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Abstract

Hyperspectral imaging is a technique that provides rich chemical or compositional information not 

regularly available to traditional imaging modalities such as intensity imaging or color imaging 

based on the reflection, transmission, or emission of light. Analysis of hyperspectral imaging 

often relies on machine learning methods to extract information. Here, we present a new flexible 

architecture, the U-within-U-Net, that can perform classification, segmentation, and prediction 

of orthogonal imaging modalities on a variety of hyperspectral imaging techniques. Specifically, 

we demonstrate feature segmentation and classification on the Indian Pines hyperspectral dataset 

and simultaneous location prediction of multiple drugs in mass spectrometry imaging of rat 

liver tissue. We further demonstrate label-free fluorescence image prediction from hyperspectral 

stimulated Raman scattering microscopy images. The applicability of the U-within-U-Net 

architecture on diverse datasets with widely varying input and output dimensions and data sources 

suggest that it has great potential in advancing the use of hyperspectral imaging across many 

different application areas ranging from remote sensing, to medical imaging, to microscopy.

Introduction

Computer vision techniques based on deep learning have recently demonstrated a myriad of 

novel applications in many disciplines. With the continuous improvement and availability of 

advanced computing hardware and open-source methods, deep learning is finding broader 
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use in a wide variety of imaging, sensing, and biophotonics research1,2. The flexibility of 

deep learning for image processing enables facile adoption of existing frameworks for many 

different imaging modalities such as transmitted light microscopy, fluorescence microscopy, 

X-ray imaging, magnetic resonance imaging, and many more3–7. Often the images from 

such techniques are passed to a deep learning algorithm to perform tasks like classifying 

diseases, segmenting spatial features, improving image quality, or predicting alternate 

imaging modalities8–11. However, the majority of work done so far performs deep learning 

on monospectral images. Such monospectral images contain only a single intensity value at 

each pixel. That is, there is no spectral information inherent to the imaging technique such as 

in black-and-white photography, X-ray imaging, or magnetic resonance imaging. Contrary 

to monospectral images are multispectral and hyperspectral images where multiple spectral 

components of a field of view can be depicted in their own image. We take “multispectral” 

to be a subset of “hyperspectral“ specifically pertaining to images that contain relatively few 

spectral channels (e.g. RGB imaging). Hyperspectral imaging combines spectroscopy and 

imaging such that each pixel of the image contains a wide spectral profile that allows for 

detailed characterization.

Linear decomposition, phasor analysis, support vector machines and other machine learning 

methods have indeed been used for analysis of hyperspectral imaging datasets12–18. While 

many of these techniques have demonstrated promising results, such methods may suffer 

from limited generalizability or information loss, limiting their ultimate performance19,20 

Deep learning, in contrast, potentially offers a method for learning based on both spectral 

and spatial signatures and their nonlinear interplay allowing for improved performance 

in a variety of hyperspectral imaging analysis tasks21,22. However, techniques for these 

hyperspectral stacks face unique challenges in computer vision research23,24. For example, 

standard deep learning architectures that work for monospectral images (consisting of 2 or 

3 spatial dimensions), may not work for hyperspectral stacks due to the extra dimension 

needed for spectral information. Frameworks such as Mayerich et al’s Stain-less Staining25 

or Behrmann et al’s work in mass spec imaging26 address this by interpreting the spectra at 

individual pixels of hyperspectral images to produce excellent results in label-free prediction 

and classification, but may be missing contextual information from spatial convolutions of 

the whole image. Zhang et al’s recently published work bypasses the need for spectral deep 

learning by using machine learning to interpret spectral information and create truth maps to 

which spatial deep learning of images can be trained27. Other frameworks for hyperspectral 

deep learning based on spectral-spatial convolutions also exist but are often rigid; only 

performing a particular task like binary pixel or multi-class label classification28–30. Further, 

a convolutional framework for predicting entirely alternate imaging modalities (where the 

final number of spectral channels is unlikely to match the input, but spatial resolution 

is maintained) from hyperspectral images, to our knowledge, has not been reported. We 

thus present a new architecture, the U-wthin-U-Net (UwU-Net) to address these current 

shortcomings in hyperspectral deep learning and improve the utility of hyperspectral 

imaging techniques.

