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Abstract: The bioactivity of ten traditional Korean Angelica species were screened by
angiotensin-converting enzyme (ACE) assay in vitro. Among the crude extracts, the methanol
extract of Angelica decursiva whole plants exhibited potent inhibitory effects against ACE. In addition,
the ACE inhibitory activity of coumarins 1–5, 8–18 was evaluated, along with two phenolic acids
(6, 7) obtained from A. decursiva. Among profound coumarins, 11–18 were determined to manifest
marked inhibitory activity against ACE with IC50 values of 4.68–20.04 µM. Compounds 12, 13, and 15
displayed competitive inhibition against ACE. Molecular docking studies confirmed that coumarins
inhibited ACE via many hydrogen bond and hydrophobic interactions with catalytic residues and
zinc ion of C- and N-domain ACE that blocked the catalytic activity of ACE. The results derived from
these computational and in vitro experiments give additional scientific support to the anecdotal use
of A. decursiva in traditional medicine to treat cardiovascular diseases such as hypertension.

Keywords: Angelica decursiva; angiotensin-I-converting enzyme; coumarins; antihypertension;
molecular docking

1. Introduction

Hypertension is one of the most common diseases worldwide, with many associated risk factors
such as stroke, heart disease, chronic renal failure, and aneurysm [1,2]. Globally, about 25% of the adult
population suffers from hypertension, and the number of people is set to rise to 29% by 2025, when a
total of 1.56 billion people will be affected. Inhibition of the angiotensin-converting enzyme (ACE)
is established as one modern therapeutic approach to hypertension [1]. Membrane-bound zinc (Zn)
metallopeptidases ACE (EC 3.4.15.1) is a multifunctional enzyme present in the rennin–angiotensin
system (RAS) that elevates blood pressure by generating the vasoconstrictor angiotensin II and
degrading the vasodilator bradykinin [3]. ACE is present in many tissues, including the heart, brain,
adrenal cortex, kidneys, leukocytes, alveolar macrophages, peripheral uterus, placenta, vascular tissue,
liver, monocytes, and neuronal and epididymal cells, particularly in the vascular endothelial lining
of the lungs [4]. Therefore, ACE inhibition is a major target in the prevention and treatment of
hypertension. Many researchers have attempted to synthesize ACE inhibitors, such as captopril,
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enalapril, lisinopril, and fosinopril, which are all currently used as clinical antihypertensive drugs [5].
However, those drugs are often accompanied by undesirable side effects, such as persistent cough,
postural hypotension, renal failure, and angioedema [6]. Extensive research has been carried out to
find ACE inhibitors in natural products, which might have better drug profiles and fewer side effects.
Several plant extracts and pure compounds, such as phenolics, anthraquinone, flavonoids, alkaloids,
terpenoids, peptides, hydrolysable tannins, and proanthocyanidins, have been reported to inhibit
ACE [7–12].

Angelica decursiva Fr. et Sav (Umbelliferae) is a perennial herb that grows throughout Japan, China,
and Korea. It is widely employed in traditional Korean medicine to cure diseases as an antitussive,
analgesic, antipyretic, and cough remedy [13,14]. In traditional Chinese medicine, it is used as a
remedy for thick phlegm, asthma, and upper respiratory tract infections [15,16]. The usage of the roots
of A. decursiva has a long history in China to clean heat, resolve summer heat, and stop bleeding [15].
During the past decade, extensive investigations have been conducted on different species of this
genus. Consequently, many classes of compounds have been isolated, including different types
of coumarin derivatives: Umbelliferone, 6-formyl umbelliferone, umbelliferone 6-carboxylic acid,
nodakenin, nodakenetin, isorutarine, 2′-isopropyl psoralene, Pd-C-I, Pd-C-II, Pd-C-III, 4′-hydroxy
Pd-C-III, columbianadin, decursin, (+)-decursidinol, decursidin, cis-3′-acetyl-4′-angeloylkhellactone,
and 3′(R)-O-acetyl-4′(S)-O-tigloylkhellactone [13,15,17–24]. Those compounds have been
reported to possess a wide range of biological activities, including antihypertensive [25],
antiplatelet aggregation [26], neuroprotective [27], memory-enhancing [28], anti-amnesic [29],
anti-oxidative [30], anti-inflammatory [13,24,31,32], antidiabetic, and anti-Alzheimer’s disease
effects [18–23,33].

