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Abstract
Scrub typhus is an acute zoonosis caused by the obligate intracellular Gram-negative bacterium Orientia tsutsugamushi. To better understand

the host response elicited by natural infection by chigger feeding, ICR mice were infected by Leptotrombidium chiangraiensis (Lc1) chiggers, and

the metabolic profiles of their serum were examined over several time points after initiation of feeding. ICR mice were infected by either

naive Lc1 chiggers (i.e. not infected by O. tsutsugamushi, NLc1) or O. tsutsugamushi– infected Lc1 chiggers (OLc1). Serum was collected

from both groups of mice at 6 hours and 10 days after initiation of feeding. Metabolites were extracted from the serum and analysed by

ultra performance liquid chromatography–tandem mass spectrometry. The resulting ion/chromatographic features were matched to a

library of chemical standards for identification and quantification. Biochemicals that differed significantly between the experimental groups

were identified using Welch’s two-sample t tests; p � 0.05 was considered statistically significant. A number of biochemicals linked to

immune function were found to be significantly altered between mice infected by the NLc1 and OLc1 chiggers, including itaconate,

kynurenine and histamine. Several metabolites linked to energy production were also found to be altered in the animals. In addition lipid

and carbohydrate metabolism, bile acid and phospholipid homeostasis, and nucleotide metabolism were also found to be different in

these two groups of mice. Markers of stress and food intake were also significantly altered. Global untargeted metabolomic

characterization revealed significant differences in the biochemical profiles of mice infected by the NLc1 versus OLc1 chiggers. These

findings provide an important platform for further investigation of the host responses associated with chigger-borne O. tsutsugamushi

infections.
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Introduction
Orientia tsutsugamushi, an obligate intracellular bacterium, is the
aetiologic agent of scrub typhus, an acute febrile illness which

can be transmitted by the bite of larvae of different species of
trombiculid mites (e.g. chigger of Leptotrombidium mites). The
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mites can harbour the bacterium from the larval stage to

adulthood and can maintain it via transovarial and transstadial
transmission [1]. Rodents appear to be the natural hosts, while

humans are accidental hosts. The disease is endemic to the
Asia-Pacific region, where it accounts for up to 23% of all febrile

illnesses [2]. In spite of its heavy disease burden in one of the
most populated areas in the world, there is no vaccine available.

The disease is characterized by fever, rash, eschar, pneumonitis
and meningitis, and in some cases by disseminated intravascular
coagulation that may lead to circulatory failure [3]. Although

the disease can be effectively treated with doxycycline, timely
and accurate diagnosis is often challenging because of its un-

differentiated symptoms [4].
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Orientia can infect a variety of mammalian cells in vitro. Hu-

man endothelial cells have long been thought to be the target of
infection. This was confirmed by immunohistochemistry using

autopsy tissues of suspicious cases of scrub typhus [5]. How-
ever, dendritic cells and monocytes rather than endothelium

cells were shown to be the target cells in eschars of scrub ty-
phus patients [6], suggesting the target cells at the initial biting
sites of Orientia may be different from its target cells during

subsequent dissemination and may influence its interaction with
local host immune responses. Various mouse models have been

developed to mimic the responses in patients. While intra-
peritoneal inoculation has been used to evaluate several vaccine

candidates in mice [7–10], additional routes for inoculation,
including intradermal [11,12], intravenous [13–16] and footpad

[17], have also been explored, along with their impacts on
immunologic responses. Recently a mouse model using
laboratory-reared, field isolated, Orientia-infected Leptotrombi-

dium chiangraiensis (Lc1) chiggers as the inoculum was estab-
lished, mimicking the natural route of infection [18].

Furthermore, these authors also established that infected
chiggers can also cause infection in mice via intraperitoneal

inoculation [19,20]. A study utilizing this model to evaluate the
leading vaccine candidate (a 56 kDa protein antigen) showed

only a moderate protective effect [21]. Despite the advances in
this mouse model with a natural vector (i.e. chiggers) to mimic

the infection in rodents, not much is known about how the
infection by Orientia affects the rodent and its metabolism
during the early and late stages of infection.

