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Lack of complete genomic information concerning Vicia sepium (Fabaceae: Fabeae)
precludes investigations of evolution and populational diversity of this perennial high-
protein forage plant suitable for cultivation in extreme conditions. Here, we present the
complete and annotated chloroplast genome of this important wild resource plant. V.
sepium chloroplast genome includes 76 protein-coding genes, 29 tRNA genes, 4 rRNA
genes, and 1 pseudogene. Its 124,095 bp sequence has a loss of one inverted repeat (IR).
The GC content of the whole genome, the protein-coding, intron, tRNA, rRNA, and
intergenic spacer regions was 35.0%, 36.7%, 34.6%, 52.3%, 54.2%, and 29.2%,
respectively. Comparative analyses with plastids from related genera belonging to
Fabeae demonstrated that the greatest variation in the V. sepium genome length
occurred in protein-coding regions. In these regions, some genes and introns were lost
or gained; for example, ycf4, clpP intron, and rpl16 intron deletions and rpl20 andORF292
insertions were observed. Twelve highly divergent regions, 66 simple sequence repeats
(SSRs) and 27 repeat sequences were also found in these regions. Detailed evolutionary
rate analysis of protein-coding genes showed that Vicia species exhibit additional
interesting characteristics including positive selection of ccsA, clpP, rpl32, rpl33, rpoC1,
rps15, rps2, rps4, and rps7, and the evolutionary rates of atpA, accD, and rps2 in Vicia are
significantly accelerated. These genes are important candidate genes for understanding
the evolutionary strategies of Vicia and other genera in Fabeae. The phylogenetic analysis
showed that Vicia and Lens are included in the same clade and that Vicia is paraphyletic.
These results provide evidence regarding the evolutionary history of the
chloroplast genome.

Keywords: chloroplast genome, comparative analysis, phylogenetic analysis, positive selection, Vicia sepium
February 2020 | Volume 11 | Article 731

https://www.frontiersin.org/article/10.3389/fgene.2020.00073/full
https://www.frontiersin.org/article/10.3389/fgene.2020.00073/full
https://www.frontiersin.org/article/10.3389/fgene.2020.00073/full
https://www.frontiersin.org/article/10.3389/fgene.2020.00073/full
https://www.frontiersin.org/article/10.3389/fgene.2020.00073/full
https://loop.frontiersin.org/people/609802
https://loop.frontiersin.org/people/454781
https://loop.frontiersin.org/people/348202
https://loop.frontiersin.org/people/773804
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:rssq198677@163.com
https://doi.org/10.3389/fgene.2020.00073
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00073
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00073&domain=pdf&date_stamp=2020-02-20


Li et al. Vicia sepium Genome Comparative Analysis
INTRODUCTION

Complete chloroplast sequences are indispensable for analyzing
genome evolution and phylogenetics (Sabir et al., 2014; Moner
et al., 2018). These sequences offer two advantages over genomic
ones, namely, a high degree of conservation and a relatively
compact gene alignment, resulting from symbiotic horizontal
transfer (Timmis et al., 2004). In angiosperms, the chloroplast is
a uniparentally inherited organelle. It originated from a
cyanobacterium-like organism through an endosymbiosis
event. Compared to the nuclear genome, chloroplast genomes,
with a quadripartite circular structure, exhibit highly conserved
sizes, structures and gene contents across photosynthetic plants
(Wicke et al., 2011). Nuclear genomes are highly complex
because of the high frequency of the loss and gain of genetic
material at any time (Wolfe et al., 1987), making the
identification of orthologous genes difficult. Evolutionary and
phylogenetic analyses based on complete chloroplast sequences
can provide more valuable information of a higher quality than
that obtained by analysis of one or more gene loci (Martin et al.,
2005). Complete chloroplast sequence datasets contain all site
patterns (or all genes) for the reconstruction of evolutionary
history. The comparison of complete genomes can reduce the
sampling error inherent in analyses of only one or a few genes.
That is not to say that we oppose the use of one or a few genes in
evolutionary studies, but we instead suggest the investigation of
conflicts between complete chloroplast genomes and analyses of
one or a few genes that may indicate crucial evolutionary events.
Another advantage of the chloroplast genome is that it
contributes to structural diversity at low taxonomic levels and
among basal lineages. Although genome organization is
relatively well conserved in angiosperms, several types of
structural diversity have been found. This structural diversity,
including the loss of one copy of IRs, gene and intron gains or
losses, large inversions, expansions, contractions and localized
hypermutable phenomena, provides a powerful tool for
evaluating genomic evolutionary history. For example, the loss
of one IR is observed in the inverted-repeat-lacking clade (IRLC)
(Sabir et al., 2014); the loss of accD, psaI, ycf4, rpl33, clpP, and
rps16 resulting in gene function loss is observed in various
legume lineages; a 36-kb inversion is observed in the Genistoid
clade; a 39-kb inversion is observed in Robinia (Keller et al.,
2017); and hypermutation of ycf4 is observed in Lathyrus (Magee
et al., 2010). With the development of high-throughput
sequencing, more than 800 complete chloroplast genomes have
been made available in the National Center for Biotechnology
Information (NCBI) database (Asaf et al., 2017a).

The Fabaceae family, especially the Papilionoideae subfamily,
is considered a model system for understanding the mechanisms
of chloroplast genome evolution due to the presence of major
genome rearrangements in this group such as loss of one IR, gene
and intron gains and losses, large inversions, expansions,
contractions and localized hypermutable regions (Sabir et al.,
2014; Keller et al., 2017). However, the mechanisms of these
chloroplast genome rearrangements are not known (Sveinsson
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and Cronk, 2016). Some scholars believe that these genome
rearrangements within the Fabaceae chloroplast genomes may
be derived from the loss of one copy of IRs; however, Medicago
and Cicer species, which exhibit the typical conserved
quadripartite structure found in angiosperms (Jansen et al.,
2005) , a l so present extens ive chloroplas t genome
rearrangements (Jansen et al., 2008; Sveinsson and Cronk,
2016). Therefore, further in-depth research on the mechanisms
of chloroplast genome evolution is needed.