Despite the promising biological activities of Angelica species, no systematic studies have yet
been conducted on the ACE inhibitory activities of A. decursiva and its coumarins. Therefore, as a
part of our continuing efforts to identify potent ACE agents from natural sources, we explored
the anti-hypertensive activities of A. decursiva-derived coumarin constituents. We also performed
enzyme kinetic analyses of the coumarins using Lineweaver–Burk plots and secondary plots in order
to confirm the type of enzymatic inhibition. The interactions between these coumarins and ACE
were simulated using molecular docking analysis, and their docking energies and ACE inhibition
mechanisms were examined.

2. Results

2.1. ACE Inhibitory Activity of the Selected Angelica Species

In order to evaluate the ACE inhibitory activity of Angelica species, the methanol (MeOH)
extract of 10 different species was selected and tested using the in vitro assay. Of all these species,
A. decursiva was found to be the most potent ACE inhibitor with an inhibition percentage (%) of 94.12
at a concentration of 163.93 µg/mL. In addition, MeOH extracts of A. czernevia, A. anomala, A. fallax,
A. cartilagino-marginata var. distans, and A. fallax, showed moderate ACE activity with percentages (%)
of 52.29, 50.98, 38.56, 32.35, and 31.37 at a concentration of 163.93 µg/mL (Table 1). On the other hand,
A. japonica, A. gigas, A. dahurica, A. anomala, and A. sinensis did not show significant inhibitory activity
at the concentration tested.

2.2. Inhibitory Activity of the Compounds Isolated from A. decursiva on ACE

To determine which of the active compounds isolated from A. decursiva were responsible for the
inhibition of ACE, we used inhibitory assay. The ACE inhibitory activities of the compounds (nodakenin
(1), nodakenetin (2), isorutarine (3), umbelliferone (4), umbelliferone 6-carboxylic acid (5), para-hydroxy
benzoic acid (6), vanillic acid (7), 2′-isopropyl psoralene (8), 3′(R)-O-acetyl-4′(S)-O-tigloylkhellactone
(9), cis-3′-acetyl-4′-angeloylkhellactone (10), decursinol (11), 4′-hydroxy Pd-C-III (12), Pd-C-I (13),
decursidin (14), (+)-trans-decursidinol (15), Pd-C-II (16), Pd-C-III (17), and 4′-methoxy Pd-C-I (18))
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are given in Table 2, and structures of compounds are described in Figure 1. Compounds 13 and 15
showed the highest ACE inhibitory activity among the tested compounds, with IC50 values of 6.75 and
4.68 µM, respectively. The positive control, captopril, had an IC50 value of 1.16 nM. Compounds 12, 16,
17, 18, 11, 14, 3, 10, 9, and 2 also exhibited significant ACE inhibitory activity, with corresponding IC50

values of 9.41, 12.39, 15.21, 16.03, 18.29, 20.04, 68.36, 71.48, 89.36, and 102.27 µM, respectively.

Table 1. Angiotensin converting enzyme (ACE) inhibitory activity of Angelica sp.

Angelica sp. Parts
ACE Inhibitory Activity (%) a

Mean ± SEM

Angelica japonica LF −4.58 ± 0.65
Angelica gigas WP −16.34 ± 9.8
Angelica fallax WP 31.37 ± 4.58

Angelica dahurica ST 17.65 ± 1.31
Angelica czernevia RT 52.29 ± 2.61
Angelica dahurica RT 4.25 ± 2.29

Angelica cartilagino-marginata var. distans WP 32.35 ± 0.33
Angelica fallax FL 38.56 ± 3.92

Angelica anomala AP 50.98 ± 1.96
Angelica anomala UP −5.23 ± 0
Angelica sinensis RT 4.25 ± 0.33

Angelica decursiva WP 94.12 ± 4.19
Captopril b 86.27 ± 0.11

a ACE inhibitory activity (%) of extracts and captopril was evaluated at the concentrations of 163.93 µg/mL and
1.63 ng/mL, respectively. b Positive control. WP, RT, LF, FL, AP, ST, and UP represent the whole plant, root, leaf,
flower, aerial part, stem, and underground part, respectively.

