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Abstract: The application of metabolomics in phytochemical analysis is an innovative 

strategy for targeting active compounds from a complex plant extract. Species of the Asteraceae 

family are well-known to exhibit potent anti-inflammatory (AI) activity. Dual inhibition of 

the enzymes COX-1 and 5-LOX is essential for the treatment of several inflammatory diseases, 

but there is not much investigation reported in the literature for natural products. In this study, 

57 leaf extracts (EtOH-H2O 7:3, v/v) from different genera and species of the Asteraceae family 

were tested against COX-1 and 5-LOX while HPLC-ESI-HRMS analysis of the extracts 

indicated high diversity in their chemical compositions. Using O2PLS-DA (R2 > 0.92; VIP > 

1 and positive Y-correlation values), dual inhibition potential of low-abundance metabolites 

was determined. The O2PLS-DA results exhibited good validation values (cross-validation 

= Q2 > 0.7 and external validation = P2 > 0.6) with 0% of false positive predictions. The 

metabolomic approach determined biomarkers for the required biological activity and 

detected active compounds in the extracts displaying unique mechanisms of action. In 

addition, the PCA data also gave insights on the chemotaxonomy of the family Asteraceae 

across its diverse range of genera and tribes. 
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1. Introduction 

According to the latest reviews on drug discovery [1–6], natural products are still the most successful 

source of biologically-active lead compounds, even when compared with advanced strategies such as 

high-throughput screening of substances obtained through synthesis and combinatorial chemistry. 

However, the traditional strategy has some disadvantages that act as obstacles in the study of natural 

products, such as its complexity and inherent slowness [2,6]. Traditional strategies used in natural products 

research are not always able to detect the true active compounds masked by less active major substances 

in crude plant extracts, or the utilized analytical approach identifies none or just merely some active 

components [7,8]. There are some cases in which the crude extract is more active than the isolated pure 

compound, e.g., the extract of Artemisia annua has more potent antimalarial properties than its pure 

natural product, artemisinin [9–11]. 

Metabolomics is a comprehensive strategy which allows profiling of a complex mixture of numerous 

chemical components in a crude extract as well as targeting substances that can be correlated to a certain 

biological activity before commencing any time-consuming isolation procedure [8,12–15]. The 

metabolomic tool is not a reductionist method aiming to find one active compound against  

a known target receptor [8,15]. Instead, it uses thorough and accurate hyphenated analytical techniques  

in conjunction with suitable multivariate statistical analysis (MSA) tools that are able to simultaneously 

evaluate a huge number of metabolites and determine their correlations with certain biological properties 

[8,15–19]. Several analytical techniques have been applied in metabolomics studies [16,20–23]. In 

combination with metabolomics, this allows rapid dereplication, which is the identification of known 

compounds from reference spectral databases [17,22]. In preparation to a rigorous targeted isolation 

procedure of novel bioactive compounds, an efficient dereplication study can save time and effort to 

isolate well-studied active compounds or redundant inactive natural products. Independent of which 

analytical techniques were chosen, the usually huge metabolomic data obtained would require MSA 

to classify the samples into different groups and to facilitate their interpretation in terms of metabolite 

distribution under distinct variables [15,24]. Among the types of MSA, Principal Component Analysis 

(PCA) and Orthogonal-orthogonal Partial Least Square-Discriminant Analysis (O2PLS-DA) are 

commonly used for this purpose [15,24,25]. PCA is an unsupervised method that is used to get a sample 

overview and distribution to observe trends and/or outliers by performing variable reduction [24]. On 

the other hand, supervised methods, such as PLS and O2PLS-DA, are employed to find X variables (e.g., 

compounds in different extracts) correlating with determined Y variables (e.g., biological properties, 

geographical origin, chromatographic retention times, etc.). Thus, PLS and O2PLS are powerful 

statistical tools to determine such (bio)markers. The O2PLS-DA algorithm is a PLS modification, where 

systematic variation is removed from the input data set X that does not correlate to the response set Y, 

and therefore providing models with reduced complexity and more relevant results that are easier to 

interpret [26,27]. 
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The aim of this study is to systematically detect and identify anti-inflammatory (AI) active compounds 

directly from their crude Asteraceae plant extracts. The chosen group of plants from the Asteraceae 

family have been earlier investigated and described for their AI property [28–31]. Several species from 

Asteraceae are well-known as AI plants [30,32], such as arnica (Arnica montana L.) [33], feverfew 

(Tanacetum parthenium (L.) Sch. Bip.) [34,35], pot marigold (Calendula officinalis L.) [36] and chicory 

(Cichorium intybus L.) [37]. Cyclooxygenase (COX) and lipoxygenase (LOX) pathways are of utmost 

importance in inflammatory processes, and therefore dual inhibitors of enzymes COX-1 and  

5-LOX would be potential AI medicines with higher efficacy and fewer side effects than any currently 

available non-steroidal AI drug(NSAID) [29,32,38–42]. NSAIDs are among the most administered drugs 

worldwide; however, there are still some inflammatory diseases wanting efficient and safe treatment, 

such as rheumatoid arthritis, Alzheimer's disease and atherosclerosis [30,39]. 

Ethanolic leaf extracts(EtOH-H2O 7:3, v/v) from 57 Asteraceae plant species (Table S1) have been 

earlier systematically evaluated for dual inhibition of COX-1 and 5-LOX-5 [28–31] (Table 1), and these 

same extracts were tested for the current metabolomics profiling studies. These Asteraceae plant extracts 

cover a substantial metabolome diversity that could be explored through sensitive and high resolution 

analytical techniques together with MSA to target AI compounds with dual inhibition properties. These 

metabolites were found to be non-volatile compounds ranging from high to intermediate polarity [29], 

which consist mainly of flavonoids, chlorogenic acid congeners and sesquiterpene lactones [29–31]. 

Thus, for these metabolites, high-performance LC coupled to high-resolution MS (HPLC-HRMS), in 

reversed-phase chromatography and electrospray ionization (ESI) source, respectively, would be the 

appropriate analytical technique [16,22,23,43–45]. HPLC-ESI-HRMS has the following advantages in 

metabolomic profiling of Asteraceae natural products: Simpler sample preparation that entailed no 

derivatization step as required with GCMS; richness of information of metabolites provided by combining 

accurate mass with retention time or MS/MS fragmentation data; availability of comprehensive commercial 

(Dictionary of Natural Products (DNP) with 259,859 entries) and in-house (e.g., AsterDB [46]) 

databases allowed fast and easy dereplication; high sensitivity provided a limit of detection at nanogram 

levels for minor bioactive components; and high selectivity that is very important in studying complex crude 

extracts [2,21,47–49]. The HRMS data allowed accurate dereplication from commercial databases of 

monoisotopic masses of known natural products while occurrence of isomers can be separated by 

chromatography. On the other hand, utilizing in-house databases has a great advantage in terms of 

suitability because both reference standards and samples can be analyzed under similar chromatographic 

conditions and spectrometric parameters. However, co-injection of available reference standards, 

MS/MS experiments, and identification of isolated pure compounds by nuclear magnetic by NMR 

(especially for new natural products) have also been utilized as part of the process to confirm structure 

identity of the bioactive compounds [16,17,22]. 

Many studies on species from Asteraceae have utilized HPLC-ESI-HRMS for phytochemical studies 

and/or chemotaxonomic applications [50–56]. However, only a few studies on Asteraceae metabolome have 

been performed to find biomarkers of biological properties [28,57,58]. Furthermore, most of the studies 

evaluated only the metabolome of different extracts from a single or small number of related species to 

guide discovery of biomarkers and their biological activity [57–63]. Recently, we employed the J48 

decision tree to determine (bio)markers for dual inhibition of COX-1 and 5-LOX from the HRMS 

metabolite profile data of a diverse set of Asteraceae plant extracts [28]. The decision tree chooses the 
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attributes (X variables) of the data that most effectively split its set of samples into subsets enriched 

under one class of AI property(Y variable). In this study, we utilized HPLC-ESI-HRMS along with MSA 

(O2PLS-DA) to also pinpoint dual inhibitors of COX-1 and 5-LOX directly from the crude plant extract. 

Moreover, O2PLS-DA sorts and simultaneously defines the biomarkers from the X variables for each of 

the different AI properties (Y variables) according to the VIP (Variable Importance in Projection) scores 

of the attributes. This strategy has never been applied to study a more diverse set of species originating 

from different tribes and genera of a huge plant family. For the first time, this metabolomic approach 

was employed to find biomarkers for a specific biological activity which in parallel also give us a 

chemotaxonomic insight of the investigated species from Asteraceae. In addition, the chemical profiles 

of most of these species were obtained for the first time through a sensitive, high-resolution, and 

comprehensive analytical method. 