Previous research on Fabaceae chloroplast genomes
demonstrated that the deletion or addition of genes and
introns, inversions, repeats, and nucleotide variability can
result in significant changes in genome length, GC content,
and gene composition and orientation (Lei et al., 2016; Yin
et al., 2017; Wang et al., 2018). In these genomes, coding regions
are better conserved than intergenic spacer (IGS) regions (Sabir
et al., 2014; Asaf et al., 2017b; Yin et al., 2018). However, it is
unclear whether a consistent pattern in the genomic variation
can be observed in species of the tribe Fabeae, which belong to
Fabaceae. A possible explanation for these results may be the lack
of complete genomic information for Fabeae. To date, 21
complete Fabeae chloroplast genomes have been sequenced
(including 18 in the last four years), mainly from the genus
Lathyrus (13) and a few from the genera Lens (1), Pisum (4) and
Vicia (3). Another possible explanation is the structural diversity
among Papilionoideae (Jansen et al., 2008; Sabir et al., 2014;
Sveinsson and Cronk, 2016). For example, even within the same
genus, the Trifolium subterraneum (Fabaceae) chloroplast
genome exhibits 14-18 inversions, while there are only 3
inversions in Trifolium grandiflorum and Trifolium aureum
(Sabir et al., 2014). Therefore, the study of the genomic
variation and phylogeny of Fabeae species can provide a basis
for understanding chloroplast genome evolution.

Vicia sepium (Bush vetch), belonging to the tribe Fabeae, is an
important wild resource plant with a wide distribution area
(Maxted, 1995), various flowering periods from May to
November, abundant proteins, and suitability for cultivation in
extreme cold and dry conditions (Maršalkienė, 2016) and can be
used as a good potential perennial forage. Additionally,
compared with other legumes, V. sepium provides herbage for
a long period because of its perennial habit (Maršalkienė, 2016).
This plant also produces extrafloral nectaries to attract ants,
which act as plant defenders by preying on arthropod herbivores
or interrupting their oviposition or feeding (Lenoir and Pihlgren,
2006). However, previous studies on V. sepium have mainly
focused on the morphological characteristics (Maršalkienė,
2016) and classification (Schaefer et al., 2012; Jaaska, 2015) of
this plant and the relationship between plants and insects
(Kruess and Tscharntke, 2000; Lenoir and Pihlgren, 2006).
Therefore, little is known regarding the nutrient content,
genetic resources, and forage value of this species. As a result,
no plant materials of V. sepium have been released for
commercial production. However, another Vicia species, Vicia
sativa, has been widely used as forage and for hay and silage
production. A key difficulty in the use of V. sativa is the presence
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of a neurotoxic compound in its seeds (Huang et al., 2017).
Therefore, the expansion of forage resources based on Vicia
species is necessary.

Another difficulty in the utilization of V. sepium is that the
taxonomy of some taxa in Fabeae remains controversial
(Schaefer et al., 2012; Jaaska, 2015; Iberite et al., 2017) because
of the high morphological variability among species. Notably,
some variation in morphological characteristics is genetically
fixed. For example, Iberite’s cultivation tests (Iberite et al., 2017)
conducted in V. sativa, Vicia barbazitae, Vicia grandiflora and V.
sepium showed that the characteristics of the leaf margins are
maintained through successive generations. Recent molecular
phylogenetic studies have focused on multitribe legumes or tribe
level analyses of Fabeae (Schaefer et al., 2012). These studies have
suggested that the taxonomy of some genera in Fabeae is not
monophyletic. However, these phylogenetic studies did not use
the complete chloroplast genome, instead using plastid DNA
sequence data, such as the matK, trnL, rbcL, and nuclear
ribosomal internal transcribed spacer (ITS) sequences.
Therefore, it is necessary to acquire comprehensive knowledge
regarding the organization and evolution of V. sepium.

Here, we present a new complete chloroplast genome of V.
sepium, from the genus Vicia. We compare it with chloroplast
genomes from related genera (Lens, Pisum, Lathyrus) belonging
to tribe Fabeae. The aim of this work is to reveal the genome
variation and phylogeny of Fabeae and the genus Vicia and to
provide evidence regarding the history of chloroplast
genome evolution.
MATERIALS AND METHODS

Plant Material
The sample was collected from the Dongting Lake region (28°48′
46.06″N, 112°21′10.19″E) and stored at the Hunan Research
Center of Engineering Technology for Utilization of
Environmental and Resources Plant, China, under accession
number 20170707JJ. Plant sampling was performed in areas
that were not privately owned or protected in any way, and no
specific permits were required for this study. We collected
mature V. sepium leaves and placed them in a liquid nitrogen
container. Leaf samples were stored at -80°C until sequencing.
Extraction of total chloroplast DNA was carried out with the
Plant Chloroplast Purification Kit and Column Plant DNA
Extraction Kit (Beijing Baiaolaibo Technology, Co., Ltd.,
China). The chloroplast DNA of V. sepium was fragmented
using a Covaris M220 (Covaris, USA) instrument. Whole-
genome sequencing and paired-end (PE) library construction
were performed according to the method described by Zhang
et al. (2017). Raw data were obtained through next-generation
sequencing with PE 150-bp reads. Then, N-containing sequences
and adapter sequences were removed. Sequences with a Q value
less than 20 or an average four-base mass of less than 20 were
also removed. Finally, if the length of the reads was less than 50
nt, the reads were removed. All the above filtering steps were
performed using Trimmomatic v 0.32 (Bolger et al., 2014), and
Frontiers in Genetics | www.frontiersin.org 3
clean data for subsequent analysis were obtained. Then, all high-
quality paired reads were assembled into contigs by using
SOAPdenovo2 (Luo et al., 2012) and scaffolded by using
SSPACE (Boetzer et al., 2011) to obtain the whole-genome
sequence. In this process, different K-mers were selected first
for assembly, and the best K-mer, k=25, was chosen to obtain the
assemblies. The above K parameter was determined on the basis
of a K-mer curve and experience. Finally, one contig of 124,095
bp was obtained.

Genome Annotation and Sequence
Architecture
Our previous study used the programs CpGAVAS (Liu et al.,
2012) and DOGMA (Wyman et al., 2004) to annotate the
complete chloroplast genome of V. sepium (Li et al., 2018). In
this study, to study genomic evolution between V. sepium and its
related species in Fabeae, the same V. sepium genome was
annotated in Plann (Huang and Cronk, 2015) against the V.
sativa genome (NC027155). Gene mapping and relative
synonymous codon usage (RSCU) were performed in
OGDRAW v1.2 (Lohse et al., 2013) and DAMBE6 (Xia, 2017)
according to Dong’s method (Dong et al., 2019).

SSRs and Repeated Sequences Analysis
We detected SSRs by referring to the method of Lei et al. (2016)
using the MISA Perl Script (Thiel et al., 2003) with parameter
settings of 8 for mono-, 4 for di- and tri-, and 3 for tetra-, penta-
and hexa-nucleotide SSRs. Forward, palindromic, reverse, and
complement sequences were identified as described by Cauz-
Santos et al. (2017) using REPuter (Kurtz et al., 2001) with 90%
or greater sequence identity and a length of 30 bp or longer.
Tandem repeats were identified using Tandem Repeats Finder
version 4.09 (Benson, 1999) with default parameters.