Table 2. Angiotensin-converting enzyme-I (ACE) inhibitory activity of compounds isolated from Angelica decursiva.

Compounds IC50 (µM) a Compounds IC50 (µM) a

1 112.47 ± 0.71 11 18.29 ± 0.61
2 102.27 ± 0.29 12 9.41 ± 0.69
3 68.36 ± 0.27 13 6.75 ± 0.43
4 195.55 ± 1.02 14 20.04 ± 0.79
5 156.11 ± 0.41 15 4.68 ± 0.22
6 492.44 ± 0.89 16 12.39 ± 0.27
7 839.34 ± 1.02 17 15.21 ± 0.39
8 311.09 ± 0.33 18 16.03 ± 0.92
9 89.36 ± 0.38 Captopril b 0.0012 ± 0.0001

10 71.48 ± 0.47
a The concentration yielding 50% inhibition (IC50, µM) was calculated from the log dose inhibition curve and is
expressed as the mean ± SEM. of triplicate experiments. b Positive control.

2.3. Enzyme Kinetics in ACE Inhibition

As part of our continuing search for coumarin derivatives from A. decursiva, we investigated
the type of inhibition and inhibition constants (Ki) of three active coumarins (12, 13, and 15) using
Lineweaver–Burk and secondary plots. As shown in Figure 2, the y-axis intercept stayed the same,
showing that the Vmax was a fixed value, whereas the x-axis intercept decreased with increasing
concentrations of 12, 13, and 15, suggesting that the Km increased. The secondary replot of 1/Vmax

versus inhibitors was parallel. Thus, 12, 13, and 15 caused the competitive inhibition of ACE. Namely,
12, 13, and 15 occupied the catalytic pocket of ACE and caused a decrease in the binding affinity of ACE
with substrate (FAPGG). Ki values of compounds 12, 13, and 15 were obtained as 1.98, 2.35, and 0.59 µM,
respectively (Table 3), using the secondary plot of slope (Km, app/Vmax, app) versus inhibitors.
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Figure 1. Chemical structures of the compounds isolated from Angelica decursiva.

Table 3. Inhibition type and inhibition constants (Ki) of compounds for ACE activity based on enzyme
kinetic plots.

Test Compounds Type of Inhibition a Ki (µM) b

12 Competitive 1.98
13 Competitive 2.35
15 Competitive 0.59

a Inhibition type was determined by interpreting the Lineweaver–Burk plot and secondary plot. b The inhibition
constants (Ki) were determined by interpreting the secondary plot.
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(b) 13, and (c) 15.

2.4. Molecular Docking Simulation between Coumarins and ACE

Docking simulations of the interactions between the coumarins and ACE were performed
at the C- and N-domains’ ACE cavity together with well-known catalytic ACE inhibitor,
captopril, and reported mixed type C-ACE inhibitor, [(2S)-2-({3-[hydroxyl(2-phenyl-(1R)-1-
{[(benzyloxy)carbonyl]-amino}ethyl)phosphinyl]-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxo-propyl}amino)-
3-(4-hydroxy-phenyl) propanoic acid] (FII) [34]. To provide a rational explanation for the significant
ACE inhibition of compounds 12, 13, and 15, we simulated the hydrogen bonding, hydrophobic,
and electrostatic interactions between 12, 13, and 15 and active sites of ACE (Table 4). As shown
in Figure 3, these compounds and captopril docked into the zinc-binding catalytic sites of C-ACE
and N-ACE, respectively, and interacted with zinc ion via van der Waals interaction. In the docking
simulation between 12 and C-ACE, six H-bonds between 12 and Ala356, Asp358, and S1′ residues,
including His353, His513, and His523, were observed. In addition, four residues (His387, Trp357:
Pi–Sigma interaction; Phe391, His410: Pi–Alkyl interaction) were included in hydrophobic interactions
(Figure 4a). Similar to 12, 2-ketone moiety of 15 formed two hydrogen bonds with His513 and His353
residues included in S1

′ pocket. Asp356 residue interacted with 3′- and 4′-OH of 15 via three H-bonds.
Aside from H-bonds, additional hydrophobic (Phe391, His410: Pi–Alkyl interaction; His387: Pi–Sigma
interaction) and electrostatic (Glu384 residue) interactions were also detected (Figure 4c). For coumarin
13, the binding site of 13 was closer to the zinc ion than those of 12 and 15, whereas the number of
H-bonds was less than those of 12 and 15. (Figure 4b). The oxygen atom in position 1 of 13 formed two
hydrogen bonds with His513 and His353. 4′-OH of 13 also hydrogen-bonded with Ala356 and Glu384
residues. In addition, two CH3 groups of senecioyl moiety in the position C3′ interacted with His410
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(Pi–Sigma interaction), Phe391 (Pi–Alkyl interaction), and His387 (Pi–Alkyl interaction) residues via
hydrophobic interactions.