2. Results and Discussion 

2.1. Chemical Profile (HPLC-ESI-HRMS) of the Extracts 

A diverse set of species (n = 57) from various tribes with different phylogenetic relationships within 

the Asteraceae family were chosen for this study (Tables1 and S1, [28]) which demonstrated huge 

diversity of secondary metabolites (Figures S1 and S2) [64,65]. Flavonoids, sesquiterpene lactones, 

chlorogenic acid congeners and other compounds, that are well-known for their AI potential [30,32], 

were initially identified from DNP and AsterDB databases through the MZmine software [66] to obtain 

an overview of the composition of the extracts. Using the monoisotopic exact mass from the databases, 

identification of the major peaks of well-studied extracts was coherent and comprehensive. As an 

example, dereplication data for Tithonia diversifolia (sample #56) is presented in Table 2. In this study, 

a total of 6052 peaks (m/z, RT) were found for the 57 species, and a complete identification of all peaks 

is neither necessary nor viable. In addition, the presence of putative novel compounds would obviously 

not be identified from a database. In fact, the coherence achieved in this study was remarkable when 

compared to most of the earlier studies, where metabolomic profile of evaluated species were just 

obtained from the same genera or fractions of extracts from single species resulting to quite similar 

chemistries [57–63]. The chemical diversity of compounds evaluated in most of the previous studies was 

much lower than the chemical diversity tackled in this study. It is important to highlight that the detection 

of compounds of diverse chemistry is fundamental in screening active extracts from different genera 

prior to determining the type of chemistry that can be associated to the mechanism of action. In this 

context, the focus of this study was on the dereplication and identification of substances that correlate 

with the AI property for dual inhibition of COX and LOX (Table 1). 

The highly diverse chemical profiles of these extracts were managed through suitable data treatment 

with metabolomics softwares MZmine and SIEVE® before the data was subjected to multivariate statistical 

analysis [67]. The metabolites’ variability in their physical properties was taken into consideration. These 

include differences in the capability of the metabolites to ionize either in the positive or negative modes 

or in both modes as well as their maximum absorbance at different UV wavelengths. Detection of as 

much metabolites as possible was accomplished both by switch mode-HRMS and UV through a 

photodiode array (PDA) detector to cover a wavelength range between 220 to 400 nm. Thus, utilizing 
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MS and UV as parallel detectors was important to discern the diversity of the secondary metabolites, as 

one technique complemented the other. The Venn diagram showed that 87% of the compounds were 

detected in negative mode and 13% of the compounds were detected in positive mode while only 1% 

was detected in both modes (Figure 1). The pool of information which consisted of the retention times, 

UV, and m/z data was important in the dereplication process (Figure S2 and Table 2). Additionally, the 

chemical profiles through HPLC-UV-ESI-MS of several of the studied species were revealed for the 

first time (as exemplified in Table 2) and can be useful for future studies. 

Table 1. Extracts with dual inhibition activity towards COX-1 and 5-LOX. 

Species Sample Codes 
Chemistry 

Investigated/AI Evidence 
Tribe * 

Cichorium intybus L. (chicory) 19 Yes [37]/Yes [37] Cichorieae Lam. & DC. 

Minasia scapigera H. Rob. 40 No/No Vernonieae Cass. 

Piptolepis monticola Loeuille 41 No/No Vernonieae Cass. 

Prestelia eriopus Sch. Bip. 42 No/No Vernonieae Cass. 

Solidago microglossa DC. (arnica do campo) 46 Yes [68]/Yes [68,69] Astereae Cass. 

Sphagneticola trilobata (L.) Pruskei 49 Yes [70]/Yes [70] Heliantheae Cass. 

Tithonia diversifolia (Hemsl.) A. Gray (tree marigold) 56 Yes [71]/Yes [7] Heliantheae Cass. 

Vernonia herbacea (Vell.) Rusby 57 Yes [51]/No Vernonieae Cass. 

Vernonia platensis (Spreng.) Less. 58 Yes [51]/No Vernonieae Cass. 

Vernonia polyanthes Less. (assapeixe) 59 Yes/Yes [72] Vernonieae Cass. 

Vernonia rubriramea Mart. Ex DC. 60 No/No Vernonieae Cass. 

Viguiera robusta Gardner 66 Yes [73]/Yes [73] Heliantheae Cass. 

Viguiera trichophylla Dusén 67 No/No Heliantheae Cass. 

* According to Funk et al. 2009 [64]. 

Table 2. Dereplicationdata of the major compounds of the dual inhibitor extract of  

Tithonia diversifolia (extract code #56). 

Peak Area m/z 
Retention 

Time 

Molecular 

Formula 

UV Peak at Maximum 

Absorbance (nm) 
Dereplication Literature * 

8.50 × 107 153.0195 (M−H)− 11.2 C7H6O4 255; 292 protocatechuic acid [74] 

9.12× 107 353.0883 (M−H)− 13.9 C16H18O9 300; 323 5-O-E-caffeoylquinic acid [7] 

7.85× 107 355.1022 (M+H)+ 13.9 C16H18O9 300; 323 5-O-E-caffeoylquinic acid [7] 

3.98× 108 515.1200 (M−H)− 19.2 C25H24O12 295; 326 3,5-di-O-E-caffeoylquinic acid [74] 

3.44× 107 517.1340 (M+H)+ 19.2 C25H24O12 295; 326 5,3-di-O-E-caffeoylquinic acid [74] 

3.32× 108 515.1200 (M−H)− 19.7 C25H24O12 295; 326 4,5-di-O-E-caffeoylquinic acid ** 

2.05× 107 517.1340 (M+H)+ 19.7 C25H24O12 295; 326 5,4-di-O-E-caffeoylquinic acid ** 

7.29× 107 367.1767 (M−H)− 23.9 C19H28O7 211 tagitinin A [7,71] 

2.41× 107 369.1906 (M+H)+ 23.9 C19H28O7 211 tagitinin A [7,71] 

2.51× 107 349.1644 (M−H)− 27.0 C19H24O6 254 tagitinin C [7,71] 

5.14× 106 349.1643 (M−H)− 28.4 C19H24O6 210 tagitinin F [71] 

* All hits were found in AsterDB database or DNP. ** Described for the first time in T. diversifolia. The 

identifications were confirmed by the retention times of the standards run in the same chromatographic conditions. 
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Figure 1. Venn diagram showing the diversity of signals detected in HPLC-ESI-switch 

mode-HRMS. 

2.2. Data Treatment and PCA 

The reproducibility of the measurements in this study was demonstrated by the superimposable 

chromatograms of three replicate injections of a randomly selected sample (extract #33). The sample 

was injected in the beginning, the middle and at the end of the HPLC-ESI-MS 57-sample sequence 

experiment (Figure S3). Slight variation in the intensity and peak area of some peaks was also observed. 

However, with or without data normalization of the entire 57 samples, the data for the three replicates 

were also found to be similar by PCA analysis (Figure S4). The coefficient of variation (CV = standard 

deviation/mean) was small with a CV = 0.43 for the datasets in the positive mode and CV = 0.47 in the 

negative mode. The CV plot (Figure S5) of the three replicate injections for extract #33 afforded a mean 

CV log ratio < 0.25 for the majority of its attributes in both positive and negative mode. While the CV 

plot (Figure S5) of all 57 extracts together gave a mean CV log ratio > 0.40 for the majority of their 

attributes in both modes of ionization. This result is coherent because variation between the different 57 

sample extracts was expected and must occur. The significant difference in CV log ratios between the 

two dataset treatments confirmed reproducibility of the MS data results (Figure S5). 

PCA of the HRMS data (Figure 2) that was pre-processed both by MZmine, SIMCA-P + 12.0® and 

Sieve®, disclosed the grouping of the samples according to their phylogenetic proximity [50,51,75]. 

Extracts prepared from the same genera or tribes were clustered together as illustrated by Hierarchical 

Cluster Analysis (HCA) of its PCA results (Figure 3). The HCA dendrogram exhibited clear groupings 

according to their phylogeny but not their anti-inflammatory properties. The phylogenetic grouping was 

not evident in the PCA scatter plot. Samples were clustered by PCA based on chemical similarity of the 

extracts. The PCA plots (Figures 2 and S4) showed overlapping samples and groups were not well 

separated. Thus, it was not easy to define the difference between groups as well as the chemical similarity 

between respective samples. Interestingly, the HCA dendrogram exhibited significant separation 

between the Vernonieae and Heliantheae tribes which is comparable to the phylogenetic diagrams of the 

Asteraceae tribes according to Bremer [76] and Funk et al. [64], where both tribes belong to well-separated 

clades. The HCA results from Simca P+ was validated with Programme R (Figure S6) which even with 

few samples interfering on the phylogenetic tree, it was possible to see similar results. These results 

substantiated the use of metabolomics as a potential chemotaxonomical tool [50,51,75]. Nevertheless, 
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unsupervised MSA by PCA did not contribute in the determination of biomarkers for dual inhibition 

because the samples were not grouped according to their AI properties (Figure 2). However, the trend 

bar graph of individual attributes (example shown in Figure 2) indicated significant intensity differences 

of distinct metabolites between AI property classes. This prompted us to apply a suitable supervised 

MSA to determine these unique biomarkers. 

Figure 2. Principal Component Analysis (PCA) of all extracts. The extracts were colored 

according to their anti-inflammatory activities: Green hexagon (B) for the extracts able to 

inhibit both enzymes (COX and LOX), orange circle for those able to inhibit only LOX (L), 

red square for those inhibiting only COX (C),and blue triangle for those found to be inactive 

(N) against both enzymes. Two reference samples for negative (blue hexagon) and positive 

(green triangle) activity were indicated by arrows. The trend bar graph indicated the 

occurrence of a single metabolite in each of the studied extracts. 

