerging single-cell sequencing approaches have
generated big data for future investigations and are starting to
reveal the high-resolution map of the brain mechanisms underly-
ing memory function.

Key Points

• The formation of memories in neurons is an important,
complex and fundamental question in fully understand-
ing mammalian brain functions.

• scRNA-seq and snRNA-seq are novel and effective
approaches to detect transcriptional profiles that are
required for the memory formation.

• Comprehensive data analysis of sc/snRNA-seq datasets
is essential to detect memory-related genes and path-
ways.

• Novel computational tools and mathematical models
are urgently needed for elucidating the molecular mech-
anisms of memory formation.
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