Comparative Analysis
Blast ring image generator (BRIG) (Alikhan et al., 2011) and
mVISTA (Frazer et al., 2004) software were used to compare the
complete chloroplast genome variation in all available Fabeae
chloroplast genomes using V. sepium annotation as a reference.
BRIG focus on protein coding segment variation and mVISTA
align whole chloroplast genome without discrimination. All the
species were included the following twenty-one Fabeae species
and one Cicereae species (Cicer arietinum), listed with the
corresponding GenBank accession numbers: V. sepium, V.
sativa (NC027155), V. faba (KF042344), Pisum abyssinicum
(NC037830), Pisum sativum (NC014057), Pisum sativum
subsp. Elatius (NC039371), Pisum fulvum (NC036828), Lens
culinaris (NC027152), Lathyrus pubescens (NC027079),
Lathyrus venosus (NC027080), Lathyrus palustris (NC027078),
Lathyrus japonicus (NC027075), Lathyrus ochroleucus
(NC027077), Lathyrus davidii (NC027073), Lathyrus littoralis
(NC027076), Lathyrus inconspicuus (NC027149), Lathyrus
graminifolius (NC027074), Lathyrus tingitanus (NC027151),
Lathyrus clymenum (NC027148), Lathyrus sativus (NC014063),
Lathyrus odoratus (NC027150), and C. arietinum (NC011163).
Genome rearrangement relative to V. sepium was performed in
Mauve (Darling et al., 2004).
February 2020 | Volume 11 | Article 73

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Li et al. Vicia sepium Genome Comparative Analysis
Phylogenetic Analysis
To determine the phylogenetic position of V. sepium within
Fabeae, four datasets were used to construct the following
phylogenetic trees for Fabeae: (I) the complete chloroplast
genomes of 21 Fabeae species and C. arietinum (that is, the
same 22 species in the comparative analysis); (II) the conserved
chloroplast protein-coding sequences of 21 Fabeae species and C.
arietinum (that is, the same 22 species in the comparative
analysis); (III) the rbcL gene sequences of 50 Fabeae species,
Trifolium pretense and T. repens; and (IV) the matK gene
sequences of 62 Fabeae species, T. pretense and T. repens. The
names of the species included in the four phylogenetic analyses
can be found in Table S1.

Specifically, the conserved chloroplast protein-coding
sequence of each species comprised 70 concatenated
homologous genes shared among twenty-two related species.
These genes were atpA, atpB, atpE, atpF, atpH, atpI, ccsA, cemA,
clpP, matK, ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH,
ndhI, ndhJ, ndhK, petA, petB, petD, petG, petL, petN, psaA, psaB,
psaC, psaJ, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbK,
psbL, psbM, psbN, psbT, psbZ, rbcL, rpl14, rpl16, rpl2, rpl20, rpl23,
rpl32, rpl33, rpl36, rpoA, rpoB, rpoC1, rpoC2, rps11, rps12, rps14,
rps15, rps19, rps2, rps3, rps4, rps7, rps8, ycf1, ycf2, and ycf3.

All datasets were aligned using MAFFT v7.380 (Katoh and
Standley, 2013) under the FFT-NS-2 default setting. The
alignments were used for phylogenetic analysis. All alignments
were used to construct phylogenetic trees via the neighbor
joining (NJ) method in MEGA7.0 (Kumar et al., 2016) under
the default settings. Then, we obtained four NJ trees.

In addition, we used another method, the maximum
likelihood (ML) method, to construct a phylogenetic tree based
on conserved chloroplast protein-coding sequences. The aim of
this work was to test the effects of different methods on the
phylogenetic relationships of Fabeae species. First, we used
MAFFT v7.380 to align twenty-two conserved chloroplast
protein-coding sequences under the FFT-NS-2 default settings.
Second, ModelTest was employed to find the best model in
MEGA7.0. Finally, the tree was constructed using the ML
method with the GTR+G+I model and 1,000 bootstrap
replicates. C. arietinum was selected as the outgroup.

Evolutionary Rate Analysis
To determine the sequence divergence of the complete
chloroplast genomes, the average pairwise sequence distances
of twenty-one Fabeae species and one Cicereae species (that is,
the same 22 species in the comparative analysis) were calculated.
After alignment with MAFFT v7.380, the average pairwise
sequence distances (K2P rate) of these species were presented
according to Asaf’s method using MEGA7 (Kimura, 1980; Asaf
et al., 2017b).

Additionally, the synonymous (Ks) and nonsynonymous (Ka)
nucleotide substitution rates as well as the Ka/Ks ratio were used
to calculate the sequence divergence of other homologous
protein-coding regions. All twenty-one available chloroplast
Frontiers in Genetics | www.frontiersin.org 4
genomes belonging to the genera Vicia, Pisum, Lens, and
Lathyrus were selected for this analysis. These species were
divided into two groups: (I) within Vicia: V. sepium, V. sativa,
V. faba; (II) outside of Vicia (or other genera): V. sepium, P.
abyssinicum, P. sativum, P. sativum subsp. Elatius, P. fulvum, L.
pubescens, L. venosus, L. palustris, L. japonicus, L. ochroleucus, L.
davidii, L. littoralis, L. inconspicuus, L. graminifolius, L.
tingitanus, L. clymenum, L. sativus, and L. odoratus. A total of
71 homologous genes (Table S2) from these species were selected
and examined separately. After aligning each gene using the
ClustalW (Codons) program in MEGA7, the Ks, Ka, and Ka/Ks
values between V. sepium and other species were determined
according to Dong’s method (Dong et al., 2019) with the
program from the PAML package (Yang and Nielsen, 1998).
The two independent-samples t-test was used to examine the
significance of the sequence divergence between Vicia and other
genera. The p-values were determined with Levene's test. If the
Levene's test result was less than 0.05, we used the unequal
variance as the p-value; if not, we used the equal variance as the
p-value.