 

Figure 3. Hierarchical Cluster Analysis (HCA) dendrogram for Asteraceae plant extracts 

analyzed in this study (n = 66, included root, stem and flower parts for some species). 

Highlighted (green and yellow) numbers represent sample codes of species-related extracts 

that clustered together in the PCA according to their similarity in the chemistry of their 

metabolomes. Red highlighted sample codes represent extracts with unique chemistry when 

compared with other extracts within their respective taxa. 
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2.3. Determination of Biomarkers for Dual Inhibition by O2PLS 

O2PLS-DA of the processed HPLC-ESI-HRMS data (Section 2.2.) along with their AI properties 

found a clear separation among the samples in accordance to their ability to inhibit COX and/or LOX 

(Figures 4 and 5). The R2 values were 0.97 and 0.92 for the HPLC-ESI-HRMS negative and positive data, 

respectively. R2 values described the amount of Y variables illustrated by the model after cross-validation 

which gave an overview of the model fitness. R2 very close to 1.0 was desired, although values >0.5 

were considered good values due to the component complexity of the samples [24,77]. However, even 

for samples with highly complex composition profile (Figures S1 and S2), the R2 values were >0.9, 

which indicated a significant statistical difference in chemical composition between groups with different 

AI properties. This implied that each of the active groups of extracts yielded their respective unique 

group of metabolites that are not present in the non-active extracts as implicated by the clustering three 

dimensional O2PLS-DAscore plot (Figure 4). 

 
(a) (b) 

Figure 4. (a) negative mode, R2 = 0.97; (b) positive mode, R2 = 0.92. Three dimensional 

O2PLS-DAscore plot of the HRMS data for 57 Asteraceae leaf extracts grouped according 

to their AI properties to inhibit COX-1 and/or 5-LOX. Sample codes are found in Table 1 

and S1. The sample codes were colored as follows: Dual inhibition = yellow (B); only COX-1 

inhibition = red (C); only 5-LOX inhibition = blue (L); and no inhibition = green (N). Sample 

codes are found in Tables 1 and S1. 

The compounds correlating with dual inhibition of COX-1 and 5-LOX were targeted and read out 

from the loading plots. The loading features found at a similar locus to the corresponding extract on the 

score plot represent the unique (bio)markers for each of the defined AI property as illustrated by  

a biplot of the score and the loading plots(Figure 5). The VIP scores and correlation coefficients (positive 

Y-related coefficient) were also considered in identifying the biomarkers for dual inhibition (Table 3). 

Variables with VIP values > 1 estimated the most important variable in the projection while the correlation 

coefficients with Y expressed how strong the property is correlated with the variables [63]. For the dual 

inhibition of COX-1 and 5-LOX and with VIP > 1, nine compounds each were detected from the ESI 

negative and positive modes (Table 3). 
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Table 3. Biomarkers correlated to dual inhibition of COX-1 and 5-LOX arranged according 

to their VIP scores. 

ID 
VIP 

Scores 
m/z RT 

Mass Error 

(ppm) 
 MF Hits (Number of Hits from SciFinder/DNP2015/AsterDB) a 

Negative Mode 

2054 1.92232 359.0778 14.2 1.656 [M−H]− C18H16O8 
F and PC (381/97/6) => Hexahydroxyflavone; TrMe ether, 

chrysosplenol D b 

3913 1.91038 341.0883 12.2 1.410 [M−H]− C15H18O9 PC (162/11/1) 

2488 1.89577 679.1505 16.4 3.175 [M−H]− C30H32O18 F (16/2/0) 

5001 1.78812 431.1931 18.7 1.912 [M−H]− C20H32O10 PC and other classes (91/0/0) 

671 1.71425 487.1256 20.0 2.042 [M−H]− C24H24O11 
F and PC (101/14/1) =>  

acacetin-7-O-β-D-(3′′-acetyl)-glucopyranoside c [78] 

2610 * 1.57931 447.1306 17.5 2.051 [M−H]− C22H24O10 F and PC (231/66/0) 

815* 1.38122 509.2246 16.9 1.248 [M−H]− C22H38O13 

Saccharides (27/1/0) => β-D-glucopyranose,  

1-[8-(β-D-glucopyranosyloxy)-2,6-dimethyl-2-octenoate] was 

found from the DNP 

694 1.30532 415.1255 15.6 0.958 [M−H]− C18H24O11 PC (81/15/0) 

4582 * 1.29768 470.9873 12.4 1.023 [M−H]− C23H6O11N (0/0/0) 

3144 ** 0.957026 513.2714 19.0 1.789 [M−H]− C26H42O10 ST (80/15/0) 

829 ** 0.834219 411.1797 25.3 1.413 [M+Cl]− C18H34O8 D-glucopyranose,2,3-dihexanoate (107/1/0) 

Positive Mode 

1273 1.61922 361.1643 32.0 0.774 [M+H]+ C20H24O6 STL, D and PC (1850/219/27) d 

1282 1.60527 261.1118 32.1 1.077 [M+H]+ C15H16O4 STL, PC and F (3723/158/10) 

1637 * 1.56815 349.1642 28.2 0.897 [M+H]+ C19H24O6 STL, D and PC (1424/164/12), identified as tagitinin F 

1116 * 1.54159 600.2654 16.8 0.635 [M+NH3]+ C28H38O13 (0/0/0) 

1190 1.42996 611.1400 20.0 0.717 [M+H]+ C30H26O14 F (81/25/0) 

1623 1.36987 426.2120 27.9 0.511 [M+NH3]+ C21H29O8 STL (0/0/0) 

1436 1.18345 418.1857 33.9 0.688 [M+NH3]+ C22H25O7 D, F (6/0/0) 

1615 1.16202 363.1799 30.5 0.852 [M+H]+ C20H26O6 STL, D and PC (1858/345/12) e 

692 * 1.0815 449.1075 19.0 0.607 [M+H]+ C21H20O11 

F (258/101/2) ex.: Quercetrin occurs in Asteraceae (e.g., in 

the dual inhibitor extract of Solidago microglossa #46 [68]); 

luteolin, 7-β-D-glucopyranoside is widespread in plants, and 

also occurs in Asteraceae 

1207 ** 0.88865 509.1290 20.6 0.160 [M+H]+ C23H24O13 F (76/39/0) 

1333 ** 0.862979 270.1697 29.1 1.112 [M+NH3]+ C14H20O4 
(6048/78/0) Butanoic acid,  

3-methyl-,4-(1R,2S-dihydroxypropyl)phenyl ester 

276 ** 0.818718 415.2112 34.5 0.634 [M+H]+ C24H30O6 STL, D and PC (1438/43/0) 

PC: Phenolic compound(s); STL: Sesquiterpene lactone(s); ST: Sesquiterpene(s); F: Flavonoid(s), D: 

Diterpene(s). ID: Identification number designated by MZmine; RT: Retention time in min; MF: Molecular 

formula; MW: Molecular weight; * Dual inhibitor biomarkers detected also by J48 decision tree (see ref. 31); 

** Dual inhibitor biomarkers detected only by J48 decision tree (see ref. 31); a Number of hits from the 

respective databases; b Described for several species from the Asteraceae family, according to the DNP 

database; c For all the hits with the MF = C24H24O11, only acacetin-7-O-β-D-(3′′-acetyl)-glucopyranoside has 

been previously described from the Asteraceae family; d Two different STLs previously described for respective 

genera Vernonia and Viguiera (DNP and AsterDB databases); e STLs previously described for Tithonia diversifolia 

and Viguiera robusta (DNP and AsterDB databases). 
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(a) 

 
(b) 

Figure 5. (a) Negative mode; (b) Positive mode. O2PLS-DA biplots indicating the 

distribution of the extracts and their metabolome (X-variables) according to their AI property (Y 

variables).The sample codes were colored as follows: Dual inhibition = yellow (B); only COX-

1 inhibition = red (C); only 5-LOX inhibition = blue (L); and no inhibition = green (N). Sample 

codes are found in Tables 1 and S1. 

With the data provided by HPLC-UV-ESI-HRMS, the identification of the biomarkers was not as 

straightforward as the dereplication of the major compounds (Table 2) from the extracts. Due to the weak 

MS and UV responses of biomarkers, it is more likely that these metabolites were present as minor 

components in the extracts (Table S1). As presented in Table 3, by using the predicted molecular formulae, 

a huge number of isomers gave matching hits from SciFinder and DNP databases. However, special 

attention was given to compounds isolated within the Asteraceae family or within its genera. In the 

negative ESI mode, hits consisted mostly of phenolic and flavonoid compounds (Table 3, Figure 6), which 
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have been previously described inseveral species within the family, and in these conditions, their peaks 

were observed between 15 to 20 min. The MF of C24H24O11 (ID#2054),detected in the ESI negative mode, 

matched acacetin-7-O-β-D-(3′′-acetyl)-glucopyranoside and was the only hit associated with the 

Asteraceae family [78]. This flavone glucoside was earlier isolated from the flowers of Chrysanthemum 

sinense Sabine and was reported to exhibit significant xanthine oxidase inhibitory activity. Interestingly, 

the kinetic study indicated a competitive-type of inhibition while at the same time acacetin-7-O-β-D-(3′′-

acetyl)-glucopyranoside showed a mixed-type inhibition. Flavonoids are known to potentially deter 

inflammatory pathways [30,31,79] but none of these compounds have been described to specifically 

inhibit COX-1 and 5-LOX. 