As a result of docking analysis between tested compounds and N-ACE, oxygen atoms of 12
and 13 interacted with hydrogen atoms of His331 and His491 residues included in the S1

′ pocket of
N-ACE. These hydrogen-bonding interactions and hydrophobic interactions between 3′-substituents
of inhibitors (12 and 13) and His and Phe residues of N-ACE make a favorable orientation to interact
with zinc ion via van der Waals interaction. However, 15 interacted with His331 via carbon–hydrogen
interaction, which is a relatively weak force compared to conventional hydrogen bond interaction
(such as H-O and H–N); thus 15, could not get close enough to interact with zinc ions (Figure 3b).
Our docking results indicated that 12, 13, and 15 could inhibit ACE by competing with substrates in
the active site rather than other secondary sites (Figure 3). Moreover, 15 exhibited high selectivity for
the C-ACE compared to 12 and 13.

Table 4. Molecular interactions between ACE inhibitors and the ACE.

Compounds Docked Energy
(kcal/mol)

Hydrogen Bond
Interaction (No. of

H-bond)

van der Waals
Interaction

Hydrophobic
Interaction Others

Target Enzyme: C-ACE (PDB: 2xy9)

12 −7.86
His353 (1), Ala356 (2),
Asp358 (1), His513 (1),

Tyr523 (1)
ZN His387, Trp357, Phe391,

His410 -

13 −8.03
His353 (1), Ala356 (1),
His513 (1), Glu384 (1),

His387 (1)
ZN His410, His387, Phe391 -

15 −8.03 His513 (1), Ala356 (3),
Tyr523 (1), His353 (1) ZN Phe391, His410, His387 Glu384

(Pi–Anion)

Captopril a
−8.95

Gln281 (1), His353 (1),
Lys511 (1), Glu384 (1),

His513 (1)
ZN Ala354, His353, His383,

Phe457, Tyr523
His383, His387

(Pi–S)

FII b −7.92 Lys118 (1), Asn66 (1),
Arg522 (1), Trp59 (1) -

Met223, Trp59, Tyr62,
Trp220, Trp357, Val518,

Pro519, Ala63

Arg124
(Attractive

charge), Arg522
(Pi-Cation),

Met223 (Pi-S)

Target Enzyme: N-ACE (PDB: 2xyd)

12 −8.15 His331 (1), His491 (1),
Asp393 (1), Lys432 (1) ZN His369, Phe505, Phe435, Tyr501

(Pi–Lone pair)

13 −8.46
His331 (1), Ala334 (2),
His491 (1), Glu362 (1),

Ser333 (1)
ZN His388, His365 Glu389

(Pi–Anion)

15 −7.98
Gln259 (1), Lys489 (1),
His491 (1), Asp393 (2),

His331 (1)
- Phe435, Tyr501, Phe505 -

Captopril a
−7.41

Gln259 (1), His331 (2),
Lys489 (1), His491 (1),
Glu362 (1), Tyr498 (1)

ZN Ala332, His331, Tyr501 His361 (Pi–S)

a Reported catalytic ACE inhibitor. b Reported peptic mixed type C-ACE inhibitor and co-ligand of 2xy9.
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3. Discussion

