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Abstract

Our lab has previously shown that nitric oxide (NO) can alter the synaptic response proper-

ties of amacrine cells by releasing Cl- from internal acidic compartments. This alteration in

the Cl- gradient brings about a positive shift in the reversal potential of the GABA-gated cur-

rent, which can convert inhibitory synapses into excitatory synapses. Recently, we have

shown that the cystic fibrosis transmembrane regulator (CFTR) Cl- channel is involved in

the Cl- release. Here, we test the hypothesis that (acidic) synaptic vesicles are a source of

NO-releasable Cl- in chick retinal amacrine cells. If SVs are a source of Cl-, then depleting

synaptic vesicles should decrease the nitric oxide-dependent shift in the reversal potential

of the GABA-gated current. The efficacy of four inhibitors of dynamin (dynasore, Dyngo 4a,

Dynole 34–2, and MiTMAB) were evaluated. In order to deplete synaptic vesicles, voltage-

steps were used to activate V-gated Ca2+ channels and stimulate the synaptic vesicle cycle

either under control conditions or after treatment with the dynamin inhibitors. Voltage-ramps

were used to measure the NO-dependent shift in the reversal potential of the GABA-gated

currents under both conditions. Our results reveal that activating the synaptic vesicle cycle

in the presence of dynasore or Dyngo 4a blocked the NO-dependent shift in EGABA. How-

ever, we also discovered that some dynamin inhibitors reduced Ca2+ signaling and L-type

Ca2+ currents. Conversely, dynasore also increased neurotransmitter release at autaptic

sites. To further resolve the mechanism underlying the inhibition of the NO-dependent shift

in the reversal potential for the GABA-gated currents, we also tested the effects of the cla-

thrin assembly inhibitor Pitstop 2 and found that this compound also inhibited the shift.

These data provide evidence that dynamin inhibitors have multiple effects on amacrine cell

synaptic transmission. These data also suggest that inhibition of endocytosis disrupts the

ability of NO to elicit Cl- release from internal stores which may in part be due to depletion of

synaptic vesicles.
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Introduction

The transmission of information through neuronal circuits depends on the function and regu-

lation of synapses. Chemical synapses are especially important because the diversity of physio-

logical types of synapses and their flexibility can alter the conveyance of information. In the

vertebrate retina, Amacrine cells (ACs) form primarily gamma-aminobutyric acid (GABA)-

ergic and glycinergic synapses with ganglion cells, bipolar cells, and other ACs. GABA and gly-

cine bind to ionotropic postsynaptic receptors and activate Cl- channels. The excitatory or

inhibitory effect of the postsynaptic response to these neurotransmitters is dependent upon

the electrochemical gradient for Cl- across the postsynaptic plasma membrane. Thus, under-

standing the regulation of cytosolic Cl- at synapses is fundamental to understanding the full

flexibility of neuronal circuitry.

We have previously shown that nitric oxide (NO), can alter the response properties of post-

synaptic ACs that express Cl- conducting GABAA receptors. Specifically, a novel mechanism

involving a NO-dependent release of Cl- (NOdrCl) from internal stores into the cytoplasm has

been demonstrated [1]. This release brings about a positive shift in the equilibrium potential

for Cl-, which can convert these GABAergic and inhibitory synapses into excitatory synapses

[1]. Endosomes are strong candidates for contributing to NO-releasable Cl- because they con-

tain millimolar [2] concentrations of Cl-. Synaptic vesicles (SVs), derived from early endo-

somes, have an estimated Cl- concentration of between 40–50 mM [3]. Additionally, our lab

has provided evidence that Cl- is coming from acidic organelles, and that intact endosomal

proton gradients are required for the NOdrCl [4]. Acidification of endosomes occurs via the

simultaneous proton pumping of the V-ATPase and charge compensation by the counter ion

Cl-, which is moved into the cytosol via an as yet unknown Cl- transport mechanism. The cys-

tic fibrosis transmembrane conductance regulator (CFTR) is a Cl- transporter that can be

found in internal membranes of vertebrate neurons [5, 6]. Recently our lab has shown that

pharmacological inhibition and knockdown of CFTR expression in ACs blocks the NO-depen-

dent shift in Erev-GABA [7].

Here we aim to test the hypothesis that SVs can release Cl- and contribute to the NOdrCl.

Nitric oxide synthase expression is found in subsets of amacrine cells in both mammalian [8–

17] and avian retinas [18, 19] and has been localized specifically to amacrine cell presynaptic

terminals at the EM level in the turtle retina [20]. Furthermore, amacrine cells participate in

reciprocal synapses with other amacrine cells where pre and postsynaptic elements within the

same process can exist side by side [18, 19, 21–24]. As such, Cl- released from SVs can influ-

ence the postsynaptic responses at adjacent synaptic sites. To uncover the role of SVs in the

NOdrCl, we made whole cell voltage-clamp recordings of cultured ACs. After 8 days in cul-

ture, ACs form functional GABAergic synapses with each other similar to GABAergic synapses

in the intact retina [25, 26]. This simplified system allows for the isolation of GABAergic syn-

apses and the elimination of synapses from other cell types in the intact retina. Our objective

was to deplete the SV pool by driving exocytosis with depolarizing voltage steps while inhibit-

ing compensatory endocytosis pharmacologically. Dynamin is a key player in endocytosis

functioning as a GTP-dependent pinchase, driving fission of endocytosing vesicles. In mam-

mals, there are three isoforms of dynamin (dynamin 1–3). Dynamin 1 is expressed at high lev-

els in neurons [27]. Dynamin 2 is expressed ubiquitously [28], and dynamin 3 is almost

exclusively expressed in the brain and testis [29]. There is also evidence that all three isoforms

are expressed in the developing rat brain [30, 31]. In the chicken, full predicted sequences for

dynamin 1 and 3 have been identified while only a partial predicted sequence is available for

dynamin 2. However, dynamin 1 and 3 are highly conserved between chicken and rodents

(dynamin 1 rat 96%, mouse 94%; dynamin 3 rat 92%, mouse 93%; scores are for identity). All
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three isoforms have the four domains of dynamin: a GTPase domain, a plextrin homology

domain that interacts with membrane lipids, a GTPase effector domain involved in assembly

[32, 33], and a proline-rich domain [34–36]. Dynasore interferes with the GTPase activity of

dynamin during endocytosis [37]. The more potent dynasore analogs Dyngo 4a [38] and

Dynole 34–2 [39] also target the GTPase activity of dynamin. MiTMAB targets the plekstrin

homology domain of which interacts with membrane lipids and assists in vesicle fission [40].

Our findings reveal that the dynamin inhibitors suppressed endocytosis in ACs and two of

them (dynasore and Dyngo-4a) interfered with the NOdrCl. However, we have also discovered

that the dynamin inhibitors can alter Ca2+ signaling, voltage-gated Ca2+ currents and synaptic

transmission. Interestingly, the clathrin inhibitor Pitstop 2 also reduced the NOdrCl suggest-

ing that disruption of endocytosis is at least one factor involved in the inhibition of NOdrCl.