 

Figure 6. Examples of phenolic compounds dereplicated from Asteraceae extracts with dual 

inhibition property against COX-1 and 5-LOX. 

The positive mode revealed the presence of sesquiterpene lactones (STLs) and/or diterpenes that are 

relatively more non-polar eluting between 20 and 35 min (Table 3). Hits included STLs previously 

isolated from Tithonia diversifolia and Viguiera robusta as well as three different STLs described for 

the genera Viguiera and Vernonia (Table 3, Figure 7). T. diversifolia and V. robusta were among the extracts 

that exhibited dual inhibition against the enzymes COX-1 and 5-LOX. The presence of tagitinin F, which 

was earlier isolated from T. diversifolia, was then verified by co-elution and MS/MS fragmentation analysis 

(Figures 7 and 8). The common peak eluting at 28.2 min in the dual inhibitor extracts #40–42, 49, 56, 

59 and 60 (Table 1) yielded anion peak at m/z 349.1643 [M+H]+ and gave a similar MS/MS 

fragmentation pattern.MS/MS ion peaks were observed at m/z 331.1643 [M−H2O]+; 261.1116 [M−iBu]+; 

243.1014[M−iBu−H2O]+; and 215.1063 [M−iBu−H2O−CO]+, which confirmed the identity of the peak 

(ID#1637) to be tagitinin F (Figure 8). Tagitinin F was evaluated for the first time and also showed to 

be a dual inhibitor of COX-1 and 5-LOX with IC50 values of 0.001 and 18.5 µM, respectively. It is worth 

mentioning that tagitinin F (ID#1637, Table 3) was also detected as a dual inhibitor of COX-1 and 5-

LOX using the J48 decision tree classifier [28]. It should be emphasized that tagitinin F is not the major 

compound in leaves of T. diversifolia [7].These findings reveal the quality of our developed 

metabolomics-based approaches to detect biologically active compounds in extracts. 

Sesquiterpene lactones have been patented as potential NSAIDs [80] due to their capability to inhibit 

the expression of COX-2 in ex vivo experiments on inflammatory cells. They are known to inhibit several 

biological effects aggravated by PLA2 (phospholipase A2) and NF-κB (nuclear factor κB) activation 

[81,82]. This includes the release of arachidonic acid through inhibition of the PLA2 or expression of 

enzymes like COX-2, and mediators involved in inflammation through inhibition of the NFκB release to 

consequently decrease the pro-inflammatory products [81,82]. There have been few studies on COX-1 

and 5-LOX inhibition by STL and most of them used cell or other enzymes involved in the inflammatory 
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cascade. Those that evaluated directly on the enzymes found negative results [83]. Rungeler et al. studied 

three STLs and based on previous studies, they generalized that STLs do not act on COX-1 although 

some derivatives can inhibit PLA2 [83]. The alkylant moiety (α-methylene-γ-lactone group and an α,β- or 

α,β,γ,δ-unsaturated carbonyl group) is usually responsible for the AI property of STLs. However, other 

structure requisites are also necessary for a STL congener to display a certain or further mechanism of 

action on different inflammatory pathways, [82,84], that includes other fine-tuning enzyme activities. 

Figure 7. Some sesquiterpene lactones dereplicated from extracts with dual inhibition 

property against COX-1 and 5-LOX (stereochemistry was not shown due to the possibility 

of occurrence of isomers/epimers, except for tagitinin F which was confirmed through  

co-elution and MS/MS fragmentation of a reference standard; Figure 8). Although it should 

be taken into account that all STLs from the tribes investigated herein (and those shown 

below) must have α,β orientation at C6/C7. 



Metabolites 2015, 5 416 

 

 

(a) 

(b) 

(c) 

Figure 8. (a) The ion source fragments of the standard of tagitinin F; and (b) the fragments 

of MS/MS on [M+H]+ on the HPLC-ESI-HRMS analysis are shown. The peaks with the 

same retention time of the tagitinin F (28.2 min) in the dual inhibitor extracts #40–42, 49, 

56, 59 and 60 (Table 1) yielded anion peak at m/z 349.1643 [M+H]+ and gave a similar 

MS/MS fragmentation pattern as tagitinin F. The peaks also have the same UV spectra as 

tagitinin F; (c). Co-injection confirmed the exact same retention time. These data confirmed the 

identification of the peaks in the dual inhibitor extracts as tagitinin F. 

Kinetic studies have shown that STLs tend to inhibit PLA2 non-competitively with the presence of a 

substrate. The most active STLs in the inhibition of edema-inducing activity, enzymatic activities and 

myotoxic activity are provoked by PLA2. Through ab initio quantum calculations and chemometric methods 

on the activity of eight STLs in PLA2, Da Silva’s group [81] illustrated how HOMO (Highest Occupied 

Molecular Orbital) energy, log P, and molecular volume could be accountable for the differences between 

the most and the less active congeners. In active derivatives, HOMO energy values is low and would 

favor electron transfer, which is affected by the orientation of the carbonyl group in ring C, i.e., in the γ-

lactone ring (Figure 7). A congener with a five-membered ring A can increase its inhibitory property 



Metabolites 2015, 5 417 

 

 

when a transfer charge complex can be formed between PLA2 and the carbonyl group in ring C. The correct 

position of the carbonyl group in ring C can be achieved with a six-membered ring B. On the other hand, 

a seven-membered ring shifts the correct positioning of the carbonyl group that could decrease bioactivity. 

While in tagitinin C, where ring A is absent, the congener was only active against COX-1 with an IC50 

of 30.1 µM, the STL tagitinin F, with its nine-membered ring B, was found to be a dual inhibitor. A 

similar structural constraint may also be vitalto achieve dual inhibition of COX-1 and  

5-LOX which to date still needs to be studied further. Nevertheless, it should be also taken into account 

that all eight earlier tested STLs in the cited study did not have the α,β-unsaturated carbonyl with an 

exocyclic methylene in the γ-lactone ring. This unsaturation is essential for the alkylating property and 

consequently the biological activity of most STLs[82] such as those from Tithonia and Viguiera. 

Although we could confirm the identity of one biomarker (ID#1637) for dual inhibition of COX-1 

and 5-LOX to be tagitinin F, we also must consider the unidentified biomarkers detected in the ESI negative 

mode that includes the phenolics and flavonoids (Table 3). They were determined in a well-fitted model 

(Figure 4, Table 4) and are predicted to be potent dual inhibitors as tagitinin F proved to be. The dual 

inhibitors determined by the decision tree classifier did correlate well with the variables classified under 

the same group in O2PLS. However, due to algorithm differences and distinct variable selection 

methods, the identified dual inhibitors by O2PLS listed in Table 3 and those earlier enumerated using 

the J48 decision tree were comparable but not identical [28]. Not all X variables correlating with a 

particular AI property are considered by the decision tree, but only those that are able to split the classes 

according to the Y variables are taken into account [28]. This splitting process is strongly affected by 

the ion peak intensities of the attributes. The detected biomarkers for dual inhibition from both the 

decision tree classifier [28] and O2PLS gave VIP scores > 1 (Table 3). Components ID #3144, 829, 

1207, 1333, and 276 were only determined as dual inhibitors by the decision tree classifier [28]. These 

latter components had VIP scores < 1 but > 0.8. With O2PLS, all X variables are accounted for and 

assigned VIP scores in the selection process regardless the peak intensities of the attributes. Some of the 

detected biomarkers were not available in the in-house database AsterDB and this included the components 

ID#694, 2488, and 5001 in the negative mode; while in the positive mode, there were ID#1190, 1436, 

and 1623. One unknown compound (C20H32O10) was found by O2PLS while two unidentified compounds 

(C23H6O11N and C28H38O13) were uncovered by the decision tree classifier. Except for certain amides, 

nitrogen compounds are very rare in Asteraceae. These new active natural products can then be targeted 

for future isolation work. 

The dual inhibition biomarkers with the highest VIP scores (#2054 and #3913 detected in negative 

mode, #1637 and #1623 detected in positive mode) were found at higher concentrations only in dual 

inhibitor extracts (Figures 9 and 10). However, the active samples do not have all these biomarkers together 

(Figures 9 and 10).This may suggest that each of these compounds are single-handedly responsible for 

the dual inhibition of COX-1 and 5-LOX, and that the respective bioactive compounds do not depend 

on each other to be more or less active. In fact, we proved that the biomarker #1637 (tagitinin F), 

determined in two different approaches, is in fact able to inhibit both enzymes in vitro. Some of the 

biomarkers were also found to occur in extracts belonging to other AI property classes defined in this 

study. As shown in Figures 9 and 10, the intensity of the biomarkers for dual inhibition was generally 

higher when compared to their incidence in inactive extracts. The occurrence of phenolic and flavonoid 
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biomarkers (Table 3) was more dispersed throughout the different AI property classes, particularly for 

components ID#694, 2488, and 5001. 