Hypertension, a worldwide illness, is a major factor in cardiovascular diseases and affects a large
population of adults. Some of the most effective medications for the treatment of hypertension are
ACE inhibitors. Meanwhile, medicinal plants have been used for centuries to treat illnesses. Therefore,
they can be important resources in developing new drug candidates. The present study demonstrated
for the first time that A. decursiva and its coumarin constituents show inhibitory activity against ACE.
Recently, the coumarin system found in many natural compounds has excited considerable attention.
Coumarins are naturally occurring compounds widely distributed in the plant kingdom and are
important components of the human diet. Coumarins have been associated with low toxicity and
have garnered considerable interest due to their potentially beneficial effects on human health [35].
In recent times, coumarins have been considered a promising group of bioactive compounds that
exhibit a wide range of biological activities: Anticoagulant [36], anti-inflammatory [13,22,37,38],
antimicrobial [39], antioxidant [13,37], anti-allergic and antidepressant [40], antidiabetic [41],
anticancer [42,43], antifungal [44], and anti-Alzheimer’s disease [18–21]. These biological activities
indicate that coumarin compounds should be tested as novel therapeutic compounds. Therefore,
we selected a focused collection of coumarins to increase the likelihood of finding a promising
ACE inhibitor.

In a preliminary study, the MeOH extract of whole-plant A. decursiva Fr. et Sav (Umbelliferae)
exhibited inhibitory effects against ACE. Recently, it was reported that another Angelica species, A. gigas,
and its coumarin constituents showed potential antihypertensive activity through ACE inhibition [25].
Therefore, we investigated the ACE inhibition activity of A. decursiva-derived compounds. As illustrated
in Table 2, most of the coumarins showed potent antihypertensive activity. In particular, coumarins
11–18 exhibited potent ACE inhibitory properties, with IC50 values ranging from 4.68 to 20.04 µM. Hyun
et al. reported that benzopyranoids (nodakenin, umbelliferone, and umbelliferone 6-carboxylic acid)



Molecules 2019, 24, 3937 9 of 14

showed promising ACE inhibitory activity [25], which is similar to our results. It was also reported that
the A. decursiva components, which are a combination of decursin, decursinol, and nodakenin, displayed
potent ACE inhibitory activity [45], which is also comparable with our results. Therefore, both the
present and previous investigations indicate that coumarins have potential antihypertensive activity.

Some structure–activity relationships of coumarins can be deduced. The simple coumarins in
Table 2, 4 and 5 display the fundamental skeleton of coumarin derivatives and showed moderate
inhibitory effects on ACE. The linear furanocoumarins, 1–3, exhibited a significant inhibitory effect
on ACE, whereas 8, with two methoxy groups at the C-11 position, showed weak activity. In the
series of linear and angular pyranocoumarins in Table 2, the linear pyranocoumarins were more active
than the angular pyranocoumarins. Therefore, we speculate that the presence of a hydroxyl group
at the 4′ or 3′ position on the chroman ring plays an important role in the ACE inhibition activity of
linear pyranocoumarins 12–18, and that replacement of that hydroxyl group with another functional
group (angeloyl/senecioyl/acetyl/methoxy) decreases the activity. Based on our results, functional
substitutions of linear pyranocoumarins on the chroman ring selectively enhance or decrease ACE
inhibition activity, and a hydroxyl group seems to be important for activity. That structure–activity
relationship helps us to understand the key structural elements that influence the ACE inhibitory activity
of the different coumarin derivatives. A similar observation was previously reported: The presence
of hydroxyl groups on the benzene ring plays a crucial role in the activity of phenolic compounds,
and replacing a hydroxyl group with another functional group decreases activity [7].

In an attempt to explain the mode of ACE inhibition, we investigated enzyme kinetics analysis using
two kinetic methods, the Lineweaver–Burk plot and the secondary plot, using different concentrations
of FAPGG, as the substrate (0.1–0.5 mM) and inhibitor (0–10 µM). As demonstrated in Figure 2,
the manner of inhibition of compounds 12, 13, and 15 was competitive (Ki values = 1.98, 2.35,
and 0.59 µM, respectively). These results indicate that 12, 13, and 15 bound directly to the active site
of the enzyme to prevent enzyme–substrate complex formation. Usually, lower Ki values indicate
tighter binding with the enzyme and thereby greater inhibitor effectiveness. Thus, 12, 13, and 15
could be crucial ACE inhibitor candidates. Captopril, a competitive inhibitor, was used as the
positive control [46]. Captopril was the first orally active ACE inhibitor approved to treat human
hypertension [46,47].