Materials and methods

Cell culture

The Louisiana State University Institutional Animal Care and Use Committee has granted a

formal waiver of ethical approval. Eight-day chick embryo eyes were removed and the retinas

dissociated and cultured as previously described [4]. Cell cultures were maintained under 5%

CO2 atmosphere at 37˚C. ACs that had been in culture for 9–13 days (embryonic equivalent

days 17–21) were used for experiments because AC-AC GABAergic synapses are functional

from embryonic equivalent day 16 onwards. ACs used for electrophysiology and live-cell

imaging experiments were identified based on morphology as previously described [25].

Electrophysiology

Culture dishes were mounted on the stage of an Olympus IX70 inverted microscope. A refer-

ence Ag/AgCl pellet electrode in 3M KCl grounded the dish via 1% agarose bridge containing

3M KCl. Patch pipettes were pulled from thick-walled borosilicate glass (O.D.:1.5 mm, I.

D.:0.86 mm; Sutter Instruments, Novato, CA) using a P-97 Flaming/Brown puller (Sutter

Instruments). Patch pipette resistances were between 4–8 MO when measured in the bath.

Whole-cell recordings were performed using an Axopatch 1-D amplifier, Digidata 1322A

data-acquisition board, and pClamp 10.0 software (Molecular Devices, Sunnyvale, CA). Exter-

nal solutions were continuously perfused (1.5–2 mL/min) using a pressurized 8-channel perfu-

sion system (Automate Scientific, Berkeley, CA). Series resistance was measured but series

resistance compensation was not employed. Using the pClamp 10.0 calculator, the junction

potential was estimated to be 14.5 mV and 21.5 mV for ruptured patch and perforated patch

solutions, respectively. Voltage ramp data for determining Erev-GABA were analyzed by making

corrections for series resistance error and junction potential then subtracting the leak current

(also corrected) that was obtained from recording ramp currents in the absence of GABA. For

autaptic recordings, the ACs were not in contact with other neurons, ruling out synaptic input

from unclamped cells. Charge transfer at autapses was calculated as previously described and

reported as pC [41]. Inward Ca2+ currents were often contaminated and obscured by outward

synaptic current during the voltage step.

Solutions and reagents

All reagents were purchased from Sigma-Aldrich, unless otherwise indicated. The external

solution used for electrophysiology experiments contained (in mM): NaCl (116.7), KCl (5.3),

Tetrathylammonium (TEA)-Cl (20), CaCl2 (6.0), MgCl2 (0.82), HEPES (10.0), glucose (5.6).

Tetrodotoxin citrate (TTX) (300 μM, Abcam, Cambridge, UK) was added to external solutions

Endocytosis and nitric oxide-dependent release of Cl-

PLOS ONE | https://doi.org/10.1371/journal.pone.0201184 July 25, 2018 3 / 27

https://doi.org/10.1371/journal.pone.0201184


to block voltage-gated Na+ channels. For GABA-gated current recordings, the voltage-gated

Ca2+ channel blocker La3+ (50 μM) was added to the external solution. For recordings of volt-

age-gated Ca2+ currents, 10 μM bicuculline was added to the external solution to block

GABAA receptors. The pH of external solutions was adjusted to 7.4 using HCl.

Internal solutions for perforated patch recordings contained (in mM): Cs Methanosulfo-

nate (135.0), CsCl (10.0), MgCl (4.0), CaCl2 (0.2), EGTA (1.1), HEPES (10.0), and NaCl (1.0)

and Amphotericin B (Calbiochem, San Diego, CA). Amphotericin B stock (54 mM) was

mixed and sonicated with Pluronic F-127 (2.5% w/v in DMSO, Life Technologies) in a 1:2

ratio. The Amphotericin B stock and pluronic mixture was vortexed and sonicated for 30 sec-

onds each then added to 5 mL of internal B solution for a final concentration of 200 μg/mL

and kept on ice during experiments. Internal solutions for ruptured patch recordings con-

tained (in mM): Cs Methanosulfonate (100), CsCl (10.0), CaCl2 (0.1), MgCl2 (2.0), HEPES

(10.0) and EGTA (1.1) in combination with an ATP regeneration system. The ATP regenera-

tion system contained 50 lu/mL creatine phosphokinase, 20 mM creatine phosphate, 1 mM

ATP disodium, 3 mM ATP dipotassium and 2 mM GTP. For experiments targeting dynamin

GTPase activity, the GTPase inhibitor GTPγS (Sigma-Aldrich, St. Louis, MO) replaced GTP in

the internal solution at 4 mM. Internal solutions were filtered through a 0.2 μM Nalgene

(Thermo Fischer Scientific, Waltham, MA). The pH for internal solutions was adjusted to 7.4

using CsOH.

Dynamin inhibitors were prepared as 100 mM stocks in DMSO. Stocks were added to

external solutions, then mixed and sonicated for final concentrations of: dynasore (80 μM,

TOCRIS, Bristol, UK), MiTMAB (30 μM, Abcam), Dyngo 4a (30 μM, Abcam), and Dynole

34–2 (10 μM, Abcam). A DMSO-only external solution was used as a control. The actin poly-

merization inhibitors Cytochalasin D (Enzo, Farmingdale, NY) and Latrunculin B (Enzo)

were mixed and sonicated with DMSO to make 100 mM stocks and added to the TEA external

solution. The final concentration of both inhibitors was 2 μM. For experiments measuring

autaptic currents, external solution with Li+ replacing Na+ was perfused just during collection

of the autaptic data to remove the contaminating current arising from the Na-Ca exchanger.

The time the cells were exposed to Li+ was kept as short as possible (4 sec) to minimize effects

due to inhibiting exchanger function. Additionally, CsCl was increased to 145 mM (by replac-

ing Cs methanesulfonate) in the internal solution in order to raise the equilibrium potential

for Cl- and increase the driving force on Cl- when recording synaptic currents at -70 mV)

NO solutions

NO solutions were prepared by bubbling Fisher double-distilled pure water with argon for 20

minutes followed by bubbling with pure NO gas for 5 minutes. The NO was then sealed and

protected from light and stored at 4˚C until use. NO (20–50 μL) was injected into the perfusion

line and has been estimated to reach the recorded cell in ~3s and to remain for ~3-5s [1].