Once Vicia showed a significantly higher Ka/Ks ratio than the
other genera, codon-based likelihood analysis based on the
branch model test in CodeML from the PAML package was
carried out to identify the lineages in Fabeae that exhibited
significantly high evolutionary rates. This test employed the
user-defined topology of Fabeae lineages with five other
lineages: A0 (Cicer), A1 (Pisum and Lathyrus), A2 (Lens and
Vicia), A3 (Lens), and A4 (Vicia). This topology was constructed
based on the concatenated DNA sequences of matK and rbcL
(Figure S1) using the ML method with the GTR+G50 model in
MEGA7.0. The method was the same as that used for the
phylogenetic analysis described previously. A one-ratio model
(model = 0) and a two-ratio model (model =2) were used to
calculate the Ka/Ks ratio for each branch. A one-ratio model, or
null model (model = 0), is one in which all clades (or all lineages)
exhibit the same Ka/Ks ratio. A two-ratio model, or alternative
model (model = 2), is one in which one or more clades present
different Ka/Ks ratios. The transition/transversion and Ka/Ks
ratios were set as automatically estimated. Codon frequencies
were set as the F3 × 4 method. The hypotheses of the two-ratio
model are described in Table S3. The likelihood ratio test (LRT)
was used to find the best model (P < 0.05) through comparison of
two different models. From the best model, we could infer
whether a homologous gene showed accelerated evolution in
Vicia. In addition, all genes exhibiting accelerated evolution were
compared with two genes showing nonaccelerated evolution
(matK and rbcL), in two ways. First, we compared their
synonymous and nonsynonymous nucleotide substitution rates
in Ks trees and Ka trees. The branch lengths representing the
substitutions per synonymous site or nonsynonymous site were
determined from the best model. Second, we compared their
amino acid sequence differences. Amino acid sequence
alignment was performed in Jalview v2.10.5 (Waterhouse
et al., 2009).
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RESULTS

Chloroplast Genome Characteristics and
Structure of V. sepium
The original image data obtained by next-generation sequencing
technology was converted into the original sequenced reads by
CASAVA base calling analysis to obtain raw reads (10,808,365)
or raw data (3.24 gigabytes). A total of 7,696,368 clean reads
(2.31 gigabytes of clean data) with an average length of 150 bp
were obtained after the adapter sequences and low-quality reads
were removed. A single long contig of 124,095 bp was assembled
using clean data via de novo assembly, forming a loop
representing the whole chloroplast genome sequence of V.
sepium. The V. sepium chloroplast genome, under GenBank
accession number NC039595, showed the loss of one IR and
contained 76 protein-coding genes, 29 tRNA genes, four rRNA
genes and one pseudogene (rpl23 Y). In particular, one
unannotated protein-coding gene, ORF292, was identified
(Table 1). The gene map of these 110 genes was presented
Frontiers in Genetics | www.frontiersin.org 5
(Figure 1). Among these protein-coding genes, 9 genes (ndhA,
ndhB, rpl2, rpl16, petD, petB, atpF, rpoC1, clpP) contained a
single intron, while one gene, ycf3, contained two introns
(Table 2). Additionally, four tRNA genes containing one
intron were also identified as follows: trnVUAC, trnAUGC,
trnIGAU, and trnLUAA. As observed in most legumes, the infA,
rpl22, and rps16 genes were lost (Lei et al., 2016). The overall GC
content of the V. sepium chloroplast genome was 35.0%, whereas
that of the protein-coding, intron, tRNA, rRNA and IGS regions
was 36.7%, 34.6%, 52.3%, 54.2%, and 29.2%, respectively (Table
S4). The RSCU result revealed that the V. sepium protein-coding
sequences showed codon usage bias, with all preferred
synonymous codons ending with A/T nucleotides and a high
AT content at the 3rd codon positions (72.2%) (Figure S2,
Table S4).

SSRs and Repeats in V. sepium
We analyzed the presence of SSRs and repeats in V. sepium. SSRs,
which are regarded as useful gene markers, exhibited a high
mutation rate. In this study, a total of 201 SSRs were found in the
chloroplast genome of V. sepium (Figure 2). A majority of the
SSRs were composed of mono-nucleotide and di-nucleotide
repeat motifs. The types of SSRs distributed within the
chloroplast genome of V. sepium were characterized, revealing
that the SSR motifs of mono-nucleotide repeats mainly consisted
of A/T (98.5%) and that those of di-nucleotide repeats mainly
consisted of AT/TA (86.8%). A total of 116 and 66 V. sepium
SSRs were distributed in the IGS and CDS regions, respectively
(Figure 2).

Repeat sequences are essential for genome rearrangements,
phylogenetic construction (Cavalier-Smith, 2002) and indel, and
substitution variation (Yi et al., 2013). Sixty-two repeats,
including 46 forward repeats, 4 palindromic repeats, and 12
tandem repeats, were found in the chloroplast genome of V.
sepium. The lengths of the palindromic repeats were 45, 50, 54,
and 155 bp, and the lengths of the forward repeats and tandem
repeats ranged from 45 to 222 bp and 32 to 229 bp, respectively
(Table S5). In addition, the maximum number of repeats
(n = 49) were located in IGS regions, followed by those in
CDSs (n = 27) (Table S5). We also found that most of these
repeats were located in the psaB-rps14 (n = 20), ycf1-trnN-GUU
(n = 10), accD (n = 6) and rps14 (n = 5) regions.

Comparative Analyses of the Chloroplast
Genomes of Fabeae Species
Twenty complete chloroplast genomes from within Fabeae were
selected for comparison with V. sepium. One Cicereae species, C.
arietinum, was set as the outgroup (Table 3). The changes in
chloroplast genome length in these species ranged from 120, 289
bp (L. odoratus) to 126,421 bp (L. pubescens), and the greatest
variation in length relative to V. sepium was 3.0% in the protein-
coding region of L. culinaris, followed by the IGS region (2.8%)
of L. culinaris. An average difference in length of only 0.1% was
found in the tRNA and rRNA gene regions. Additionally, the GC
content of the twenty-two complete chloroplast genomes ranged
from 33.9% to 35.2%, exhibiting little change. After comparing
TABLE 1 | Genes predicted in the chloroplast genome of V. sepium.