2.4. Validation of the O2PLS Model for the Predictions of Dual Inhibitors of COX-1 and 5-LOX 

The O2PLS-DA model was validated for its prediction of dual inhibitors of COX-1 and 5-LOX  

from the metabolomic data of the extracts acquired through HPLC-ESI-HRMS. The values obtained 

from cross validation (Q2) and external validations (P2) were > 0.5 (Table 4), indicating that the  

ability of the model to predict the dual inhibitors was strong [24,77]. The R2 values were equal to 1, 

which meant that the O2PLS-DA model was well-fitted. The error values (Root-Mean-Square Error of 

Cross-Validation-RMSECV) were very low as well (Table 4) and all the extracts predicted as active 

were in fact dual inhibitors, thus the models had 0% false positive results. The validation using the 3rd 

test group corroborated this. Samples grouped as single inhibitors of 5-LOX or COX-1 (classes not 

included in the training group) were not predicted as dual inhibitors, but were rather predicted as inactive, 

as they should be. However, there were false negative results, in which active extracts were predicted as 

inactive. This was reflected by Q2 scores of 0.84 and 0.70 for the positive and negative modes, respectively. 

Yet these Q2 scores are considered good as they are >0.6 for external validations (Table 4). 

Therefore, through O2PLS-DA, it is easy to distinguish extracts with dual or single inhibition of 

COX-1 or 5-LOX from the inactive extracts. With assurance, the validation results also verified the 

O2PLS-DA model in its ability to determine the biomarkers for dual inhibition. The fact that the biomarkers 

were not the major compounds, made it clear that using classical approaches in natural products research 

to find these biomarkers would be quite difficult and time-consuming. The application of suitable and 

sensitive techniques in combination with proper MSA method was fundamental to determine the 

biomarkers of dual inhibition. 

Table 4. Prediction model of O2PLS-DA built with HPLC-ESI-HRMS data. 

 MS Mode R2 Q2 RMSECV P2-group 1 ** P2-group 2 ** P2-group 3 *** 

O2PLS-DA 
Negative mode 1.00 0.84 0.19 0.70 0.80 0.80 

Positive mode 1.00 0.70 0.26 0.60 0.60 0.60 

* Training group was composed of the following extracts: No activity (n): 1, 43, 10, 12, 14, 23, 54 and dual inhibitors (b): 

40, 41, 56, 57; ** Validation groups were composed of the following extracts not included in the training of the model: Group 

1-(n): 13, 15, 26, 25, 53, 52 and (b): 66, 67, 49, 46; Group 2-(n): 13, 25 and (b): 58, 60, 19, 42 46; *** Validation group 3 

was composed of the following extracts not included in the training of the model plus additional samples with  

anti-inflammatory properties that were not included in the model training (inhibitors only of 5-LOX (l) or only COX-1 (c) to 

check if there were false positive results). Group 3-(n): 13, 15, 25; (l): 9, 29, 22; (c): 24; (b): 19, 42, 46; Q2: Cross validation; 

P2: External validation. 
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Figure 9. Trend bar graphs indicating the peak areas of some of the biomarkers of dual inhibition of COX-1 and 5-LOX (negative mode  

HPLC-ESI-HRMS). The graphs are arranged in the order of decreasing correlation values. Extracts were colored as follows: Yellow for dual 

inhibitors, white for COX-1, grey for non-inhibitors, and pink for 5-LOX inhibitors (Table 1).p < 0.05 in t-test when comparing the peak area 

of the biomarkers in the active samples with those from non-dual inhibitors. 
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Figure 10. Trend bar graphs indicating the peak areas of some of the biomarkers of dual inhibition of COX-1 and 5-LOX (positive mode  

HPLC-ESI-HRMS). The graphs are arranged in the order of decreasing correlation values. The graph for biomarker #1436 was omitted because 

it was quite similar to the graph of biomarker#1273 (Table S1). Extracts were colored as follows: Yellow for dual inhibitors, white for COX-1, 

grey for non-inhibitors, and pink for 5-LOX inhibitors (Table 1). 
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3. Experimental Section 

3.1. Plant Material 

Leaves from 57 Asteraceae species were either commercially obtained, or previously collected, or 

received as donations. All information is summarized in Table S1. For species #2, #8 and #53, the 

inflorescences, not the leaves, were the plant parts that correlated with the anti-inflammatory activity. 

Because of this, we studied the available inflorescences of these species instead their leaf parts. 

The species included in this study were separated into three groups: Food plants, plants known as AI 

and those unknown as AI. Species from different tribes within the Asteraceae family were chosen for 

the study (Table S1). This taxonomic diversity led to substantial metabolome diversity. 

Purchased plant material has documents to attest their authenticity (#2 Sítio da Mata, Cajuru-SP;  

#3-Market, Belém-PA; 8#-Santos Flora, São Paulo-SP; #50-Sítio da Mata, Cajuru-SP; #4, #6, #9, #10, 

#12, 19#, #20, #35, #37, #53, #55, #59, #60-Sítio Irmas Maries, Jardinópolis-SP). Donated materials 

have voucher specimens deposited in the SPF herbarium at the Department of Botany, Institute of 

Biosciences, University of São Paulo (USP), São Paulo-SP, Brazil. Their respective voucher specimens 

are as follows: Species code #1-A.M.S. Pereira 1428; #5-Loeuille et al. 537; #13-A.M.S. Pereira 1426; 

#14-A.M.S. Pereira 1424; #15-M. Nogueira e L.E. Gregório 35; #1 -A.M.S. Pereira 1430; #18-Lusa et al. 

63; #21-DA Chagas-Paula 10; #22-A.M.S. Pereira 1425; #23-DA Chagas-Paula 06; #24-Loeuille et al. 

531; #25-A.M.S. Pereira 1418; #26-DA Chagas-Paula 09; #27-Lusa et al. 61; #28-D.A. Chagas-Paula 

08; #29-Loeuille et al. 530; #33-Sítio Irmas Maries, Jardinópolis-SP; #34-Loeuille et al. 528; #38-A.M.S. 

Pereira 1400; #39-A.M.S. Pereira 1419; #40-Loeuille et al. 529; # 41-Lusa et al. 62; #42-Loeuille et al. 

524; #43-A.M.S. Pereira 1427; #45-A.M.S. Pereira 1422; #46-A.M.S. Pereira 1421; #48-A.M.S. Pereira 

1429; #49-DA Chagas-Paula 05; #51-DA Chagas-Paula 07; #54-A.M.S. Pereira 1420; #56-A.M.S. Pereira 

1423; #57-ESA 94148; #58 - ESA 94146; #61-M Magenta et al. 275; #62-M Magenta et al. 440; #63-M 

Magenta et al. 307; #64-AB Bombo et al. 56; #65-AB Bombo et al. 62; #66-M Magenta et al. 454; #67-

AB Bombo et al. 51. Their identifications were carried out by the persons whose name abbreviations are 

listed above. Genetic Heritage Management Council authorization number: 010055/2012-6. 

3.2. Extraction of Compounds from Plant Material 

Dried plant material was ground into powder using an analytical mill (A11, IKA®). Particle size was 

below 0.42 mm. Twenty milligrams of each plant powder were extracted with 2 mL of EtOH-H2O (7:3) 

in an orbital shaker (110 rpm and 30 °C) for 24 h. The extracts were further partitioned with  

n-hexane to remove fatty acids, filtered through a 0.2 μm PTFE membrane (Millipore©) and dried under 

reduced pressure. The same extracts were used for UHPLC-HRFTMS analysis and AI assays. This 

procedure was previously ascertained to extract a high diversity of potentially anti-inflammatory active 

compounds with high to intermediate polarity [29]. 
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3.3. Chemicals and Materials 

HPLC-grade acetonitrile (ACN) was purchased from Fisher Scientific, Loughborough, UK.  

HPLC-grade water was produced by a Direct-Q 3 Ultrapure Water System (Millipore, Feltham, UK). 

AnalaR-grade formic acid (98%) was obtained from BDH-Merck, Poole Dorset, UK. 

3.4. HPLC-ESI-HRMS Analysis 

The extracts were analyzed by HPLC-ESI-HRMS using a Thermo Scientific Exactive™ equipment 

(Bremen, Germany) powered by Orbitrap™ technology. The equipment also utilized a Thermo 

Scientific DAD detector. The analyses were carried out using a C-18 column (ACE®)-150 × 3 mm,  

3 µm particle size at 30 °C, a flow rate of 0.3 mL/min at gradient elution. The solvent gradient of ACN 

(A) in H2O and 0.1% formic acid (B) commenced with 5% of A in 5 min followed by 5%–100% of  

A in 50 min and finishing with 100% of A for 10 min. The sample volume injected was 10 μL of  

a solution of 1 mg of extract/mL in water maintained at 12 °C[28]. 

The spectrometer was operated in polarity switching mode with the following settings: Scan range 

75–1200 m/z, fragmentation HCD gas off, high resolution, microscan 1, lock mass positive, AGC target 

balanced, maximum inject time 250 ms. The settings for ESI source were: Sheath gas flow rate 50, auxiliary 

gas flow rate 17, sweep gas flow rate 0, spray voltage (|kV|) 4.5, spray current (MA) 1.4, capillary 

temperature (°C) 320, capillary voltage (|V|) 30, tube lens voltage (|V|) 90, skimmer voltage (|V|) 20 [28]. 