Fluorescence imaging

The external solution used for imaging experiments contained (in mM): KCl (5.4), NaCl

(136.9), CaCl2 (3), MgCl2 (1), HEPES (3.0), and Glucose (5.5). The lipophilic dye FM1-43

(4 μM, Life Technologies, Carlsbad, CA) was added to the imaging external solution. Culture

dishes were mounted on an Olympus IX70 inverted microscope equipped with a Sensicam QE

CCD camera (QImaging, Surrey, BC). After gaining electrical access, cells were exposed FM

dye and after voltage steps were delivered, the dye was washed out for 1–2 minutes before con-

tinuing the experiment. All images were acquired with SlideBook 5.0 software (3I, Denver,

CO) and analyzed using Graphpad software (La Jolla, CA).
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For Ca2+ imaging experiments, the cell permeable Ca2+ indicator Oregon Green 488 Bapta-

1 AM (OGB, Thermo Fisher Scientific) stocks (2 mM) were combined with Pluronic F-127

(2.5% w/v in DMSO, Life Technologies) in 1:1 (μL) ratio, and sonicated. The 2 μL OGB and

Pluronic F-127 mixture was added to 1 mL of Hank’s buffered salt solutions, vortexed, and

sonicated for a final concentration of 2 μM. Cells were incubated in the dark at room tempera-

ture for 1 hour in the OGB/Pluronic/HBSS mixture then rinsed with normal imaging external

solution. Images were captured every 3 seconds with an exposure time of 1 second. Data were

gathered from regions of interest in cell bodies. A high K+ solution (50 mM) was perfused

onto the cells for 6 seconds to depolarize the cells and activate voltage-gated Ca2+ channels in

the absence or presence of a dynamin inhibitor. The effects of the inhibitors were independent

of the order of presentation. Mean F/F0 in all Ca2+ imaging experiments was calculated by

averaging the ROI mean fluorescence for the first 15 time points before exposure to K+ and

then dividing all the other values by that number. Images and data acquisition were achieved

using Slidebook 5.0 software.

Immunocytochemistry

ACs were grown on glass coverslips for 8 days in culture and then fixed in 2% paraformalde-

hyde for 30 minutes at 4˚C. Fixed cells were incubated for 30 minutes at 4˚C in a blocking

solution containing dilution solution (PBS, 1% bovine serum albumin, 0.5% saponin) with 5%

normal goat serum. Primary polyclonal antibodies were raised against rabbit CFTR (Catalog

no. ab131553; Abcam). We have previously characterized this antibody with a western blot

showing a single band at the appropriate molecular weight [7]. Antibodies were diluted at

1:1000 in dilution solution and applied to cells at 4˚C overnight then washed with PBS. Sec-

ondary goat anti-rabbit DyLight 488 antibody (no. 355552; Thermo Fisher Scientific) was

diluted to 1:500 in dilution solution. Cells were incubated for 1 hour at room temperature in

secondary antibodies then washed in PBS. Secondary antibody-only controls were prepared in

the same solutions and produced no labeling [7]. The primary monoclonal antibody raised

against SV2 developed by K.M. Buckley of Harvard Medical School was obtained from the

Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained

at The University of Iowa, Department of Biology, Iowa City, IA 52242.This antibody has been

demonstrated to be effective in chicken tissue according to the product information from the

Developmental Studies Hybridoma Bank. Supernatant was diluted at 1:2 and incubated at

room temperature for 1 hour. Secondary goat anti-mouse Dylight 550 antibody (Thermo

Fisher Scientific) was diluted to 1:1000 in dilution solution. Cells were incubated again at

room temperature for 1 hour then washed in PBS. No non-specific labeling was observed in

secondary-only controls. After washing, coverslips were mounted in Prolong Diamond Anti-

fade mounting medium (Thermo Fisher Scientific). Cells were viewed on an Olympus IX70

microscope equipped with epifluorescence and images were acquired using Slidebook 5.0.

Data analysis

Data from electrophysiology recordings were analyzed using Clampfit 10.0 software, and plot-

ted in Origin 8.0 (OriginLab, Northampton, MA). Imaging data were analyzed using Slide-

book and Origin and plotted in Origin. Figures were assembled in Adobe Illustrator (Adobe

Systems, San Jose, CA). Data are reported as means ± SD. Statistical analyses were done in

GraphPad Prism 6 (Graphpad Software, La Jolla, CA) using the paired and unpaired student’s

t-test, and one-way analysis of variance [42], and Tukey honest significant difference post hoc

as appropriate. Levels of significance are represented as �p< 0.05, ��p< 0.01, ���p< 0.001,
����p< 0.0001.
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Results

CFTR expression at putative synapses

We have demonstrated that CFTR expression and function is required for the NOdrCl [7]. We

began here by testing whether the CFTR protein was localized to the same regions of the cell as

SV2, a synaptic vesicle marker protein. In cultured ACs, the anti-CFTR antibody labeling over-

lapped with populations of vesicles labelled with SV2. Co-labelling was observed at sites of

extensive process contact, which can indicate synaptic sites. (Fig 1). The Pearson’s R-value

from 48 regions of interest in amacrine cell processes was 0.38 ± 15 (p<0.0001) indicating a

positive correlation for the expression of CFTR and SV2. This co-localization suggests that

CFTR might be expressed on SVs. These results are consistent with the possibility that NOdrCl

via CFTR activity on SVs could contribute to the elevation in cytosolic Cl-.

Activating voltage-gated Ca2+ channels promotes endocytosis

To test for the role of SVs in NOdrCl release, we sought to stimulate the synaptic vesicle cycle

via depolarization under control conditions and in the presence of inhibitors of dynamin-

dependent endocytosis. We hypothesized that inhibition of endocytosis under these condi-

tions would preferentially deplete presynaptic vesicle pools and allow us to determine the con-

tribution of SVs to NOdrCl. Synaptic vesicle exocytosis and subsequent endocytosis were

achieved by activating voltage-gated Ca2+ channels. The voltage-gated Ca2+ channels expressed

in cultured ACs that mediate neurotransmitter release are predominately L-type [43] and are

susceptible to Ca2+-dependent inactivation [44]. Perforated-patch recordings were made to

preserve the cytosolic environment for Ca2+-dependent exocytosis. We found that when 100

millisecond voltage steps from -70 mV to +10 mV were separated by 3 seconds, the effects of

Ca2+-dependent inactivation was minimized (Fig 2A). To verify that the SV cycle was stimu-

lated effectively, we delivered the voltage-steps in the presence of FM1-43, a tracker of endocy-

tosis [45]. Increases in FM1-43 fluorescence in both cell bodies and processes were observed,

indicating that the SV cycle was effectively activated and that the voltage steps promoted endo-

cytosis throughout the cell (Fig 2B–2D). (Mean % fluorescence change in cell bodies: control,

21.9 ± 4.3, stimulated, 41 ± 10.9; processes: control, 11.4 ± 1.8, stimulated, 24.1 ± 4.2, Fig 3E).