Category Group of genes Names of genes

Self-replication Large subunit of
ribosomal proteins

rpl2, rpl14, rpl16, rpl20, rpl23 a, rpl32,
rpl33, rpl36

Small subunit of
ribosomal proteins

rps2, rps3, rps4, rps7, rps8, rps11,
rps12 b, rps14, rps15, rps18, rps19

DNA dependent RNA
polymerase

rpoA, rpoB, rpoC1, rpoC2

rRNA genes rrn16S, rrn4.5S, rrn23S, rrn5S
tRNA genes trnA-TGC, trnC-GCA, trnD-GTC, trnE-

TTC, trnF-GAA, trnG-TCC, trnH-GTG,
trnI-CAT, trnI-GAT, trnK-TTT, trnL-
CAA, trnL-TAA, trnL-TAG, trnM-CAT c,
trnMf-CAT, trnN-GTT, trnP-GGG,
trnP-TGG, trnQ-TTG, trnR-ACG, trnR-
TCT, trnS-GCT, trnS-GGA, trnS-TGA,
trnT-GGT, trnV-TAC, trnW-CCA, trnY-
GTA

Photosynthesis Photosystem I psaA, psaB, psaC, psaI, psaJ
Photosystem II psbA, psbB, psbC, psbD, psbE,

psbF, psbH, psbI, psbJ, psbK, psbL,
psbM, psbN, psbT, psbZ

NADH dehydrogenase ndhA, ndhB, ndhC, ndhD, ndhE,
ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Cytochrome b6/f
complex

petA, petB, petD, petG, petL, petN

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI
Rubisco rbcL

Other genes Maturase matK
Protease clpP
Envelope membrane
protein

cemA

Subunit acetyl-CoA-
carboxylase

accD

C-type cytochrome
synthesis gene

ccsA

Genes of
unknow
function

Conserved open
reading frames

ycf1, ycf2, ycf3, ycf4
One open reading frame, ORF292, could not be annotated. apseudogene; btrans-splicing
gene; cduplicated gene.
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V. sepium genes with those of twenty-one other Fabeae species,
we found an inserted gene that is a unique unannotated protein-
coding gene, ORF292, between rps12 and rps4 in V. sepium.
Moreover, the rps12 to rps4 region in V. sativa also contained an
inserted duplicated rpl20 gene (not mentioned in the table).
From genome rearrangement, we can infer that inversion events
may result in gene insertion (Figure S3). We also found a
pseudogene, rpl23, in V. sepium, V. sativa, P. abyssinicum, P.
sativum, P. sativum subsp. Elatius and L. sativus. By analyzing
gene and intron losses, all twenty-two species lost the infA, rpl22,
and rps16 genes, similar to most of the IR-lacking species. Ycf4
genes were found in only V. sepium, V. faba, P. sativum, and L.
sativus. Moreover, one intron of the clpP and rpl16 genes was lost
in L. graminifolius and V. faba, respectively (Table 3).

The sequence identity of the chloroplast genomes of V.
sepium and twenty-one other Fabaceae species was visualized
(Figures 3 and S4), and the results revealed that coding regions
are more highly conserved than noncoding regions. Usually,
FIGURE 1 | Gene map of the complete chloroplast genome of V. sepium. Genes inside the circle are transcribed clockwise, and those outside are transcribed
counterclockwise. The different colors of the blocks represent different functional groups. The darker gray color of the inner circle corresponds to the GC content,
and the lighter gray color corresponds to the AT content.
TABLE 2 | Lengths of introns and exons of the split genes in the V. sepium
complete chloroplast genome.

Gene
name

Gene Location Length (bp)

Strand Start End Exon
I

Intro
I

Exon
II

Intro
II

Exon
III

ndhA - 17,922 20,213 552 1,200 540
ndhB + 39,164 41,349 720 674 792
rpl2 + 49,205 50,732 393 700 435
rpl16 + 52,173 53,655 9 1,072 402
petD - 57,360 58,556 9 714 474
petB - 58,753 60,207 6 804 645
atpF - 74,347 75,592 168 670 411
rpoC1 - 83,263 86,132 435 791 1,644
clpP + 92,455 93,604 363 559 228
ycf3 + 97,292 99,294 126 742 228 781 126
trnV-UAC + 9,320 9,976 39 581 37
trnA-UGC - 32,593 33,473 38 808 35
trnI-GAU - 33,539 34,292 42 677 35
trnL-UAA + 119,177 119,535 37 272 50
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regions with 50% or less sequence identity can be regarded as
highly divergent regions. In coding regions, ycf1, ycf2, rpl23, rps3,
rps18, accD, rpoC1, clpP, ORF292, ycf4, psaI, and rpl32 contained
relatively low identity regions. In addition, these highly divergent
noncoding regions include rps15-ycf1, ycf1-trnN-GUU, rrn16-
rps12, ycf2-trnI-CAU, trnI-CAU -rpl23, rpl16 intron, rpl14-rps8,
rps8-rpl36, psbB-petL, accD-trnQ-UUG, trnQ-UUG-psbK, psbE-
clpP, clpP-rps12, psaB-rps14, psbD-trnT-GUU, ycf4-psaI, psaI-
trnL-UAA, and rpl32-ndhF (Figure 3 and S4).

Evolutionary Rate of Fabeae Species
The pairwise distances (K2P rates) of complete chloroplast
genome sequences from twenty-one Fabeae species and one
Cicereae species were calculated (Table S6). The results
showed that the nucleotide variability rate ranged from 0.001
to 0.248 (L. sativus vs C. arietinum). Compared with V. sepium,
the lowest K2P rate was 0.027 (V. sativa) while the highest K2P
rate was found in C. arietinum (0.246) (Table S6). The mean
K2P rate between Pisum and V. sepium was 0.217. The mean
K2P rate between Lathyrus and V. sepium was 0.193. Specifically,
the K2P rate between V. faba and V. sepium was 0.207, which
was higher than the rate between V. sepium and some Lathyrus
species. We hypothesized that V. sepium and V. sativa were
located in the same clade and showed different evolutionary
directions compared with V. faba.

Ka and Ks nucleotide substitutions within Vicia and outside
of Vicia were calculated with V. sepium as the reference, as well
as the Ka/Ks ratio (Table S2, Figure 4). The Ka/Ks ratio is an
important parameter for determination of the selective
constraint acting on each gene (Keller et al., 2017). Ka/Ks > 1
indicates that the gene was under positive selection, whereas Ka/
Frontiers in Genetics | www.frontiersin.org 7
Ks = 1 or <1 indicates genes under neutral selection or purifying
selection (Kimura, 1980). The mean Ks between V. sepium and
twenty Fabeae species ranged from 0.0058 (petN) to 0.2375
(ycf1), and the mean Ka ranged from 0 (petG, psbF) to 0.1846
(clpP) (Table S2). Within the genus Vicia, nine genes (ccsA, clpP,
rpl32, rpl33, rpoC1, rps15, rps2, rps4 and rps7) with a Ka/Ks ratio
>1 (Figure 4) evolved under beneficial mutations, and 60 genes
evolved under purifying selection, including sixteen genes that
evolved almost neutrally, showing a ratio range of 0.5 to 1.
Twelve conserved genes (atpH, petG, petN, psaC, psbA, psbD,
psbF, psbH, psbK, psbL, psbM and rpl36 with Ka/Ks = 0)
presented a very strong purifying selective pressure.
Comparison of sequence divergence between Vicia and other
genera showed that the Ka/Ks ratios of the eight genes (accD,
atpA, matK, rpl32, rpl33, rps2, rps4, ycf1) were significantly
higher (P < 0.05) in Vicia, and among these genes, the ratios
of accD, atpA, rpl32, rps2 and rps4 were extremely significantly
higher (P < 0.01).