In this study, ICR mice were infected by naive Lc1 (NLc1)
chiggers and Orientia-infected Lc1 (OLc1) chiggers according to

an established method [18]. The mice were monitored for up
to 15 days after initiation of feeding (PIF). Serum samples were

collected from both NLc1 and OLc1 chigger-infected mice, and
the quantification of various metabolites was performed using

ultra performance liquid chromatography–tandem mass spec-
trometry (UPLC-MS/MS). We observed significant alterations in
several biochemicals linked to immune function and energy

production. Additionally, there were also changes in metabo-
lites reporting on food intake status, lipid and carbohydrate

metabolism, and bile acid, phospholipid and nucleotide ho-
meostasis. Our study is novel in that it is the first to describe

the metabolic response mounted by laboratory animals in
response to chigger-borne O. tsutsugamushi infections.
Materials and methods
Chigger feeding challenge in ICR mice
The animal protocol (PN #12-12), ‘Maintenance of the Lepto-
trombidium Larval Mite Colonies: Chigger Feeding on ICR Mice
This is an o
(Mus musculus),’ was approved by the AFRIMS Institutional

Animal Care and Use Committee. The procedures described by
Lurchachaiwong et al. [18] were followed. Individual mice were

anesthetized by injection of a mixture of ketamine, atropine and
xylazine (final concentrations of 40 mg/mL ketamine, 2 mg/mL

xylazine and 0.06 mg/mL atropine, dosed at 0.1 to 0.2 mL/100 g
mouse body weight). One Lc1 chigger was placed into the inner
ear of one anesthetized female mouse. During the initial chigger

feeding, mice were placed in special holding cages (11 cm long,
5 cm wide and 7 cm high) designed to restrict mouse move-

ment and reduce the chance of removing chiggers by grooming
or scratching. Each cage was positioned above a pan of water to

catch any chiggers falling off the mice. Three days later, all mice
(five mice per group) were transferred to regular caging con-

dition. One set of mice was infected by the NLc1 chiggers.
Another two sets of mice were infected by the OLc1 chiggers.
After initiation of chigger feeding, one set each of the NLc1- and

OLc1-infected mice were humanely killed by CO2 at 6 hours
and 10 days PIF. The other OLc1-infected mice group was

monitored for up to 28 days PIF or until they were deemed
nonresponsive (Table 1). Blood was collected by cardiac

puncture, and tissue samples of lung, liver, spleen, kidney and
brain were also collected.

Metabolomic analysis
The nontargeted metabolomic analysis was performed at
Metabolon Inc. (Morrisville, NC, USA). Detailed descriptions of

the platform, including sample processing, instrument configu-
ration, data acquisition and metabolite identification, and

quantitation, have been published previously [22–26]. In brief,
the samples were extracted with methanol and the superna-

tants were analysed using four independent UPLC-MS/MS
methods: (1) reverse-phase (RP) UPLC-MS/MS with positive

ion mode electrospray ionization (ESI), optimized for more
hydrophilic compounds, (2) RP/UPLC-MS/MS method with
positive ion mode ESI, optimized for more hydrophobic com-

pounds, (3) RP/UPLC-MS/MS method with negative ion mode
ESI and (4) hydrophilic interaction liquid chromatography/

UPLC-MS/MS with negative ion mode ESI. All methods used a
Waters ACQUITY UPLC (Waters, Milford, MA, USA) and a Q-

Exactive high-resolution/accurate mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) interfaced with a heated

ESI-II source and Orbitrap mass analyser operated at 35 000
mass resolution. The methods alternated between full scan
mass spectrometry (MS) and data-dependent MSn scans using

dynamic exclusion. The scan range varied slightly between
methods but generally covered 70 to 1000 m/z. The structures

of the metabolites were identified by automated comparison of
the ion features in the experimental samples to a reference li-

brary of chemical standard entries that included retention time,
Published by Elsevier Ltd, NMNI, 23, 70–76
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TABLE 1. Experimental design for metabolomic profiling of

ICR mice infected by Leptotrombidium chiangraiensis chiggers

Infection No. of mice
Time after feeding to
sample collection

NLc1 5 6 hours
5 10 days

OLc1 5 6 hours
5 10 days
5 15 daysa

Lc1, Leptotrombidium chiangraiensis; NLc1, naive Lc1 chiggers; OLc1, Orientia
tsutsugamushi– infected Lc1 chiggers.
aGroup of mice infected by OLc1 chiggers was monitored only for morbidity and
mortality. All mice were deemed nonresponsive and were humanely killed by 15
days after initiation of feeding.
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molecular weight (m/z), preferred adducts and in-source frag-

ments, as well as associated MS spectra, and was curated by
visual inspection for quality control using software developed at

Metabolon Inc. [24–26].