Dynamin inhibitors suppress activity-dependent FM1-43 labeling

To explore the role of SVs in the NOdrCl, the effects of dynasore [37, 46], Dyngo 4a [38],

Dynole 34–2 [39] and MiTMAB [40, 47] were examined. The effectiveness of each of these

pharmacological reagents as endocytic inhibitors was evaluated by testing the effects of each

inhibitor on the voltage-dependent labeling with FM1-43. ACs were recorded in the perforated

patch configuration. Control images were captured before the voltage steps, but after 2 min

exposure to both FM1-43 and a dynamin inhibitor. Images were taken again after the voltage

steps to +10 mV (15 steps, 100 ms) in the presence of either dynasore (80 μM), Dyngo 4a

(30 μM), Dynole 34–2 (10 μM), or MiTMAB (30 μM). All of the inhibitors were effective in

suppressing the accumulation of FM1-43 fluorescence following voltage steps (Fig 3A–3D)

Dynasore cell bodies: control 81.3 ± 1.2%, stimulated -14.3 ± 2.7%; Dynasore processes

79.3 ± 5.1%, stimulated -8.9 ± 2.9%; Dyngo 4a cell bodies: control 57.2 ± 15.8%, stimulated

1.02 ± 0.5%; Dyngo 4a processes control 65.9 ± 13.9%, stimulated 4.7 ± 7.3%; Dynole 34–2 cell

bodies: control 75.1 ± 3.2%, stimulated 56.5 ± 4.0%; Dynole 34–2 processes 69.8 ± 2.5%, stimu-

lated 39.6 ± 2.2%; MiTMAB cell bodies: control 78.9 ± 7.2%, stimulated 15.1 ± 3.0%; MiTMAB

processes control 80.3 ± 8.9%, stimulated 13.2 ± 2.6%). The control fluorescence images of the

ACs exposed to dynasore were, on average, brighter before the voltage steps suggesting a

Endocytosis and nitric oxide-dependent release of Cl-
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Fig 1. CFTR co-localizes with a synaptic vesicle protein. A, Polyclonal anti-CFTR antibody labels retinal amacrine

cell bodies and processes. Arrows indicate a region where multiple AC processes are in contact, possibly a synaptic

region (arrows). B, Anti-SV2 labeling is found throughout the cells but is especially strong in regions of process contact

(arrows). C, Merged images of CFTR and SV2 labeling shows strong co-localization in the region of process contact.

Scale bars are 10 μm.

https://doi.org/10.1371/journal.pone.0201184.g001
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higher level of constitutive endocytosis in dynasore and generating a net loss of fluorescence

after the voltage steps (Fig 3A).

Voltage steps alone can reduce the synaptic vesicle pool

From the FM1-43 experiments, we know that voltage steps (15 steps, -70 mV to +10 mV for

100 msec) were sufficient to stimulate exocytosis and subsequent endocytosis. To determine

whether this same voltage step protocol was effective in depleting SVs in the absence of

Fig 2. Voltage steps elicit endocytosis. A, Perforated-patch recording from a representative AC. The voltage was

stepped from -70 mV to +10 mV for 100 msec and delivered 15 times with a 3 second delay between the steps.

Currents resulting from all 15 voltage steps are shown. (Bottom) Scale bars are 100 pA and 50 ms. B, Another AC

being recorded in the perforated patch configuration. C, Cells were exposed to the lipophillic dye FM1-43 (4 μM) for

two minutes then imaged to establish a baseline control. D, An image after the series of voltage steps. Labelling can be

seen in the cell body and in processes. Scale bars are 15 μm. E, Mean % fluorescence change ± SD. (paired t-test: cell

bodies n = 6, p< .05; processes n = 8, p< .05).

https://doi.org/10.1371/journal.pone.0201184.g002

Fig 3. Dynamin inhibitors are effective in limiting activity-dependent FM1-43 labeling. A-D, Mean percent fluorescence change for cell bodies and processes for each

of the dynamin inhibitors tested. Dynasore (but not the other inhibitors) increased baseline fluorescence such that after the voltage steps, the FM1-43 fluorescence was

lower than control values giving rise to negative percent change in fluorescence. (Cell bodies: control n = 6; dynasore n = 6, p< 0.0001; Dyngo 4a n = 10, p< 0.0001;

Dynole 34–2 n = 10, p< 0.0001; MiTMAB n = 6, p< 0.0001. Processes: control n = 6; dynasore n = 12, p< 0.0001, Dyngo 4a (30 μM), n = 12, p< 0.0001; Dynole 34–2

(10 μM) n = 10, p< 0.0001; MiTMAB (30 μM) n = 12, p< 0.0001, unpaired t-tests).

https://doi.org/10.1371/journal.pone.0201184.g003
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inhibition of endocytosis, we examined the postsynaptic responses of ACs before and after

voltage steps alone. ACs in culture make synapses with other ACs. When isolated, they can

also form autapses (Fig 4A). To examine whether repeated voltage steps can deplete SVs, we

tested the autaptic currents before and after the voltage step protocol described in Fig 2A.

Delivery of these voltage steps causes a reduction in the autaptic currents when compared to

control (Fig 4B and 4C). During the voltage step to +10 mV, the inward voltage-gated Ca2+

currents and the outward synaptic currents contaminate each other, so synaptic currents were

quantified from the end of the voltage step to the end of the record (Fig 4D). (Mean charge

transfer (pC). Control 247.9 ± 46.5 pC; Post steps 203.3 ± 19.1 pC). These data indicate that

the voltage steps alone can partially deplete SVs.

Voltage steps are not sufficient block NOdrCl

Because voltage steps can apparently stimulate enough exocytosis to reduce the SV pool, we

tested whether voltage steps alone were sufficient to block NOdrCl. To evaluate the effects of

the voltage step protocol on the NOdrCl, we combined a voltage ramp protocol to measure

Erev-GABA with the voltage-gated Ca2+ channel-activating voltage step protocol to initiate the

synaptic vesicle cycle (Fig 5A). The voltage step protocol alone did not affect the NOdrCl.

(Mean NO-induced shift (mV). Control 21.3 ± 6.1 mV; Post steps 24.7 ± 8.2 mV) (Fig 5B–5D).

Taken together, these data suggest that although the voltage steps can reduce the SV pool, that

alone is not sufficient to block the NOdrCl.

Some dynamin inhibitors block the NOdrCl

To determine whether inhibition of endocytosis with dynamin inhibitors would affect the

NOdrCl, GABA-gated ramp currents were measured before and after the voltage steps under

control conditions and in the presence of one of the four inhibitors. Dynasore and MitMAB

were applied acutely (Fig 6A). Under control conditions, the NOdrCl was observed (Fig 6C).