Mass calibration was performed for each polarity prior to analysis and the mass range was extended 

from 150 to 1500 Da to cover small molecular weight metabolites by inclusion of low-mass contaminants 

with the standard Thermo calmix masses. Lock-mass correction was also applied to each analytical run 

using ubiquitous low-mass contaminants to enhance calibration stability [28]. 

The data was recorded and processed using Xcalibur 2.1.0 software package (ThermoScientific©). 

The samples were randomly analyzed with one blank, while additional injections (3 times) were done 

on one sample in the beginning, middle and at the end of the sequence to control ionization and retention 

time reproducibility. 

3.5. Data Treatment 

The mass spectral raw data (along with the retention time - RT) of all samples were sliced to positive 

and negative datasets using the MassConvert tool from ProteoWizard [85] and then converted to the 

.mzML format prior to importing to MZmine 2.10 for data treatment. MZmine [66] is an open source 

software used to perform deconvolution (threshold: 5%; RT: Range 12 s; min. relative height: 15%), 

deisotoping (m/z tolerance: 0.001; RT tolerance: 6s), alignment (join aligner m/z tolerance: 1 ppm; RT 

tolerance: 30 s; weight for m/z: 15 and for RT: 10), gap filling (intensity, m/z and RT tolerance respectively: 

1%; 0.001 m/z and 30 s) and dereplication [67,86,87]. After removing a few non-peak-shape features by 

visual inspection, both data sets were exported from MZmine as csv files for further statistical analysis. 

These files contained the identification number, m/z, retention time and area of each peak. 

The mass spectral raw data was also processed with Sieve 2.0.180® (Thermo Scientific©) using  

the default parameters. This software works in a very similar way to MZmine. 
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3.6. MSA 

The processed data sets were then analyzed both by unsupervised (PCA) and supervised (O2PLS-DA™) 

multivariate methods with unit variance data scaling using the SIMCA-P+ 12.0 software (Umetrics, 

Umeå, Sweden). The same statistical parameters were used for both methods. The model for prediction 

for the data was also validated. Some sample data were used to train the O2PLS-DA model while another 

group of data was used to test the model (Table 4).The samples were randomly grouped where 70% of 

the samples were assigned to the training group and 30% to the test group for validation. This proportion 

of 70:30 was considered for each of the AI classes of dual and non-dual inhibitors. Thus, the 70% 

included both dual and non-dual inhibitors to build the model. The remaining 30% was used for the test 

group to validate the model. The 70:30 proportion has been earlier validated for model prediction [28]. 

The HCA were performed in RStudio version 0.98.1102©. 

3.7. Dereplication 

Dereplication [67,86,87] was performed with the in-house database AsterDB, which contains  

only substances described from species of the family Asteraceae, and the commercially available 

Dictionary of Natural Products© (DNP). The dereplication was also confirmed with SciFinder® and  

by literature search. 

4. Conclusions 

A sensitive analytical technique (HPLC-ESI-HRMS) associated with a suitable multivariate statistical 

analysis (O2PLS-DA) used in this study allowed the determination of biomarkers of dual inhibition of 

cyclooxygenase and lipoxygenase in complex plant samples. The limitation of this strategy is the 

unsuccessful dereplication of isomeric compounds based only on their mass spectral data while the UV’s 

limit of detection was not good enough to perceive components at nanogram levels. The identity of an 

isomer could only be verified by co-elution and/or MS/MS experiments. However, sometimes epimers 

are not distinguishable only by MS/MS and they are very common in Asteraceae, especially at the 

orientation of the side chain ester. Unidentified biomarkers can be used for retrieving new active extracts 

from the plant family. The validated O2PLS models predicted active extracts from the provided chemical 

information. For the first time this approach was applied to such complex diverse samples obtained from 

a wider range of different species, genera and tribes like the Asteraceae family, and thus resulting to a 

significant statistical analysis. The main advantage of the strategy was the detection of the biomarkers 

as minor compounds at micro- or nanogram levels without any time-consuming isolation step. 

Additionally, the approach can also be employed in the discovery of new or lead biomarkers, like 

tagitinin F, to target a mechanism of action before commencing a huge isolation project. New biomarkers 

will potentially provide compounds with interesting pharmacological characteristics. The metabolomic 

strategy applied herein precludes the redundant discovery of known compounds with common 

mechanisms of action like that of a classical phytochemical approach, thus solving one of  

the main drawbacks of natural products research. Our approach can thus be applied in drug discovery in 

general, such as helping to find new medicines, nutraceuticals, as well as agrochemicals in plants. 
  



Metabolites 2015, 5 424 

 

 

Acknowledgments 

The authors thank FAPESP (grants #2010/10940-2 and #2010/51454-3) for financial support  

as well as CNPq and CAPES for funding and grants. We thank Christina Viegelmann for the kind English 

revision. 

Author Contributions 

Daniela A. Chagas-Paula performed all the experiments in this study and wrote the manuscript.  

Plant material acquisition and authorization for assessing Brazilian genetic heritage were facilitated  

by Fernando B. Da Costa and Daniela A. Chagas-Paula, Tong Zhang helped on the HPLC-UV-HRMS  

and O2PLS-DA analysis. Daniela A. Chagas-Paula, Fernando B. Da Costa, Tong Zhang and  

RuAngelie Edrada-Ebel designed the application of LC-HRMS based metabolomics to determine the 

biomarker of biological activity on complex mixtures (plant extracts). Daniela A. Chagas-Paula and 

Fernando B. Da Costa selected plant species and enzymatic targets for biological activity and to 

determine plant biomarkers. RuAngelie Edrada-Ebel supervised and coordinated most of this study, and 

edited the manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Newman, D.J. Natural products as leads to potential drugs: An old process or the new hope for drug 

discovery? J. Med. Chem. 2008, 51, 2589–2599. 

2. Harvey, A.L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901. 

3. Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. 

Metabolites 2012, 2, 303–336. 

4. Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in 

the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. 

5. Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads.  

Biochim. Biophys. Acta 2013, 1830, 3670–3695. 

6. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 

to 2010. J. Nat. Prod. 2012, 75, 311–335. 

7. Chagas-Paula, D.A.; De Oliveira, R.B.; da Silva, V.C.; Gobbo-Neto, L.; Gasparoto, T.H.; 

Campanelli, A.P.; Faccioli, L.H.; Da Costa, F.B. Chlorogenic acids from Tithonia diversifolia 

demonstrate better anti-inflammatory effect than indomethacin and its sesquiterpene lactones.  

J. Ethnopharmacol. 2011, 136, 355–362. 

8. Verpoorte, R.; Choi, Y.H.; Kim, H.K. Ethnopharmacology and systems biology: A perfect holistic 

match. J. Ethnopharmacol. 2005, 100, 53–56. 

  



Metabolites 2015, 5 425 

 

 

9. De Donno, A.; Grassi, T.; Idolo, A.; Guido, M.; Papadia, P.; Caccioppola, A.; Villanova, L.; 

Merendino, A.; Bagordo, F.; Fanizzi, F.P. First-time comparison of the in vitro antimalarial activity 

of Artemisia annua herbal tea and artemisinin. Trans. R. Soc. Trop. Med. Hyg. 2012,  

106, 696–700. 

10. Phillipson, J.D. Phytochemistry and medicinal plants. Phytochemistry 2001, 56, 237–243. 

11. Wagner, H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia 

2011, 82, 34–37. 

12. Michel, T.; Halabalaki, M.; Skaltsounis, A. New concepts, experimental approaches, and dereplication 

strategies for the discovery of novel phytoestrogens from natural sources. Planta Med. 2013,  

79, 514–532. 

13. Queiroz, E.F.; Wolfender, J.; Hostettmann, K. Modern approaches in the search for new lead 

antiparasitic compounds from higher plants. Curr. Drug Targets 2009, 10, 202–211. 

14. Nakabayashi, R.; Saito, K. Metabolomics for unknown plant metabolites. Anal. Bioanal. Chem. 

2013, 405, 5005–5011. 

15. Yuliana, N.D.; Khatib, A.; Choi, Y.H.; Verpoorte, R. Metabolomics for bioactivity assessment of 

natural products. Phyther. Res. 2011, 25, 157–169. 

16. Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the 

functional genomics era. Phytochemistry 2003, 62, 817–836. 

17. Lang, G.; Mayhudin, N.A.; Mitova, M.I.; Sun, L.; van der Sar, S.; Blunt, J.W.; Cole, A.L.J.; Ellis, G.; 

Laatsch, H.; Munro, M.H.G. Evolving trends in the dereplication of natural product extracts: New 

methodology for rapid, small-scale investigation of natural product extracts. J. Nat. Prod. 2008, 71, 

1595–1599. 

18. Nicholson, J.K.; Lindon, J.C. Metabonomics. Nature 2008, 455, 1054–1056. 

19. Shyur, L.F.; Yang, N. Metabolomics for phytomedicine research and drug development. Curr. Opin. 

Chem. Biol. 2008, 12, 66–71. 