Codon-based likelihood analysis (Table S3; Figure S1) was
performed to compare the Ka/Ks ratios of the accD, atpA, rpl32,
rps2, and rps4 genes across different Fabeae lineages. C.
arietinum was set as the reference. The null model (H0)
hypothesized that the A0 (Cicer), A1 (Pisum and Lathyrus), A2
(Lens and Vicia), A3 (Lens), and A4 (Vicia) clades exhibit the
same Ka/Ks ratio. The alternative model hypothesized that one
or more clades present different Ka/Ks ratios. By comparing the
p-values of the two different models, the results demonstrated
that the best models for accD, atpA, rpl32, rps2, and rps4 are H2,
H3, H0, H2, and H0, respectively (Table S3). A higher Ka/Ks
ratio in a specific clade is considered to indicate accelerated
evolution of the clade. The Ka/Ks ratios of accD, atpA and rps2 in
FIGURE 2 | The types and distribution of SSRs along the chloroplast genome of V. sepium. Different locations, including CDS, IGS, CDS and IGS, and intron
regions, are represented as colored boxes.
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the Vicia clade were higher than those in the Cicer clade, and the
Ka/Ks ratios of rpl32 and rps4 were the same in the two clades.
The results revealed that evolution rates increased in atpA, rps2
and accD of the Vicia lineage but exhibited no change in rpl32 or
rps4 (Table S3). The Ka/Ks ratios of rps2 in the Vicia clade were
higher than those in the Pisum and Lathyrus clade, but the Vicia
clade presented lower Ka/Ks ratios in the accD and atpA genes.
The results revealed that rps2 exhibited a higher evolutionary rate
in Vicia, while atpA and accD in Pisum and Lathyrus evolved
much faster. We also compared the synonymous and
nonsynonymous nucleotide substitution rates of genes that
evolved rapidly (accD, atpA, and rps2) in different Fabeae
lineages to the rates observed in genes that did not evolve
rapidly (rbcL and matK) based on codon-based ML
phylogenetic analysis. As shown in Figure 5, in the Ka and Ks
trees, the substitutions per nonsynonymous site of rps2 evolved
much faster in Vicia than in other Fabeae species, but no similar
acceleration was observed in rbcL and matK. In addition, all
Fabeae lineages showed accelerated evolution in the accD gene
for high synonymous and nonsynonymous nucleotide
substitution rates compared to rbcL and matK. This result can
supplement Magee’s findings (Magee et al., 2010). We also
detected amino acid differences in the accD, atpA, rps2, matK,
and rbcL genes within and outside of Vicia by aligning the
sequences from Fabeae species (Figures S5–S9). Notably, there is
less amino acid sequence conservation in accD (83.03% identity
between Vicia species) and rps2 (91.98% identity between Vicia
species) than in matK (94.23% identity between Vicia species)
and rbcL (99.16% identity between Vicia species). The lengths of
the amino acid sequences ranged from 165 to 1,141 in accD.

Phylogenetic Analysis of V. sepium
Considering the rather limited number of complete Vicia
chloroplast genomes (only 3), it is difficult to determine
whether Vicia is paraphyly. Therefore, in addition to the
complete chloroplast genomes and conserved chloroplast
protein-coding sequences, we constructed a phylogenetic tree
of Vicia using two widely sequenced chloroplast genes, namely,
rbcL and matK, to support our result. Detailed information
regarding these four datasets can be found in Table S1. Upon
comparing the four NJ trees, we found that V. sepium, V. sativa,
and V. faba were located in the same evolutionary branch with
support rates of 100% in the protein-coding sequence tree, 99%
in the matK tree, and 49% in the rbcL tree. However, in the
whole-genome tree, the result was different, with V. sepium and
V. sativa located in the same clade and V. faba located in another
clade. These results indicated that the evolutionary histories of V.
sepium and V. sativa were similar but different from that of V.
faba (Figures S10–S12). Both the rbcL and matK phylogenetic
trees showed that Vicia species were included in different clades,
which supports our hypothesis that Vicia is paraphyletic
(Figures S11 and S12).

Both the NJ and ML phylogenetic trees for homologous
protein-coding sequences showed that Vicia and Lens were
included in the same clade, together with Pisum and Lathyrus
(Figure 6), but the ML tree presented a higher support rate for
the Vicia and Lens clade than the NJ tree.
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FIGURE 4 | The Ka/Ks ratios of homologous protein-coding genes within and outside of the genus Vicia with V. sepium as the reference. White boxes represent the
mean Ka/Ks values within the genus Vicia, and black boxes indicate the mean Ka/Ks values outside of the genus Vicia. The data are the arithmetic mean ± SE.
Symbols under the gene names indicate levels of statistical significance between the species within Vicia and the species outside of Vicia: no symbol, P > 0.05, blank
circle, P = 0.01–0.05; black circle, P < 0.01. The X-axis denotes the homologous genes.
FIGURE 3 | The sequence identity of 22 Fabaceae species. The inner circle is the reference genome. Next circles represent the sequence identity between V.
sepium and 21 other species. The outermost circle corresponds to the protein-coding genes and intergenic spacer regions. Genes with clockwise arrows represent
reverse strands, while genes with the counterclockwise arrow represent forward strands.
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DISCUSSION