Data analysis
Peaks were quantified using area-under-the-curve measure-

ments. After median scaling and imputation of missing values,
statistical analysis of log-transformed data was performed by

open-source R software (R Foundation for Statistical
Computing, Vienna, Austria; http://www.r-project.org/). Bio-

chemicals that differed significantly between the experimental
groups were determined via Welch’s two-sample t test;

p � 0.05 was considered statistically significant.
Results
General observations of chigger-infected mice
After placement of a single chigger on the individual mice, the

chiggers stayed on the mouse up to 3 days PIF before becoming
fully engorged and detaching. All mice infected by the OLc1
chiggers died within 15 days PIF, similar to previous observa-

tions [18]. Symptoms, including ruffled fur, appeared on day 9
PIF, and mice also became less active and consumed less food

on day 9 PIF. IgG and IgM antibodies against the immunodo-
minant 56 kDa protein antigen were detectable by enzyme-
TABLE 2. Number of biochemicals altered in OLc1 mice relative t

Time after feeding

p £ 0.05

Total biochemicals Increases/dec

6 hours 40 27/13
10 days 374 108/266

Welch’s two-sample t test was used to determine statistical significance of fold changes of e
Lc1, Leptotrombidium chiangraiensis; NLc1, naive Lc1 chiggers; OLc1, Orientia tsutsugamushi– i
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linked immunosorbent assay only after 10 days PIF in all mice

infected by the OLc1 chiggers. Tissue tropism was demon-
strated by quantitative real-time PCR based on the 47 kDa gene

[27]. Detectable Orientia DNA was evident after 10 days PIF in
mice infected by OLc1, with lung being the most affected organ

(data not shown).

Summary of altered biochemicals and metabolites
We identified a total of 834 biochemicals in the serum of

chigger-infected mice. The numbers of biochemicals found to
be significantly different (p � 0.05) between the OLc1- and

NLc1-infected groups as well as those approaching significance
(0.05 < p < 0.10) at 6 hours and 10 days PIF is shown in Table 2.

Notably, the number of significant differences increased sharply
over the course of the infection, increasing from 40 to 374
between 6 hours and 10 days PIF.

Metabolites linked to infection were up-regulated in mice
with OLc1 chiggers. At 10 days PIF, the OLc1-infected mice

exhibited significant elevations in several metabolites linked to
immune function. These included kynurenine, histamine,

corticosterone and itaconate, along with other structurally
related C5 dicarboxylic acids, including mesaconate and meth-

ylsuccinate. As shown in Fig. 1(A), only negligible alterations
were observed in these metabolites at 6 hours PIF. However,
robust increases were observed for these metabolites at 10

days PIF, with the fold changes ranges ranging from 2.91 (his-
tamine) to 64.1 (itaconate).

Glucose and lipid utilization
At 10 days PIF, the mice infected by the OLc1 and NLc1

chiggers displayed significant differences in energy production
pathways. Several glycolytic/gluconeogenic intermediates

including glucose, pyruvate, lactate and several tricarboxylic
acid (TCA) cycle intermediates were altered (Table 3), sup-
porting the notion that the infection perturbed energy pro-

duction in the mice. Perhaps as a compensatory mechanism, the
OLc1-infected mice appeared to exhibit a greater reliance on

lipids to fuel energy metabolism at this time. This notion is
supported by the increases observed in acylcarnitine

species (e.g. myristoylcarnitine, (C14)), free fatty acids species
o NLc1 mice

0.05 < p < 0.10

reases Total biochemicals Increases/decreases

44 27/17
78 34/44

ach biochemical in mice infected by OLc1 relative to NLc1 chiggers.
nfected Lc1 chiggers.
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FIG. 1. Fold changes of various metabolites at 6 hours (blue) and 10 days (red) PIF in mice infected by OLc1 chiggers relative to NLc1 chiggers. (A)

Metabolites linked to infection. (B) Metabolites involved in fatty acid β-oxidation and ketogenesis pathways. (C) Metabolites involved in purine and

pyrimidine metabolic pathways. Only fold changes observed at 10 days PIF is statistically significant (p � 0.05, Welch’s t test). Red bars for hypo-

xanthine and xanthine could not be seen clearly because of their extremely low fold changes of 0.003 and 0.0003, respectively. Lc1, Leptotrombidium

chiangraiensis; NLc1, naive Lc1 chiggers; OLc1, Orientia tsutsugamushi– infected Lc1 chiggers; PIF, post initiation of feeding.