20. Villas-Bôas, S.G.; Mas, S.; Akesson, M.; Smedsgaard, J.; Nielsen, J. Mass spectrometry in 

metabolome analysis. Mass Spectrom. Rev. 2005, 24, 613–646. 

21. Weckwerth, W.; Morgenthal, K. Metabolomics : From pattern recognition to biological interpretation. 

Drug Discov. Today 2005, 10, 1551–1558. 

22. Wolfender, J.; Marti, G.; Ferreira Queiroz, E. Advances in techniques for profiling crude extracts 

and for the rapid identificationof natural products: Dereplication, quality control and metabolomics. 

Curr. Org. Chem. 2010, 14, 1808–1832. 

23. Bedair, M.; Sumner, L.W. Current and emerging mass-spectrometry technologies for metabolomics. 

Trends Anal. Chem. 2008, 27, 238–250. 

24. Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics-a review in human disease 

diagnosis. Anal. Chim. Acta 2010, 659, 23–33. 

25. Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in metabonomics. J. Proteome Res. 2007,  

6, 469–479. 

26. Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002,  

16, 119–128. 



Metabolites 2015, 5 426 

 

 

27. Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant 

analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006,  

20, 341–351. 

28. Chagas-Paula, D.A.; Oliveira, T.B.; Zhang, T.; Edrada-Ebel, R.; da Costa, F.B. Prediction of  

Anti-inflammatory Plants and Discovery of Their Biomarkers by Machine Learning Algorithms and 

Metabolomic Studies. Planta Med. 2015, 81, 450–458. 

29. Chagas-Paula, D.A. A Metabolomic studies of Asteraceae by UHPLC-UV-HRFTMS, in vitro 

evaluation of the anti-inflammatory potential and their correlation by in silico methods. Ph.D. 

Thesis, Universitsssy of São Paulo, 2013. 

30. Calixto, J.B.; Otuki, M.F.; Santos, A.R.S. Anti-inflammatory compounds of plant origin. Part I. 

Action on arachidonic acid pathway, nitric oxide and nuclear factor kappa B (NF-kappaB).  

Planta Med. 2003, 69, 973–983. 

31. Werz, O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. 

Planta Med. 2007, 73, 1331–1357. 

32. Schneider, I.; Bucar, F. Lipoxygenase inhibitors from natural plant sources. Part 1: Medicinal plants 

with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase[sol]cyclooxygenase. 

Phyther. Res. 2005, 19, 81–102. 

33. Knuesel, O.; Weber, M.; Suter, A. Arnica montana gel in osteoarthritis of the knee: An open, 

multicenter clinical trial. Adv. Ther. 2002, 19, 209–218. 

34. Ernst, E.; Pittler, M.H. The efficacy and safety of feverfew (Tanacetum parthenium L.): An update 

of a systematic review. Public Health Nutr. 2000, 3, 509–514. 

35. Sumner, H.; Slan, U.; Knight, D.W.; Hoult, J.R.S. Inhibition of 5-lipoxygenase and cyclo-oxygenase 

in leukocytes by feverfew involvement of sesquiterpene lactones and other components.  

Biochem. Pharmacol. 1992, 43, 2313–2320. 

36. Akihisa, T.; Yasukawa, K.; Oinuma, H.; Kasahara, Y.; Yamanouchi, S.; Takido, M.; Kumaki, K.; 

Tamura, T. Triterpene alcohols from the flowers of Compositae and their anti-inflammatory effects. 

Phytochemistry 1996, 43, 1255–1260. 

37. Ripoll, C.; Schmidt, B.M.; Ilic, N.; Poulev, A.; Dey, M.; Kurmukov, A.G.; Raskin, I. Anti-inflammatory 

effects of a sesquiterpene lactone extract from chicory (Cichorium intybus L.) roots. Nat. Prod. Commun. 

2007, 2, 717–722. 

38. Parente, L. Pros and cons of selective inhibition of cyclooxygenase-2 versus dual 

lipoxygenase/cyclooxygenase inhibition: Is two better than One? J. Rheumatol. 2001, 28, 2375–2382. 

39. Fiorucci, S.; Meli, R.; Bucci, M.; Cirino, G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. 

A new avenue in anti-inflammatory therapy? Biochem. Pharmacol. 2001, 62, 1433–1438. 

40. Gaddi, A.; Cicero, A.F.G.; Pedro, E.J. Clinical perspectives of anti-inflammatory therapy in the 

elderly: The lipoxigenase (LOX)/cycloxigenase (COX) inhibition concept. Arch. Gerontol. Geriatr. 

2004, 38, 201–212. 

41. Rao, P.N.P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): 

Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci. 2008, 11, 81–110. 

42. Celotti, F.; Durand, T. The metabolic effects of inhibitors of 5-lipoxygenase and of cyclooxygenase 

1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy. Prostaglandins 

Other Lipid Mediat. 2003, 71, 147–162. 



Metabolites 2015, 5 427 

 

 

43. Holčapek, M.; Jirásko, R.; Lísa, M. Recent developments in liquid chromatography-mass spectrometry 

and related techniques. J. Chromatogr. A 2012, 1259, 3–15. 

44. Zubarev, R.A.; Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 2013, 85, 5288–5296. 

45. Lu, W.; Clasquin, M.F.; Melamud, E.; Amador-Noguez, D.; Caudy, A.A.; Rabinowitz, J.D. 

Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand 

alone orbitrap mass spectrometer. Anal. Chem. 2010, 82, 3212–3221. 

46. AsterDB. Available online: http://www.asterbiochem.org (accessed on 23 June 2015). 

47. Ernst, M.; Silva, D.B.; Silva, R.R.; Vêncio, R.Z.N.; Lopes, N.P. Mass spectrometry in plant 

metabolomics strategies: From analytical platforms to data acquisition and processing. Nat. Prod. Rep. 

2014, 31, 784–806. 

48. Corley, D.G.; Durley, R.C. Strategies for database dereplication of natural products. J. Nat. Prod. 

1994, 57, 1484–1490. 

49. Kind, T.; Fiehn, O. Metabolomic database annotations via query of elemental compositions: Mass 

accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 2006, 7, 1–10. 

50. Sandasi, M.; Kamatou, G.P.P.; Viljoen, A.M. An untargeted metabolomic approach in the chemotaxonomic 

assessment of two Salvia species as a potential source of α-bisabolol. Phytochemistry 2012,  

84, 94–101. 

51. Martucci, M.E.P.; De Vos, R.C.H.; Carollo, C.A.; Gobbo-Neto, L. Metabolomics as a potential 

chemotaxonomical tool: Application in the genus Vernonia schreb. PLoS ONE 2014, 9, e93149. 

52. Safer, S.; Cicek, S.S.; Pieri, V.; Schwaiger, S.; Schneider, P.; Wissemann, V.; Stuppner, H. 

Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and  

HPLC-ESI-MS. Phytochemistry 2011, 72, 1379–1389. 

53. Jung, Y.; Ahn, Y.G.; Kim, H.K.; Moon, B.C.; Lee, A.Y.; Ryu, D.H.; Hwang, G.S. Characterization 

of dandelion species using 1H NMR- and GC-MS-based metabolite profiling. Analyst 2011,  

136, 4222–4231. 

54. Jaiswal, R.; Deshpande, S.; Kuhnert, N. Profiling the chlorogenic acids of Rudbeckia hirta, 

Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leaves by LC-MS(n). 

Phytochem. Anal. 2011, 22, 432–441. 

55. Kirk, H.; Cheng, D.; Choi, Y.H.; Vrieling, K.; Klinkhamer, P.G.L. Transgressive segregation of 

primary and secondary metabolites in F(2) hybrids between Jacobaea aquatica and J. vulgaris. 

Metabolomics 2012, 8, 211–219. 

56. Farag, M.A.; El-ahmady, S.H.; Elian, F.S.; Wessjohann, L.A. Phytochemistry Metabolomics driven 

analysis of artichoke leaf and its commercial products via UHPLC—q-TOF-MS and chemometrics. 

Phytochemistry 2013, 95, 177–187. 

57. Modarai, M.; Yang, M.; Suter, A.; Kortenkamp, A.; Heinrich, M. Metabolomic profiling of liquid 

Echinacea medicinal products with in vitro inhibitory effects on cytochrome P450 3A4 (CYP3A4). 

Planta Med. 2010, 76, 378–385. 

58. Frédérich, M.; Jansen, C.; de Tullio, P.; Tits, M.; Demoulin, V.; Angenot, L. Metabolomic analysis 

of Echinacea spp. by 1H nuclear magnetic resonance spectrometry and multivariate data analysis 

technique. Phytochem. Anal. 2010, 21, 61–65. 



Metabolites 2015, 5 428 

 

 

59. Li, Z.; Zhi, H.; Zhang, F.S.; Sun, H.; Zhang, L.; Jia, J.; Xing, J.; Qin, X.M. Metabolomic profiling 

of the antitussive and expectorant plant Tussilago farfara L. by nuclear magnetic resonance 

spectroscopy and multivariate data analysis. J. Pharm. Biomed. Anal. 2013, 75, 158–164. 