Somatic ACE is composed of two important catalytic domains known as C- and N-domains
(C-ACE and N-ACE). These two domains have been shown to exhibit different functions and different
kinetic profiles. It was reported that C-ACE was responsible for most of the angiotensin-I hydrolysis,
while the other key substrate, bradykinin, has seemed to be hydrolyzed by both C-ACE and N-ACE [48].
The C-ACE and N-ACE share almost 65% sequence homology with each other [49]. The catalytic sites
of both ACEs were located in the middle of the enzyme and included S1, S2, S1

′, and S2
′ together with

a Zn2+ metal ion [50].
To determine the molecular properties that influence the ACE inhibitory activity of the coumarins

under consideration, we used AutoDock 4.2 program to run docking simulations. It was clear that
the presence of certain functional groups, such as hydroxyl, ether, and ketone groups, which can
act as hydrogen bond acceptors or donors, increased ACE inhibition potency. To identify a rational
explanation for the significant ACE inhibition of compounds, we simulated the interactions including
hydrogen bonding, hydrophobic interaction, and electrostatic interaction between compounds 12, 13,
and 15 and key residues in both C-ACE and N-ACE. The docking of compounds 12, 13, and 15 at the
C- and N-domains’ ACE active sites showed low docking energies (−7.86, −8.03, and −8.03 kcal/mol
for C-ACE; −8.15, −8.46, and −7.98 kcal/mol for N-ACE, respectively). The remarkable ACE inhibition
shown by these compounds can be explained by the two-dimensional (2D) interaction maps shown
in Figure 4. Therefore, the ACE inhibitory activity of these coumarins could result from hydrogen
bond interactions between hydroxyl or ketone groups and amino acids in the S1

′ of the enzyme as well
as van der Waals interaction with zinc ions that competitively block the catalytic activity of the ACE
enzyme. Our docking results demonstrated that 12, 13, and 15 could inhibit ACE by competing with
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substrates in the zinc-binding active site rather than other secondary sites and were concordant with
in vitro kinetic data. Moreover, 15 exhibited high selectivity for the C-ACE compared to 12 and 13.

Previously it was reported that phenolic compounds exhibited the same mechanism for ACE
inhibition as found in our study [7]. They found that the presence or absence of certain functional
groups (hydroxyl, carboxyl, ketone) influenced the potential of phenolic acids to inhibit ACE activity,
which is comparable to our data. It is well known that the complexes of synthetic inhibitor, captopril,
interact with zinc ion and key amino acids in the active center [51]. Therefore, we suggest that the
coumarins inhibit ACE activity in a manner similar to that of captopril.

A quantitative structure–activity relationship analysis showed that the number of hydroxyl
groups on the benzene ring played a crucial role in activity, and that replacing hydroxyl groups with
methoxy groups decreased activity [7], possibly because the hydroxyl groups in a compound form
complexes with the metal ions and catalytic residues in ACE [52]. Therefore, the metal ions of ACE
were reduced, and ACE activity decreased. On the other hand, the reduced ACE inhibitory activity
seen with methoxy groups could have resulted from steric hindrance, which hampered the binding
between the compound and the active site of ACE. Because the dihydroxanthyletin coumarins contain
hydroxyl and other functional groups, their ACE inhibitory activity could result from interactions
established via hydrogen bonds between hydroxyl or keto groups and amino acids in the active site
that block the catalytic activity of ACE. Therefore, A. decursiva-derived compounds could potentially
exert their antihypertensive effects primarily as ACE inhibitors. This aspect should be investigated
further to clarify the beneficial and harmful effects in vivo.

4. Materials and Methods

4.1. Chemicals

ACE (1 Unit, rabbit lung), FAPGG (N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly), and captopril were
purchased from Sigma Chemical Company (St Louis, MO, USA). All chemicals and solvents used
for column chromatography were of reagent grade and purchased from commercial sources, unless
otherwise stated.

4.2. Plant Materials

MeOH extracts of whole plants of A. decursiva and other Angelica species were purchased from the
Korean Plant Extract Bank, Chungcheongbuk-do, Korea, which is associated with the Korea Research
Institute of Bioscience and Biotechnology. A voucher whole plant specimen (20131024) was registered
and deposited in the Department of Food Science and Nutrition, Pukyong National University, Busan,
Korea (Professor Choi, J.S.) for future reference.