TABLE 3. Changes in metabolites involved in glucose

utilization and TCA cycle activity

Subpathway Biochemical name

Time after feeding

6 hours 10 days

Glycolysis Glucose 0.99 0.59*
Gluconeogenesis Phosphoenolpyruvate (PEP) 0.81 1.51*
Pyruvate metabolism Pyruvate 1.31 0.53*

Lactate 1.12 0.58*
Pentose phosphate Sedoheptulose-7-phosphate 1.78 2.58*
TCA cycle Succinylcarnitine (C4-DC) 0.60 0.63*

Fumarate 1.21 0.33*
Malate 1.12 0.39*

More biochemicals were detected in pathways than those listed.
Lc1, Leptotrombidium chiangraiensis; NLc1, naive Lc1 chiggers; OLc1, Orientia
tsutsugamushi– infected Lc1 chiggers; TCA, tricarboxylic acid.
*Statistically significant difference (Welch’s t test, p < 0.05) in fold changes of OLc1/
NLc1.
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This is an o
(e.g. arachidate (20:0), palmitate (16:0)), 3-hydroxy-fatty

acids (e.g. 3-hydroxyoctanoate) and ketone bodies (e.g. 3-
hydroxybutyrate (BHBA)) at 10 days PIF (Fig. 1(B)).

As highlighted in Table 4, several additional classes of lipids
were also altered. The OLc1-infected mice displayed significant

decreases for a number of primary and secondary bile acid
species at 10 days PIF. Bile acids are produced in the liver and
play a role in emulsifying dietary fats, eliminating cholesterol and

aiding in the excretion of hepatic catabolites; their lower abun-
dance in the serum of the infected animals could thus correlate

with impairments in lipid handling and/or hepatic function. In
parallel with these changes, the infected mice also displayed

decreases in several monoacylglycerol and diacylglycerol species
(Supplementary Table S1), which is suggestive of a possible in-

crease in triglyceride lipolysis rates. Lastly, the infected mice also
displayed similar changes in many detected components of the
Published by Elsevier Ltd, NMNI, 23, 70–76
pen access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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TABLE 4. Changes in primary and secondary bile acid

metabolites

Subpathway Biochemical name

Time after feeding

6 hours 10 days

Primary bile acid metabolism Cholate 2.99 0.02*
Glycocholate 1.51 0.11*
Chenodeoxycholate 0.78 0.19*
β-Muricholate 1.77 0.27*

Secondary bile acid metabolism Deoxycholate 1.56 0.42*
Ursodeoxycholate 0.91 0.10*
12-Dehydrocholate 0.79 0.05*
Ursocholate 0.98 0.16*

Lc1, Leptotrombidium chiangraiensis; NLc1, naive Lc1 chiggers; OLc1, Orientia
tsutsugamushi– infected Lc1 chiggers.
*Statistically significant difference (p � 0.05) in fold change (OLc1/NLc1) at 10 days
after initiation of feeding.
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glycerophospholipids, plasmalogens and sphingomyelins
(Supplementary Table S2). Collectively, these changes are highly

consistent with significant alterations in lipid synthesis and utili-
zation near the onset of infection in the animals.

Perturbation of nucleotide metabolism in infected
mice
Several alterations were observed in the nucleotide profiles of

the infected mice. As highlighted in Fig. 1(C), the most signifi-
cant changes were centred on metabolites linked to the

breakdown and recycling of purines (e.g. inosine, hypoxanthine,
xanthine and xanthosine) and pyrimidines (e.g. uridine, thymi-

dine, thymine and 3-ureidopropionate). These late-developing
differences may be attributable to changes in RNA/DNA syn-
thesis and to breakdown and/or changes in nucleotide demand,

possibly to fuel energy metabolism.
Discussion
The OLc1-infected mouse model has recently been established

[18] and has been used to evaluate vaccine efficacy [21]. This
model well mimics infection observed in the field. Not much is

known about the effect of Orientia infection on host metabolic
activities. The increase in kynurenine levels as described herein

for this infection model is particularly interesting, as it has been
shown that the production of kynurenine is also elevated in

patient serum samples as a result of increased indoleamine 2,3-
dioxygenase activity [28]. Additionally, the production of itac-

onate has been associated with activation of the innate immune
system [29]. Specifically, it has been linked to immunores-
ponsive gene 1 (Irg1), which is highly expressed in mammalian

macrophages during infection [30]. The expressed protein of
this gene functions as an inhibitor for isocitrate lyase, which is a

key enzyme of the glyoxylate cycle involved in a metabolic
pathway of importance reported for many pathogens during
Published by Elsevier Ltd, NMNI, 23, 70–76
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infection [31,32]. In response to infection, some bacteria can

degrade the itaconate to promote both their survival and
infectivity in the host [33]. Although the above metabolic re-

sponses have been linked primarily to itaconate, methyl-
succinate and methylfumarate could accumulate for similar

reasons as well. Notably, these metabolites are structurally
similar to itaconate and can be degraded or utilized by bacteria
in similar manners [33,34].