The NOdrCl was also observed in control experiments when DMSO-alone was perfused onto

cells (not shown, 30.1 ± 19.2 mV). However, the NOdrCl did not occur when the voltage steps

and subsequent voltage ramps were delivered in the presence of dynasore (80 μM, Fig 6D, 6E

and 6I). The effects of dynasore were partially reversible (Fig 6E, Mean NO-induced shifts in

Erev-GABA, dynasore: control 32.9 ± 4.6 mV, dynasore post steps 0 ± 0 mV). When ACs were

exposed to MiTMAB (30 μM) during the voltage steps and subsequent voltage ramps the

NOdrCl persisted (Fig 6F and 6I) MiTMAB: control 30.3 ± 11.6 mV, MiTMAB post steps

29.9 ± 7.1 mV).

Dyngo 4a and Dynole 34–2 generally require pre-incubation due to their slower inhibitory

effects on GTPase activity [38, 40]. For these experiments ACs were exposed to Dyngo 4a

(30 μM) or Dynole 34–2 (10 μM), for 20 minutes prior to recording and the reagents remained

throughout the recording (Fig 6B). In the presence of Dyngo-4a, but before the voltage steps,

injecting NO caused a transient shift in the reversal potential of the GABA-gated current (Fig

6H). After the voltage steps, however, Dyngo 4a blocked the NOdrCl (Fig 6G, 6H and 6I,

Dyngo 4a: control 21.7 ± 4.0 mV, Dyngo 4a post steps 3.0 ± 2.7 mV). This dependence upon

the voltage steps, indicates that Ca2+-dependent exocytosis was required along with the inhibi-

tor. Dynole 34–2 was ineffective in inhibiting the shift in Erev-GABA (Fig 6I, Dynole 34–2 con-

trol 30.9 ± 19.1 mV; Dynole 34–2 post steps 30.0 ± 11.2 mV).

Dynamin inhibitors affect voltage-dependent Ca2+ signaling

Although dynasore, Dyngo 4a and Dynole 34–2 are all known to inhibit dynamin’s GTPase

activity, only dynasore and Dyngo 4a inhibited the NOdrCl. Off-target effects have been
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Fig 4. Voltage steps alone can reduce the SV pool at autapses. A, A depiction of an AC with an autaptic synapse. B,

Autaptic synapses are activated by a single 100 msec voltage step from -70mV to +10mV in the perforated patch

configuration. Outward autaptic currents during the voltage step to +10 mv are contaminated with inward voltage-

gated Ca2+ currents. Contamination from the electrogenic inward Na/Ca exchange current after the voltage step is

removed by replacing extracellular Na+ with Li+. The total time of exposure to Li+ is 4 seconds (black bar). After 15

voltage steps, the asynchronous phase of synaptic transmission is reduced (C). Scale bars are 25 pA and 100 ms. D.

Mean charge transfer is plotted. (n = 7, p = .04, paired t-test).

https://doi.org/10.1371/journal.pone.0201184.g004
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demonstrated for dynasore [48]. It has been shown that dyngo 4a and Dynole 34–2 are more

potent and less cytotoxic than dynasore, however, off-target effects of Dyngo 4a & Dynole 34–

2 are not yet known. There is evidence, however, that MiTMAB can inhibit voltage-gated Ca2+

channels required for exocytosis in rat adrenal chromaffin cells [47].

To address the possibility that the dynamin inhibitors were affecting some aspect of Ca2+

signaling, we performed imaging experiments on ACs loaded with the Ca2+ indicator Oregon

Green 488 BAPTA-1 (OGB) to investigate the effects of all the dynamin inhibitors on voltage-

dependent Ca2+ increases. In these experiments, a high K+ solution (50 mM) was perfused into

the culture dishes for 6 seconds to depolarize the cells and activate voltage-gated Ca2+ chan-

nels. Dyngo 4a, Dynole 34–2, dynasore, and MiTMAB were applied in addition to the high K+

depolarization, and all reduced the OGB fluorescence increase (Fig 7A–7D). (Mean F/F0. Con-

trol for dynasore: 1.80 ± 0.04, dynasore 1.73 ± 0.08; Control for Dyngo 4a 1.7 ± 0.03, Dyngo 4a

1.4 ± 0.1; Control for MiTMAB 1.75 ± 0.01, MiTMAB 1.59 ± 0.02; Control for Dynole 34–2

1.55 ± 0.04, Dynole 34–2 1.42 ± 0.03). Although Dyngo 4a and Dynole 34–2 were applied

acutely in these cells, we did pre-incubate separate cells in the inhibitors (as in Fig 6) and also

saw a reduction in the OGB fluorescence when compared to untreated control cells (Data not

shown, Mean F/F0 ± SD. Control for Dyngo: 1.3 ± 0.05; Dyngo 4a 1.2 ± 0.02; control for

Dynole 34–2: 1.55 ± 0.03; Dynole 34–2 1.04 ± 0.02). In some cells, the effect of the inhibitors in

high K+ were tested before the control depolarization in order to detect any inhibitor-indepen-

dent effects on the Ca+2 signal amplitude over time. No such effects were observed.

In ACs, voltage-gated L-type Ca2+ channel activity initiates neurotransmitter release [43,

49, 50]. To examine whether these dynamin inhibitors affect L-type Ca2+ channel currents, we

used voltage ramps to elicit voltage-gated Ca2+ current (Fig 7E and 7F. Because the amplitude

of voltage-gated Ca2+ currents are variable in these cells, we only tested the acute effects of the

inhibitors to allow for “within cell” comparisons. Dynasore, Dynole 34–2 and MiTMAB signif-

icantly reduced the peak amplitude of the Ca2+ current (Mean peak amplitude (pA). Dynasore

control -76.0 ± 16.2 pA, dynasore -11.2 ± 20.4 pA; Dyngo 4a control -50.5 ± 30.8 pA, Dyngo 4a

-60.0 ± 41.9 pA; Dynole 34–2 control -130.3 ± 22.6 pA, Dynole 34–2–31.6 ± 6.3 pA; MiTMAB

control -118.1 ± 19.7 pA. MiTMAB -52.2 ± 2.3 pA) (Fig 7G). The inhibitors did not affect the

voltage-dependence of the Ca2+ current. These data demonstrate that the Ca2+ channels

expressed by ACs can be inhibited by some dynamin inhibitors. We observed that the effects

on Ca2+ currents were more dramatic than the effects on voltage-dependent Ca2+ elevations,

suggesting that Ca2+ release from stores plays a substantial role in the Ca2+ elevations.

Actin disrupters do not affect the NOdrCl

In addition to its role in endocytic fission, dynamin interacts with and regulates actin fila-

ments, [51, 52] which has the potential to regulate numerous other cellular functions [53].