60. Bórquez, J.; Kennelly, E.J.; Simirgiotis, M.J. Activity guided isolation of isoflavones and 

hyphenated HPLC-PDA-ESI-ToF-MS metabolome profiling of Azorella madreporica Clos. from 

northern Chile. Food Res. Int. 2013, 52, 288–297. 

61. Inui, T.; Wang, Y.; Pro, S.M.; Franzblau, S.G.; Pauli, G.F. Fitoterapia Unbiased evaluation of 

bioactive secondary metabolites in complex matrices. Fitoterapia 2012, 83, 1218–1225. 

62. Ching, J.; Soh, W.L.; Tan, C.H.; Lee, J.; Tan, J.C.; Yang, J.; Yap, C.W.; Koh, H.L. Identification 

of active compounds from medicinal plant extracts using gas chromatography-mass spectrometry 

and multivariate data analysis. J. Sep. Sci. 2012, 35, 53–59. 

63. Yuliana, N.D.; Khatib, A.; Verpoorte, R.; Choi, Y.H. Comprehensive extraction method integrated 

with NMR metabolomics: A new bioactivity screening method for plants, adenosine A1 receptor 

binding compounds in Orthosiphon stamineus Benth. Anal. Chem. 2011, 83, 6902–6906. 

64. Funk, V.A.; Susanna, A.; Stuessy, T.F.; Bayer, R.J. Systematics, Evolution, and Biogeography of 

Compositae; International Association for Plant Taxonomy: Vienna, Austria, 2009. 

65. Emerenciano, V.P.; Militão, J.S.L.T.; Campos, C.C.; Romoff, P.; Kaplan, M.A.C.; Zambon, M.; 

Brant, A.J.C. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem. Syst. Ecol. 2001, 

29, 947–957. 

66. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, 

visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 

2010, 11, 1–11. 

67. Macintyre, L.; Zhang, T.; Viegelmann, C.; Martinez, I.J.; Cheng, C.; Dowdells, C.; Abdelmohsen, U.R.; 

Gernert, C.; Hentschel, U.; Edrada-Ebel, R. Metabolomic tools for secondary metabolite discovery 

from marine microbial symbionts. Mar. Drugs 2014, 12, 3416–3448. 

68. Sabir, S.M.; Ahmad, S.D.; Hamid, A.; Khan, M.Q.; Athayde, M.L.; Santos, D.B.; Boligon, A.A.; 

Rocha, J.B.T. Antioxidant and hepatoprotective activity of ethanolic extract of leaves of  

Solidago microglossa containing polyphenolic compounds. Food Chem. 2012, 131, 741–747. 

69. Tamura, E.K.; Jimenez, R.S.; Waismam, K.; Gobbo-Neto, L.; Lopes, N.P.; Malpezzi-Marinho, E.A.L.; 

Marinho, E.A.V; Farsky, S.H.P. Inhibitory effects of Solidago chilensis Meyen hydroalcoholic 

extract on acute inflammation. J. Ethnopharmacol. 2009, 122, 478–485. 

70. Maldini, M.; Sosa, S.; Montoro, P.; Giangaspero, A.; Balick, M.J.; Pizza, C.; Della Loggia, R. 

Screening of the topical anti-inflammatory activity of the bark of Acacia cornigera Willdenow, 

Byrsonima crassifolia Kunth, Sweetia panamensis Yakovlev and the leaves of Sphagneticola trilobata 

Hitchcock. J. Ethnopharmacol. 2009, 122, 430–433. 

71. Chagas-Paula, D.A.; Oliveira, R.B.; Rocha, B.A.; da Costa, F.B. Ethnobotany, chemistry, and 

biological activities of the genus Tithonia (Asteraceae). Chem. Biodivers. 2012, 9, 210–235. 

72. Temponi, V.D.S.; da Silva, J.B.; Alves, M.S.; Ribeiro, A.; de Jesus Ribeiro Gomes de Pinho, J.; 

Yamamoto, C.H.; Pinto, M.A.O.; Del-Vechio-Vieira, G.; de Sousa, O.V. Antinociceptive and Anti-

Inflammatory Effects of Ethanol Extract from Vernonia polyanthes Leaves in Rodents.  

Int. J. Mol. Sci. 2012, 13, 3887–3899. 



Metabolites 2015, 5 429 

 

 

73. Valério, D.A.R.; Cunha, T.M.; Arakawa, N.S.; Lemos, H.P.; Da Costa, F.B.; Parada, C.A.; Ferreira, 

S.H.; Cunha, F.Q.; Verri, W.A. Anti-inflammatory and analgesic effects of the sesquiterpene lactone 

budlein A in mice: Inhibition of cytokine production-dependent mechanism. Eur. J. Pharmacol. 2007, 

562, 155–163. 

74. Zhao, G.J.; Xi, Z.X.; Chen, W.S.; Li, X.; Sun, L.; Sun, L.N. Chemical constituents from Tithonia 

diversifolia and their chemotaxonomic significance. Biochem. Syst. Ecol. 2012, 44, 250–254. 

75. Kim, H.K.; Saifullah; Khan, S.; Wilson, E.G.; Kricun, S.D.P.; Meissner, A.; Goraler, S.; Deelder, A.M.; 

Choi, Y.H.; Verpoorte, R. Metabolic classification of South American Ilex species by NMR-based 

metabolomics. Phytochemistry 2010, 71, 773–784. 

76. Scotti, M.T.; Emerenciano, V.; Ferreira, M.J.P.; Scotti, L.; Stefani, R.; da Silva, M.S.;  

Mendonça Junior, F.J.B. Self-organizing maps of molecular descriptors for sesquiterpene  

lactones and their application to the chemotaxonomy of the Asteraceae family. Molecules 2012, 17, 

4684–4702. 

77. Bailey, N.J.C.; Wang, Y.; Sampson, J.; Davis, W.; Whitcombe, I.; Hylands, P.J.; Croft, S.L.; 

Holmes, E. Prediction of anti-plasmodial activity of Artemisia annua extracts: Application of 1H 

NMR spectroscopy and chemometrics. J. Pharm. Biomed. Anal. 2004, 35, 117–126. 

78. Nguyen, M.T.; Awale, S.; Tezuka, Y.; Ueda, J.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors 

from the flowers of Chrysanthemum sinense. Planta Med. 2006, 72, 46–51. 

79. Jachak, S. Cyclooxygenase Inhibitory Natural Products: Current Status. Curr. Med. Chem. 2006, 

13, 659–678. 

80. Babish, J.; Howell, T.; Pacioretty, L. Combinations of sesquiterpene lactones and ditepene 

triepoxide lactones for synergistic inhibition of cyclooxygenase-2. US20020077299 2002. 

81. De Alvarenga, E.S.; Silva, S.A.; Barosa, L.C.A.; Demuner, A.J.; Parreira, A.G.; Ribeiro, R.I.M.A.; 

Marcussi, S.; Ferreira, J.M.S.; Resende, R.R.; Granjeiro, P.A.; et al. Synthesis and evaluation of 

sesquiterpene lactone inhibitors of phospholipase A2 from Bothrops jararacussu. Toxicon 2011, 57, 

100–108. 

82. Rüngeler, P.; Castro, V.; Mora, G.; Gören, N.; Vichnewski, W.; Pahl, H.L.; Merfort, I.; Schmidt, T.J. 

Inhibition of transcription factor NF-kappaB by sesquiterpene lactones: A proposed molecular 

mechanism of action. Bioorg. Med. Chem. 1999, 7, 2343–2352. 

83. Rüngeler, P.; Lyss, G.; Castro, V.; Mora, G.; Pahl, H.L.; Merfort, I. Study of three sesquiterpene 

lactones from Tithonia diversifolia on their anti-inflammatory activity using the transcription factor 

NF-kappa B and enzymes of the arachidonic acid pathway as targets. Planta Med. 1998,  

64, 588–593. 

84. Siedle, B.; García-Piñeres, A.J.; Murillo, R.; Schulte-Mönting, J.; Castro, V.; Rüngeler, P.; Klaas, C.A.; 

da Costa, F.B.; Kisiel, W.; Merfort, I. Quantitative structure-activity relationship of sesquiterpene 

lactones as inhibitors of the transcription factor NF-kappaB. J. Med. Chem. 2004, 47, 6042–6054. 

85. Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open source software 

for rapid proteomics tools development. Bioinformatics 2008, 24, 2534–2536. 

86. Abdelmohsen, U.R.; Cheng, C.; Viegelmann, C.; Zhang, T.; Grkovic, T.; Ahmed, S.; Quinn, R.J.; 

Hentschel, U.; Edrada-Ebel, R. Dereplication strategies for targeted isolation of new antitrypanosomal 

actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar. Drugs 

2014, 12, 1220–1244. 



Metabolites 2015, 5 430 

 

 

87. Viegelmann, C.; Margassery, L.M.; Kennedy, J.; Zhang, T.; O’Brien, C.; O’Gara, F.; Morrissey, J.P.; 

Dobson, A.D.W.; Edrada-Ebel, R. Metabolomic profiling and genomic study of a marine  

sponge-associated Streptomyces sp. Mar. Drugs 2014, 12, 3323–3351. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