4.3. Preparation of Coumarin fom A. decursiva

The following coumarins were previously isolated and identified in our laboratory: Nodakenin
(1), nodakenetin (2), isorutarine (3), umbelliferone (4), umbelliferone 6-carboxylic acid (5), para-hydroxy
benzoic acid (6), vanillic acid (7), 2′-isopropyl psoralene (8), 3′(R)-O-acetyl-4′(S)-O-tigloylkhellactone
(9), cis-3′-acetyl-4′-angeloylkhellactone (10), decursinol (11), 4′-hydroxy Pd-C-III (12), Pd-C-I (13),
decursidin (14), (+)-trans-decursidinol (15), Pd-C-II (16), Pd-C-III (17), and 4′-methoxy Pd-C-I
(18) [13,18–22,53]. The structures of the isolated compounds are shown in Figure 1.

4.4. ACE Inhibitory Activity Assay

The ACE inhibitory activity of 18 compounds was conducted according to Hyun et al. [8] and
modified to use FAPGG as the substrate. In brief, FAPGG (0.5 mM) and various concentrations of the
samples were completely dissolved in 50 mM Tris–HCl buffer (pH 7.5). Twenty microliters of ACE
(1 U/mL dissolved in 50 mM Tris–HCl buffer) was then mixed with 200 µL of various concentrations of
the samples (1.28–163.93 µg/mL) as experimental samples or with 50 mM Tris–HCl buffer as a negative
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control. The inhibitory activities of the compounds were represented as percentages of inhibition in a
concentration range of 1.28–163.93 µg/mL. An antihypertensive agent, captopril, was used as a positive
control at a concentration of 0.06–1.63 ng/mL. All experiments were conducted three times.

4.5. Kinetic Parameters of the ACE Inhibition of Different Coumarins

To determine the inhibition mechanisms, ACE inhibition was evaluated by monitoring the
effects of different concentrations of substrate (0.1–1 mM). The reaction mixture consisted of different
concentrations of FAPGG (0.1–0.5 mM), as the substrate, and ACE in 50 mM Tris–HCl buffer. Several
concentrations of each sample were added to the reaction mixture. The tested concentrations of
coumarins are as follows: 12 (0, 2.5, 5, and 10 µM); 13 (0, 2.5, 5, and 10 µM); 15 (0, 1.28, 2.56,
and 5.12 µM). Inhibition constants (Ki) were determined by interpretation of the secondary plots from
Lineweaver–Burk plot.

4.6. Molecular Docking Simulation in ACE Inhibition

The X-ray crystallographic structures of the C-domain and N-domain human angiotensin
I-converting enzyme complex were obtained from the RCSB Protein Data Bank (PDB ID: 2XY9
and 2XYD, respectively) [34]. The protein was prepared using Accelrys Discovery Studio 16.1 (Accelrys,
San Diego, CA, USA). The reported binding area between co-ligands and the protein was considered
the most affirmative region for the ligand-binding docking simulation. The 2D structures of all
compounds were drawn with MarvinSketch (ChemAxon, Budapest, Hungary) and converted into
3D pdb format using Chem3D Pro software (v12.0, CambridgeSoft Inc., Cambridge, MA, USA).
Energy minimization of each ligand was carried out using a molecular mechanics 2 (MM2) force field.
The docking analysis was conducted using AutoDock 4.2 (The Scripps Research Institute, La Jolla,
CA, USA) [54]. The docking protocol for rigid and flexible ligand docking comprised 20 independent
genetic algorithms. In the docking studies, selected molecules were examined to find the qualified
binding poses for each compound.

4.7. Statistical Analysis

Statistical significance was analyzed by one-way ANOVA and Student’s t-test (Systat Inc., Evanston,
IL, USA). All results are presented as mean ± SEM.

5. Conclusions

In this study, we isolated 16 coumarins and two phenolic compounds from A. decursiva and
screened their ACE inhibitory activity using an in vitro ACE assay. Among these natural coumarins,
11–18 showed remarkable IC50 values of 4.68–20.04 µM. Therefore, screening and developing new
ACE inhibitors from A. decursiva could be beneficial in the treatment of cardiovascular diseases such as
hypertension. In addition, the present data indicate that linear pyranocoumarins inhibit ACE activity
in vitro, and that activity against ACE and mode of action depend on the class and structure of the
coumarins. These structure–function relationships could be useful for designing new ACE inhibitors
based on coumarins.
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