Interestingly, F-actin has been shown to directly interact with CFTR [54, 55] and to regulate

its function [56]. Thus, a dynasore-mediated disruption in actin filament regulation might also

affect the function of CFTR, a key player in NOdrCl. To determine whether disruption of actin

regulation underlies the inhibition of NOdrCl by dynamin inhibitors, we employed two actin

polymerization disruptors Cytochalasin D [57, 58] and Latrunculin B [59]. ACs were pre-

Fig 5. Voltage steps alone do not block NOdrCl. A, Schematic of the voltage ramp protocol. B and C, Currents

elicited by voltage ramps in the presence of GABA are plotted from an AC recorded in the perforated patch

configuration. Not shown are the ramp currents collected in the absence of GABA for the purpose of leak subtraction

or the GABA-gated currents in response to voltage ramps collected prior to addition of NO. In this cell, the NOdrCl is

larger after delivery of the voltage steps. D, On average, however, there was no significant difference in the amplitude

of the shift before and after the voltage steps (n = 11, p = 0.6, paired t-test).

https://doi.org/10.1371/journal.pone.0201184.g005
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incubated in either Cytochalasin (4μM) or Latrunculin B (4μM) for 45 minutes (Fig 8A) and

the inhibitors were present during the recordings. NO-dependent shifts in Erev-GABA persisted

in cells pre-treated with the inhibitors. When compared to control cells recorded on the same

day, there were no significant difference in the shift amplitudes for ACs recorded in the pres-

ence of the inhibitors (Mean NO-induced shift (mV). cytochalasin control 21.5 ± 8.3 mV,

cytochalasin D 27.5 ± 17.1 mV; latrunculin B control 21.4 ± 4.2 mV, latrunculin B 20.2 ± 1.1

mV) (Fig 8B and 8C). These data suggest that dynasore and Dyngo 4a are not inhibiting the

NOdrCl by altering dynamin’s interaction with actin.

GTP-γS does not affect the NOdrCl

If dynasore and Dyngo-4a block the NOdrCl by interfering with the GTPase function of dyna-

min, then we might be able to mimic the effect with a general inhibitor of GTPase function.

GTP-γS is a non-hydrolysable analogue of GTP that can function as a GTPase inhibitor [60].

GTP-γS (4mM) replaced GTP in the ATP regeneration system of the internal solution. With

GTP-γS in the pipet, ruptured-patch recordings were only viable for up to about 5 minutes.

After gaining access to the cell with GTP-γS in the pipet, the voltage ramp protocol shown in

Fig 6A was delivered and the NO-dependent shift in Erev-GABA was observed. This representa-

tive trace was collected about 4 minutes after gaining access to the cell. (Fig 9A and 9B)

((Mean NO-induced shifts ± SD. Control: 16 ± 4.0 mV. GTP-γS: 16.1 ± 5.3 mV, unpaired t-
test).

The effects of GTP-γS were also tested under conditions of active exocytosis and endocyto-

sis. Voltage ramps in the presence of GABA were delivered before and after injections of NO,

followed by the voltage step protocol previously described, and then the ability of NO to shift

Erev-GABA was re-tested. At least on this time frame (about 5 minutes total time since gaining

electrical access to the cell), GTP-γS did not block the NO-dependent shift in Erev-GABA. (Fig

9C–9E) (Mean NO-induced shift ± SD. Control: 10.2 ± 0.9 mV. Post Steps 11.7 ± 1.2 mV).

Recordings were also made in the ruptured patch configuration using a GTP-free internal

solution and the NOdrCl was not blocked (data not shown, 20.1 ± 2.5 mV). Due to the limited

duration of the recordings in these experiments, the possibility remains that GTP-γS may have

incompletely filled the neuronal processes. These data, however, do raise the possibility that

dynasore and Dyngo-4a, both of which are thought to function via GTPase inhibition, are

inhibiting endocytosis and the NOdrCl by some other mechanism.

Dynasore affects neurotransmitter release from ACs

Dynasore has been shown to increase the probability of evoked transmitter release at the frog

NMJ and to increase spontaneous synaptic event frequency in the nucleus of the solitary tract

(NTS) neurons [61, 62]. If dynasore similarly affects presynaptic function in ACs, then this

might contribute to the inhibitory effect of dynasore on the NOdrCl. To determine whether

AC synaptic exocytosis was altered by dynasore, we tested its effects on autaptic currents (Fig

Fig 6. Dynasore and Dyngo-4a inhibit the NO-dependent shift in Erev-GABA. A and B, Schematics of the dynasore (80 μM) and MiTMAB (30 μM) (acute exposure)

and the Dyngo 4a (30 μM) and Dynole 34–2 (10 μM) (20 min pre-incubation) experimental protocols, respectively. Not shown are the ramp currents collected in the

absence of GABA for the purpose of leak subtraction or the GABA-gated currents in response to voltage ramps collected prior to addition of NO. C. Ramp currents

recorded from an AC in the perforated patch configuration before and after (red trace) exposure to NO. D. Data from the same cell as in C after exposure to dynasore.

E. Erev-GABA for a different cell is plotted over time, and shows that the NO-dependent shift in Erev-GABA can be reversed. F. GABA-gated currents in response to voltage

ramps are shown for a representative AC exposed to MiTMAB reveal that this inhibitor does not block NO-dependent shift in Erev-GABA. G. Data plotted were recorded

after the voltage step protocol and in the presence of Dyngo 4a. These data show that no shift occurred after NO application (red trace). H. EGABA is plotted over the

time course of the experiment for the same cell as shown in G. I. Quantified means ± SD the of NO-induced shifts of all inhibitors. (dynasore n = 12, p< 0.0001; Dyngo

4a n = 6, p< 0.0001; MiTMAB n = 5, p = 0.49; Dynole 34–2 n = 7, p = 0.89 unpaired t-tests).

https://doi.org/10.1371/journal.pone.0201184.g006
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10A–10C). Dynasore increased the asynchronous postsynaptic currents (Fig 10D). (Mean

charge transfer ± SD. Control 245.1 ± 35.9 pC; dynasore post steps 464.9 ± 107.2 pC) indicat-

ing that dynasore promotes synaptic exocytosis from ACs.

Fig 7. Dynamin inhibitors interfere with voltage-dependent Ca2+ signaling and voltage-gated Ca2+ currents. A-D, (Left) Ca2+ imaging data from OGB 488-loaded

(1 μM) ACs. A 50 mM K+ -induced depolarization causes an increase in OGB fluorescence, which indicates an increase in [Ca2+]. Acute exposure of dynasore, Dyngo 4a,

Dynole 34–2 and MiTMAB all reduce the voltage-dependent Ca2+ increases. Mean quantified F/F0 ± SD. Data collected from regions of interest (ROIs) in cell bodies.