Beneficial Gene Mutations Observed in the
Protein-Coding Regions
In our study, within genus Vicia, ccsA, clpP, rpl32, rpl33, rpoC1,
rps15, rps2, rps4, and rps7 showed positive selection, with a Ka/Ks
ratio >1 (Figure 4). None of these genes are related to
photosynthesis (psa, psb, ndh, pet, atp). In fact, genes related to
photosynthesis were under less selection pressure than other
types of genes (Du et al., 2016; Li et al., 2017; Gao et al., 2018).
Such positive selection is also found in other species, as observed
for two genes flanking ycf4 (accD and cemA) in Lathyrus (Magee
et al., 2010); accD, ycf1, and atpA in seed plants (Zheng et al.,
2017); rps14 in Dodonaea viscosa and Sapindus mukorossi (Saina
et al., 2018); and the atpF gene in two deciduous Quercus species
(Yin et al., 2018). In general, genes under selection pressures are
mainly identified by comparing the synonymous and
nonsynonymous nucleotide substitution rates in related
species. Thus, genes under positive selection pressure in
different lineages can be identified. However, the positive
selection acting on genes in a specific lineage contrasts with
the silent molecular clock hypothesis, according to which the
point mutation rate in all regions of the same genome is almost
constant (Ochman and Wilson, 1987). The factors causing a
higher Ka/Ks ratio in some sequences than in the rest of the
genome remain unclear. Here, we consider two explanations for
this difference. One possible explanation for this phenomenon is
that a greater number of nucleotide substitutions are associated
with gene duplications and gene losses. Erixon found that
positive selection acting on the clpP gene in various plant
lineages is related to repeated duplication (Erixon and
Oxelman, 2008). Magee showed that the Ka/Ks ratios of cemA
Frontiers in Genetics | www.frontiersin.org 10
and accD flanking ycf4 are >1 in Lathyrus. This may occur
because the increase in the nucleotide mutation rate near the
hypermutational ycf4 gene affects the purifying selection acting
on the amino acid sequence (Magee et al., 2010). Another
possibility is that differential selection may act on gene
divergence. For example, research on oak species showed that
the atpF gene is highly divergent (Ka/Ks > 1) in the comparation
between deciduous oak and evergreen sclerophyllous oak
because the former loses its leaves in the cold and drought
seasons (Yin et al., 2018). Another study on seed plants suggested
that genes affected by positive selection are always involved in
plant adaptation, such as accD, ycf1 and atpA (Zheng
et al., 2017).

We also found that atpA, accD, and rps2 of Vicia showed
significantly accelerated evolution (Figures 4, 5, S5–S7, Table
S3). Rps2, encoding the ribosomal protein S2, is retained in
almost all plants. The exceptions mainly occur in Apocynaceae.
For example, in milkweeds, a 2.4-kb mitochondrial DNA
sequence was horizontally transferred to the rps2-rpoC2 plastid
intergenic region, resulting in two pseudogenes, namely, rps2 and
rpoC2, contained in plastomes (Straub et al., 2013). However,
such plastome insertion is rare. A relatively common type of
evolution is the point mutation described in our study. For
example, Ka and Ks rates are elevated in parasitic
Scrophulariaceae and Orobanchaceae, which provide suitable
material for studying the evolution of hemi- and holoparasitic
plant lineages (dePamphilis et al., 1997). In Gossypium, the Yrp8
and Cys11 sites of rps2 and the other nine genes are undergoing
protein sequence evolution, which may aid the adaptation of
cotton species to diverse environments (Wu et al., 2018). The
accelerated evolution of atpA (participating in ATP synthesis)
has also been found in other species, such as Dipsacales (Fan
FIGURE 5 | Synonymous and nonsynonymous divergence in the Fabeae chloroplast genes. All tree topologies were completely constrained as described in the
Methods section. All trees were drawn to the same scale representing the number of substitutions per synonymous or nonsynonymous site.
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et al., 2018) and Urophysa (Xie et al., 2018) species. Consistent
with our study, only one to three sites show positive selection.
AccD is essential for plant leaf development and has been lost in
some angiosperm lineages. It is believed that accD was
functionally transferred to the nucleus (Magee et al., 2010;
Sabir et al., 2014).

At present, Vicia is the only known legume genus in which so
many genes show positive selection and accelerated evolution in
the chloroplast genome. Therefore, a comprehensive
understanding of the mechanism underlying the increased
nucleotide substitution of homologous protein-coding genes is
necessary, and Vicia species may be suitable model systems for
such studies.

Genome Variation in the Chloroplast
Genomes of V. sepium
To detect the genome variation in the chloroplast genome of V.
sepium, we compared V. sepium with related genera in the tribe
Fabeae. Our results revealed that the greatest variation in genome
length relative to V. sepium was located in protein-coding
regions (Table 3). This finding is consistent with Zheng’s
research (Zheng et al., 2017), showing that chloroplast gene
length is an important factor affecting chloroplast genome size
based on phylogenetic signals. The length variation of protein-
Frontiers in Genetics | www.frontiersin.org 11
coding regions may result from gene loss and gain or differences
in the lengths of homologous genes. Ycf4, encoding a
photosystem I assembly protein, is the most easily deleted gene
in Fabeae species (Table 3). This result supports previous
findings revealing that ycf4 has been lost in many species of
Lathyrus and Pisum due to its functional transfer to the nuclear
genome (Magee et al., 2010). Furthermore, gene insertion events
involving one new unannotated protein-coding gene, namely,
ORF292 (879 bp) and one duplicated gene, namely, rpl20 (354
bp), were found in V. sepium and V. sativa, respectively. One
pseudogene, rpl23, was identified in V. sepium and V. sativa
(Table 3). This indicates that the evolutionary histories of V.
sepium and V. sativa are similar and that V. faba may be located
in a different evolutionary clade. In general, a chloroplast gene
cannot be lost arbitrarily unless the function of the gene is
transferred to the nuclear genome or replaced by that of a
nuclear gene (Magee et al., 2010). Therefore, the mechanism of
loss of the rpl23 gene in V. sepium and V. sativa requires further
in-depth research. In addition to gene loss, one intron was also
missing in clpP (L. graminifolius) and rpl16 (V. faba) (Table 3).
The clpP gene normally contains two introns in angiosperms
(Jansen et al., 2007; Jansen et al., 2008). Jansen determined that
the IRLC lineage (in which Fabeae is included) has lost one
intron of clpP (Jansen et al., 2008). However, the loss of two
FIGURE 6 | Phylogenetic relationships based on the conserved chloroplast protein-coding sequences of 21 Fabeae species and C. arietinum with the maximum
likelihood (ML) method and the neighbor joining (NJ) method. C. arietinum was selected as the outgroup. Numbers on the left and right side at the branches
represent bootstrap values of the ML method and the NJ method respectively.
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introns observed in clpP is rare; Sabir’s research (Sabir et al.,
2014) on the IRLC lineage (in which Fabeae is included) showed
that this phenomenon has only occurred in Glycyrrhiza glabra,
and our findings are complementary to this previous work. V.
faba was the only species found to have lost the intron of rpl16 in
the tribe Fabeae, and the rpl16 intron shows high divergence in
Chusquea (Kelchner and Clark, 1997), Gleditsia (Schnabel and
Wendel, 1998), and Cacteae (Butterworth et al., 2002). This
result indicates that different evolutionary clades exist in Vicia. In
addition to gene loss and gain, differences in the lengths of
homologous genes are also found in Fabeae species (ranging
from 495 to 3,423, 36 to 537, and 3,879 to 5,403 in accD, rps12
and ycf1, respectively). In seed plants, the length difference in
atpA, accD, and ycf1 is the main reason for chloroplast genome
size variation (Zheng et al., 2017).