In addition to the above markers of infection, the infected
mice also displayed significant increases in corticosterone at 10

days PIF. This metabolite, importantly, can affect both energy
metabolism and the inflammatory state of the host [35,36]. In

the context of infection, it can aid in dampening the immune
response by increasing the expression of anti-inflammatory

genes and by inhibiting the expression of proinflammatory
genes, allowing the body in turn to guard against hyper-
inflammation [36].

In parallel with the above changes, the experimental findings
herein also suggest that the Orientia infection altered the major

energy producing pathways in the host. There was evidence, for
instance, of altered carbon flow through both the glycolytic and

TCA cycle pathways (Table 2). Several classes of lipids were
also altered in a pattern that was consistent with the β-oxida-

tion pathway being up-regulated. It should be noted that these
metabolic signatures correlated well with the increase in

corticosterone noted above. Like other glucocorticoids, it can
stimulate gluconeogenesis in the liver and inhibit glucose uptake
by muscle, which leads to increases in fat breakdown and uti-

lization. This phenotype may be an adaptive response by the
host in response to feeding changes during the infection, as food

consumption generally decreased as the infection progressed
(data not shown). Interestingly, Orientia, unlike other rickettsia,

does not have a β-oxidation system for fatty acid energy pro-
duction [37]. Thus, it seems that Orientia may be taking

advantage of the host fatty acid oxidation pathway to generate
energy for its growth [38]. Similarly, the change in the nucle-
otide metabolites may also suggest the need for alternative

energy production pathway for the host to utilize when infec-
tion is more evident, with less food intake. Finally, itaconate

production (Fig. 1(A)) may also have an impact on cellular en-
ergy in the host because it is derived from the TCA cycle in-

termediate cis-aconitate via decarboxylation [33]. Moreover,
experimental evidence has suggested that it can also inhibit

glycolytic reaction in the host [39].
The increase in ketone body production in the infected mice

in this study is also notable, as similar findings have been re-
ported previously in other Orientia infection models [40]. Jung
et al. [40], for instance, observed similar increases in BHBA in a

BALB/c mouse model upon infection of O. tsutsugamushi via
intraperitoneal inoculation. In their work, nuclear magnetic
.0/).
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resonance analysis was used to quantify different metabolites in

different tissues and serum. BHBA was one of the metabolites
that increased in the infected mice relative to the uninfected

control mice at days 4 or 7 after infection. While we only
observed an increase at 10 days PIF, these independent findings

are consistent with increased ketogenesis being a common
metabolic response over the course of Orientia infection.
Furthermore, almost all metabolites observed by Jung et al. in

serum were also observed in this study (Supplementary
Table S3). These consistent results suggest that the changes

associated with these metabolites are independent of the ge-
netic background of the mouse used, the inoculation route and

methods used to monitor the level of these metabolites.
Furthermore, a slight delay in time point (i.e. 4 or 7 days for

intraperitoneal challenge and 10 days PIF for chigger infection)
may be due to the time required for Orientia to enter the host
via Lc1 inoculation [21]. Additionally, we also observed similar

changes in phosphotidylcholine and phosphotidylethanolamine
between the mice infected by OLc1 and NLc1 (Supplementary

Table S2), as observed by Jung et al. The changes in phospho-
tidylcholine and phosphotidylethanolamine are likely related to

the breakdown of O. tsutsugamushi–enveloping membrane in
these infected mice [40].

Additional changes involving bile acids as well as glycerolipid
and phospholipid metabolism were also observed at 10 days PIF

(Table 4, Supplementary Tables S1 and S2). While it is difficult to
pinpoint the exact mechanism or mechanisms responsible for
these observations, these changes, when taken in combination,

are consistent with a possible decline in complex lipid synthesis
rates in the infected mice at or near the onset of illness and may

support the ketogenic phenotype discussed above.
To our knowledge, this is first comprehensive study inves-

tigating the effect of chigger-borne Orientia infections on the
host serum metabolome. The novelty of this study lies on the

mouse model being the one that best mimics the route of
natural infection. We observed alterations in several infection-
linked markers in OLc1 mice, particularly at 10 days PIF. In

addition, OLc1 animals also displayed significant differences in
lipid and carbohydrate metabolism, bile acid homeostasis and

nucleotide utilization. A more comprehensive study of addi-
tional time points after feeding with additional tissue samples

should be conducted in order to gain better understanding of
the changing dynamics of these metabolites and how the

infection affects organ function.
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