(Control and dynasore, n = 44; p< 0.05; Control and Dyngo n = 56; p< 0.0001; Control and MiTMAB n = 44, p< 0.0001; control and Dynole 34–2, n = 63, p< 0.0001,

paired t-tests). E. Schematic of the voltage ramp protocol used to elicit voltage-gated Ca2+ currents. Cells in the ruptured patch configuration were voltage-clamped at -70

mV for 500 ms. Then the voltage was stepped briefly down to -90 mV, ramped to +50 mV, and then back down to -70 mV. F, Representative voltage-clamp recordings

from four representative ACs. Dynasore, Dynole 34–2, and MiTMAB reduce the peak amplitude of the Ca2+ currents and the effects were at least partially reversible. G,

Mean peak amplitudes are plotted for four populations of cells (dynasore n = 6, p<0.01; MiTMAB n = 5, p<0.01; Dynole 34–2 n = 5, p<0.01; Dyngo 4a n = 5, p = 0.5,

paired t-tests).

https://doi.org/10.1371/journal.pone.0201184.g007
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Pitstop 2 inhibits the NOdrCl

The effects of dynasore and Dyngo 4a on the NOdrCl are consistent with a role for SVs as a

releasable source of Cl-. However, the additional effects of these compounds that we describe

here as well as the inability of GTPγS to mimic the effects of dynasore and Dyngo 4a make a

conclusion difficult to draw. Therefore, we sought to inhibit endocytosis by an alternative

mechanism. Pitstop 2 has been thought to inhibit the interactions between clathrin and

adapter proteins that are required for clathrin coat assembly [63] although it has been demon-

strated to inhibit clathrin-independent endocytosis as well [64]. To determine whether Pitstop

2 was effective in inhibiting endocytosis, we combined this reagent with the voltage and imag-

ing protocol used in Figs 2 and 3. Pitstop 2 inhibited voltage-dependent FM1-43 fluorescence

increases (Cell bodies control 61.5 ± 16.6%, Pitstop 2 1.1 ± 0.05%; processes control 54.9 ±
15.0%, Pitstop 2 1.1 ± 0.03%,) (Fig 11A). The effectiveness of Pitstop 2 in inhibiting the

NOdrCl was tested by repeating the experiment shown in Fig 5A but delivering the voltage

steps in the presence of Pitstop 2 rather than the dynamin inhibitors (Fig 11B). Pitstop 2 inhib-

ited the NOdrCl by about 50% (Mean NO-induced shift in EGABA ± SD. Control: 19.3 ± 2.0

mV; Pitstop 2: 8.1 ± 1.3 mV) (Fig 11C–11E). The ability of another endocytosis inhibitor that

functions by a completely different mechanism suggests that depletion of the SV pool reduces

the sources of Cl- during NOdrCl.

Discussion

We embarked on these experiments to determine whether SVs contribute to the cytosolic Cl-

elevations generated by NO. Our results demonstrate that dynamin inhibitors can block endo-

cytosis as measured by FM1-43 labeling and two out of the four reduced or blocked the

NOdrCl. We also found that dynamin inhibitors can affect Ca2+ signaling, voltage-gated Ca2+

currents, and synaptic transmission. Nonetheless, the clathrin inhibitor Pitstop 2 also reduced

the NOdrCl, suggesting that the disruption of SV endocytosis is one factor involved in the

inhibition of the NOdrCl by dynasore and Dyngo 4a.

Variable effects of dynamin inhibitors

Although each of the dynamin inhibitors were demonstrated to inhibit endocytosis as mea-

sured by FM1-43 labeling, Dynole 34–2 and MiTMAB were the least effective. Similarly, dyna-

sore and Dynole 4a were effective in blocking the NOdrCl whereas Dynole 34–2 and

MiTMAB were not. It is possible that it is due to the particular isoform of dynamin that is

being inhibited, however, dynasore, Dynole 34–2 and MiTMAB are effective on all three mam-

malian isoforms of dynamin with only Dyngo-4a showing a preference for dynamin 1 [27, 65].

Another possibility is that the differences in effectiveness are due to species differences

although the high level of identity (>90%) between chicken and rodent dynamins makes this

explanation less likely. It has recently been demonstrated that at the neuromuscular junction,

dynasore and MiTMAB have distinctive actions on endocytosis where dynasore inhibited only

an early phase of endocytosis and MiTMAB inhibited only a late phase [66]. The stimulus con-

ditions in those experiments were much different than ours with exocytosis stimulated by

1000 action potentials delivered at different frequencies. Our presynaptic stimulation involved

Fig 8. Dynamin inhibitors do not block the NOdrCl via disruption of actin. A, Cartoon of experimental setup. In control cells, voltage ramps were delivered

in the perforated patch configuration before and after injections of NO in normal external solution. Other ACs were pre-treated with either Cytochalasin D

(4 μM) or Latrunculin B (4 μM) for at least 45 minutes. B and C, left. Leak-subtracted GABA-gated currents reveal a shift in Erev-GABA after NO (red trace) in

ACs recorded in either cytochalasin D (B) or latrunculin B (C). Mean NO-induced shifts ± SD. (Cytochalasin D, n = 7, p = 0.41, Latrunculin B, n = 6, p = 0.43,

unpaired t-tests).

https://doi.org/10.1371/journal.pone.0201184.g008
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Fig 9. GTP-γS does not mimic the effects of dynasore and Dyngo 4a on the NOdrCl. A. In the ruptured patch configuration, GTP-γS (4 mM) replaced GTP in the ATP

regeneration system to function as a general GTPase inhibitor. About 4 minutes after gaining access to the cell, voltage ramps were delivered before and after injections of

NO and the NO-dependent shift in Erev-GABA was still observed. B. Mean NO-induced shifts ± SD (Unpaired t-test: control n = 7, GTP-γS n = 7, p = 0.98). C. In separate

cells, voltage ramps were delivered before and after injections of NO 4 minutes after rupturing the patch. Then voltage steps were delivered to stimulate exo- and

endocytosis, followed by another set of voltage ramps and NO. The NO-dependent shift in Erev-GABA remained. D. Erev-GABA is plotted over the time course of the

experiment for the cell shown in C. E. Mean NO-induced shifts ± SD. (n = 3, p = 0.4, paired t-test).

https://doi.org/10.1371/journal.pone.0201184.g009
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15 100 msec voltage steps providing a total duration of depolarization of 1.5 sec whereas the

duration of action potential stimulation in Linares-Clemente et al. (2015) ranged from ~10–

100 sec. Nonetheless, their experiments reveal that MiTMAB might be an efficient inhibitor of

dynamin only under a specific set of circumstances. Although Dynole 34–2 and MiTMAB

were less effective in inhibiting activity-dependent FM1-43, they still had significant effects.

The lack of effect on the NOdrCl suggests that the effect on the NOdrCl may have some sort of

threshold component.