In addition to protein-coding region expansion and
contraction in V. sepium, protein-coding sequence divergence
also exists. In our study, the GC content of the chloroplast
genome of V. sepium was found to be lower than that of other
species, such as Chikusichloa mutica [tribe rice (Wu et al., 2017)],
Arabidopsis thaliana [Brassicaceae (Asaf et al., 2017a)], and
Quercus aquifolioides [Fagaceae (Yin et al., 2018)], which
exhibit a conserved structure and evolution of the chloroplast
genome (Table S4). Normally, a higher GC content indicates a
more stable genome sequence (Wu et al., 2017). Therefore, to
consider the genome variation in V. sepium protein-coding
regions, we surveyed SSRs, repeat loci, highly divergent regions
and pairwise sequence divergence. Many SSRs and repeat loci
appeared in the protein-coding regions (CDSs) (Table S5,
Figure 2). These results are consistent with previous reports
on Astragalus membranaceus (Lei et al., 2016). Because of the
slippage of DNA strands, SSRs, regarded as useful gene markers,
present a high mutation rate (Huang et al., 2018). Repeated
sequences are believed to result in aberrant replication and repair
pathways (Sabir et al., 2014). The genes ycf1, ycf2, rpl23, rps3,
rpl18, accD, rpoC1, clpP, ORF292, ycf4, psaI, and rpl32 share
relatively low identity (Figures 3 and S4). V. sepium showed
considerable differences from other Fabeae species (with the
exception of V. sativa), even V. faba. Therefore, Vicia presents
profound genome variation, which is significant for the
evolutionary history of the chloroplast genome.

Evolution in Vicia
The phylogenetic analysis conducted with the conserved
chloroplast protein-coding sequences of rbcL and matK
showed that Vicia and Lens were included in the same clade
(Figures 6 and S12). This result is also supported by the
synapomorphy that is observable in the currently available
research. Vicia and Lens both produce the phytoalexin
wyerone, which is not found in Pisum and Lathyrus (Schaefer
et al., 2012), and show high average protein richness and in vitro
protein digestibility (Pastor-Cavada et al., 2014). However, even
within Vicia, different evolutionary directions can be found,
resulting in the paraphyly of Vicia. For example, in our study,
the pairwise distance between V. sepium and V. sativa was much
Frontiers in Genetics | www.frontiersin.org 12
greater than that between V. sepium and V. faba (Table S6). The
former species also showed a gene insertion in the rps12 to rps4
region (Figure S3) and an accelerated evolutionary rate in accD
(Figure 5). In addition to chloroplast genome characteristics, the
life form, stylar characteristics, and chromosome numbers of
these species support this result. Ancestral Vicia species
originating from the Mediterranean shared an annual life form,
a basic chromosome number of 2n=14 and evenly hairy styles.
However, the recent evolutionary reconstruction of Vicia
indicates that a perennial life form, a chromosome number of
2n=12 (or 10, 24, 28, 42) and adaxially/abaxially hairy styles have
arisen in Vicia (Schaefer et al., 2012). In the comparison of Vicia
species in our study, all of the species were found to produce
adaxially hairy styles, but V. sepium has evolved a perennial life
form, while V. sativa and V. faba share the same characteristic of
an annual life form. Nevertheless, the evolution of the life form of
Vicia verified that V. sepium and V. sativa had a shared
evolutionary history. Therefore, we can infer from all of these
results that Vicia species may adopt different evolutionary
strategies and that the chloroplast genome provides ideal
material for reconstructing the evolutionary history of Vicia.

In summary, a new chloroplast genomic resource for an
important wild resource plant, V. sepium, is presented. This
study fills the gap in V. sepium genomic resources and provides
novel insights into evolutionary dynamics in a poorly studied
Vicia clade. Our results reveal that Vicia species may have
experienced many instances of positive selection in the
chloroplast genome and accelerated evolution of protein-
coding genes, which is rare, being found in only a few
angiosperm species. Detailed surveys show that V. sepium
presents profound genomic variation in terms of ORF292 gene
insertion, rpl23 pseudogene detection, lower GC content, CDS
length variation, and accelerated evolution of the atpA, accD, and
rps2 genes. Analysis of the phylogenetic relationships show that
Vicia and Lens are included in the same clade and that the
evolutionary direction of V. sepium and V. sativa is different
from that of V. faba. Therefore, Vicia species may be a suitable
model system for understanding the mechanisms of chloroplast
genome evolution. This study is expected to attract researchers
toward Vicia species, leading to the identification of further
evidence regarding the evolutionary history of the
chloroplast genome.
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FIGURE S1 | Topology of Fabeae lineages obtained from a concatenated data set
consisting of matK and rbcL. C. arietinum was selected as the out group.

FIGURE S2 | Codon usage and relative synonymous codon usage (RSCU) of the
V. sepium chloroplast genome. The color of the histogram corresponds to the color
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of the codon. The size of the histogram corresponds to the RSCU of the codon. The
X-axis represents different amino acids and the associated codons.

FIGURE S3 | Genomic rearrangement of six Fabeae species relative to V. sepium.
Locally collinear blocks (LCBs) are colored to indicate syntenic regions. Blocks
below the center line indicate regions that align in the reverse complement (inverse)
orientation. The small boxes below the LCBs of each chloroplast genome are
represented as genes.

FIGURE S4 | Alignment visualization of twenty-two Fabaceae complete
chloroplast genomes using V. sepium as a reference. The vertical scale indicates the
percent identity, ranging from 50% to 100%. Arrows indicate the annotated genes
and their transcriptional direction. The different colored boxes correspond to exons,
tRNA or rRNA, and noncoding sequences (CNSs).

FIGURE S5 | Alignments of the accD protein sequences from Fabeae species.

FIGURE S6 | Alignments of the atpA protein sequences from Fabeae species.

FIGURE S7 | Alignments of the rps2 protein sequences from Fabeae species.

FIGURE S8 | Alignments of the matK protein sequences from Fabeae species.

FIGURE S9 | Alignments of the rbcL protein sequences from Fabeae species.

FIGURE S10 | Phylogenetic relationships based on the complete chloroplast
genomes of twenty-two related species obtained by the neighbor joining (NJ)
method. C. arietinum was selected as the outgroup.

FIGURE S11 | Phylogenetic relationships based on rbcL gene sequences of 50
Fabeae species, T. pretense and T. repens obtained by the neighbor joining (NJ)
method. T. pretense and T. repens were selected as the outgroup.

FIGURE S12 | Phylogenetic relationships based on matK gene sequences of 62
Fabeae species, T. pretense and T. repens obtained by the neighbor joining (NJ)
method. T. pretense and T. repens were selected as the outgroup.
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