Additional effects of dynamin inhibitors in ACs

Here, we provide evidence that dynamin inhibitors can alter Ca2+ signaling and synaptic trans-

mission in ACs. What is not clear is whether these are “off-target” effects in the sense that they

are not due to inhibition of dynamin function or are these effects due to inhibition of dynamin

functions that are thought to be unrelated to endocytosis? A well-established additional func-

tion of dynamin is regulation of the actin cytoskeleton [51]. However, the other effects of dyna-

sore that we demonstrate might be due the actin-regulating role of dynamin. A functional link

between dynamin, the actin cytoskeleton and L-type Ca2+ channel activity has been demon-

strated for αT3-1 gonadotroph cells [67]. Signaling via activation of the gonadotrophin releas-

ing hormone receptor typically leads to cytoskeletal rearrangement which they show is

required for normal activation of L-type Ca2+ channels in these cells. These results raise the

possibility that dynasore and Dynole 34–2 might inhibit L-type activity in ACs via dysregula-

tion of the actin cytoskeleton. Regardless of the mechanism, inhibition of L-type Ca2+ channels

does not explain the effects of dynasore and Dyngo 4a on the NOdrCl. First, Dyngo 4a inhib-

ited the NOdrCl, but did not inhibit voltage-dependent Ca2+ currents. Additionally, inhibition

of L-type channels would minimize our ability to deplete synaptic vesicles so would likely

lessen the effects of the inhibitors on the NOdrCl.

We also show that dynasore increased evoked synaptic transmission at AC autapses.

Although dynasore has been shown to promote neurotransmitter release from the frog NMJ

[61] and in rodent nucleus of the solitary tract neurons [62], the effect there was to increase

spontaneous neurotransmitter release rather than evoked. At the neuromuscular junction the

effect was partially Ca2+-dependent and it was revealed that minutes-long exposure to dynasore

also elevated basal Ca2+ levels in terminals. In ACs, no Ca2+ elevations were observed in response

to exposure to dynasore or any of the other dynamin inhibitors arguing against a Ca2+-depen-

dent effect, especially in light of the inhibitory effect of dynasore, Dynole 34–2, and MiTMAB on

AC Ca
2+

current amplitude.

Pitstop 2

Pitstop 2 was developed by screening compounds for interference between the terminal

domains and known binding partners of clathrin such as amphiphysin and AP180 in vitro
[63]. Since its development, Pitstop 2 has been used in a wide variety of preparations and has

been demonstrated to be an effective inhibitor of endocytosis, however, its mechanism of

action in vivo is a matter of debate [2]. It has been shown to inhibit both clathrin-dependent

Fig 10. Dynasore promotes neurotransmitter release at amacrine cell autapses. A, A depiction of an AC in with an

autaptic synapse. B, Autaptic synapses are activated by a single 100 msec voltage step from -70 mV to +10 mV

recorded in the perforated patch configuration. Autaptic currents during the voltage step are contaminated with the

voltage-gated Ca2+ currents. Contamination from the electrogenic inward Na/Ca exchange current after the voltage

step is removed by replacing extracellular Na+ with Li+. The total time of exposure to Li+ is 4 seconds (black bar). C,

After 15 voltage steps in the presence of dynasore, autaptic currents reveal enhanced neurotransmitter release. D,

Mean charge transfer ± SD. (n = 6, p = .0063, paired t-test).

https://doi.org/10.1371/journal.pone.0201184.g010
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and independent endocytosis [64, 68] which calls into question its predicted interactions with

clathrin. These and other observations have led to suggestions that Pitstop 2 actually interferes

with a step downstream from coat formation [2]. In hippocampal neurons Pitstop 2 was also

reported to affect vesicle acidification and mitochondrial pH, however these data were not

shown and the degree and nature of the alterations were not stated, making it difficult to evalu-

ate the importance of these potential effects in ACs [69]. Given these caveats, however, the

consistency of the effects of dynasore, Dyngo 4a and Pitstop 2 in inhibition of the NOdrCl sug-

gest that fully functional endocytosis is required for NO to elevate cytosolic Cl-.

Significance

Here, we report that NO, likely in the range of 100’s of nanomolar, initiates release of Cl- and

that this release is dependent upon endocytosis. What is the evidence that these conditions

actually occur in the retina? Imaging experiments using 4,5-diaminofluoroscein (DAF) to

detect NO production in slices of turtle retina demonstrate light-dependent DAF signals are

generated in subsets of cells throughout the retina [70]. Interestingly, DAF signals were largely

confined to the boundaries of the cell bodies and processes in ACs, whereas cells in the gan-

glion cell layers had DAF signals that extended several microns away from the cell body. NO

microelectrode measurements made just outside a DAF-positive cell in the ganglion cell layer

detected NMDA-stimulated NO concentrations of about 200 nM [70]. Presumably, the con-

centration in the cytosol is higher. Furthermore, light stimulation of the retina within the phys-

iological range results in S-nitrosylation patterns that are intensity-dependent [71]. This is

significant because S-nitrosylation occurs over higher concentration ranges than does NO-

dependent activation of soluble guanylate cyclase which can occur in the low nanomolar to

picomolar range [72, 73]. Importantly, we have previously demonstrated that the NOdrCl

operates independent of soluble guanylate cyclase [1].

The involvement of SVs in the NOdrCl is especially relevant to AC function because ACs

participate in serial [74] and reciprocal synapses [21] such that presynaptic Cl- can affect the

sign of nearby incoming GABAergic synapses in a highly localized fashion [22–24]. We have

also recently demonstrated that the NO donor SNAP can increase spontaneous and evoked

GABA release via presynaptic activation of TRPC5 channels [41, 75] providing an additional

NO-dependent mechanism for enhancing GABAergic output from ACs.

The impact of NO as an enhancer of GABAergic output in cultured ACs supports the

hypothesis that NO can increase the GABAergic output onto ganglion cells in the retina. This

effect of NO had been demonstrated in dark-adapted ferret retina where ON and OFF light

responses were recorded in ganglion cells [76]. NO suppressed the light-dependent activity in

both ON and OFF ganglion cells but the effect was especially strong in the OFF pathway. Fur-

thermore, this effect was thought to be due to an increase in inhibitory output from amacrine

cells. Our results in ACs also have implications for NO effects on GABAergic synapses else-

where in the brain because we have demonstrated that hippocampal neurons also have an NO-

releasable store [1]. Understanding the mechanisms underlying the NO-dependent switch

from inhibitory to excitatory input will make an important contribution to our understanding

of the flexibility of synaptic transmission in the CNS.

Fig 11. Pitstop 2 reduces the NO-dependent shift in EGABA. A. Mean percent fluorescence change for cell bodies and processes in the presence of Pitstop 2 (20 μm).

The clathrin inhibitor reduces voltage-dependent FM1-43 fluroescence increases, indicating that it is an effective SV inhibitor (cell bodies, n = 9, p<0.0001; processes,

n = 18, p<0.0001, unpaired t-test). B. Schematic of voltage ramp experiment. ACs were recorded in the perforated patch configuration. C. and D.Representative trace of

EGABA measurements before and after voltage steps in the presence of Pitstop 2. E. Mean NO-induced shifts ± SD. Pitstop 2 reduces the NOdrCl. (n = 7, p<0.0001,

paired t-tests).

https://doi.org/10.1371/journal.pone.0201184.g011
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