The UwU-Net Architecture presented here is based on the U-Net architecture developed 

originally by Ronneberger et al where a specialized autoencoder encodes and decodes spatial 

feature information in an input image to reconstruct some new output image31. The U-Net 
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separates itself from a traditional autoencoder with the recontextualization of information 

through concatenations at equivalent encode-decode levels (noted as blue arrows in Figure 

1a). This eliminates the discarding of information as in a traditional autoencoder. While 

the original work was concerned with image segmentation, the U-Net has seen use in a 

variety of applications including segmentation, label-free prediction, and denoising9,32–34. 

However, most works that utilize the U-Net in this way are not concerned with images that 

contain multiple spectral channels. Indeed, the original U-Net is generally not applicable 

to hyperspectral images as the architecture is dedicated to encoding multiple spatial feature 

channels starting from a single spatial channel image as shown in Figure 1a. The typical 

2D kernel of a U-Net is thus not well suited for hyperspectral stacks which have a third 

tensor dimension dedicated to spectral channels. A 3D kernel could potentially be used, but 

then the spatial and spectral information are being mixed during the feature encoding in 

a problematic fashion for image reconstruction35. Modification of input and output layers 

to match spectral dimensions is often useful in the multispectral regime but may be too 

facile of a change to adequately handle spectrally complex hyperspectral images. While 

other recently reported modifications to the U-Net have also shown improvements with 

respect to the original U-Net on semantic segmentation and classification of remote sensing 

datasets (some of which involve multispectral datasets)36–38, we report a robust architecture 

for multiple hyperspectral imaging tasks.

To create a hyperspectral deep learning architecture with the robustness and features of 

the traditional U-Net, we have amended the U-Net architecture such that spectral channel 

information is handled by a separate “U” structure “outside” of an arbitrary number 

of traditional spatial U-Nets as shown in Figure 1b. This UwU-Net architecture allows 

dedication of tunable free parameters to both spectral information (outer U) and spatial 

information (inner U’s). The architecture’s parameters can be empirically tuned to change 

the spectral layer depth, number of spatial U’s at the center, or output spectral size based on 

the dataset. Here we demonstrate the utility of this new architecture in 3 different tasks on 3 

different types of hyperspectral imaging: feature segmentation and classification on the high 

altitude hyperspectral imaging Indian Pines dataset, monoisotopic drug location prediction 

in rat liver from mass spectrometry images, and label-free prediction of cellular organelle 

fluorescence in stimulated Raman scattering (SRS) microscopy.

The first task concerns segmentation and classification of the Indian Pines dataset which 

depicts a scene of farmland in northwest Indiana across a large range of wavelengths 

spanning the ultraviolet to short infrared region (400-2500 nm)39. The publicly available 

dataset was acquired by the Airborne Visible/Infrared Imaging Spectrometer and provides a 

model task for hyperspectral deep learning: segmentation and classification of various crop 

and foliage types. The broad spectrum and spatial heterogeneity of the scene demonstrates 

a deep learning algorithm’s ability to correctly identify and segment features based on both 

spectral signatures and spatial positions. Moreover, the use of this dataset by previous work 

in hyperspectral deep learning allows for comparison of our proposed architecture40–42.

The second task concerns predicting drug location in a model rat liver tissue sample from 

mass spectrometry imaging. Mass spectrometry imaging (MSI) is a powerful technique 

that provides spatially resolved, highly specific chemical information in the form of 
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molecular ion masses. Where most deep learning computer vision work is centered 

around interpretation of optical images, MSI is particularly interesting to approach with 

deep-learning as it has an enormous spectral dimension that provides highly specific, 

but difficult to interpret in situ chemical information43,44. Most MSI work follows from 

traditional linear decomposition and analysis that is well-developed and ubiquitous in mass 

spectrometry45–49. Deep learning has been demonstrated for MSI datasets26,43,50,51, but has 

been chiefly used for spectral dimensionality reduction or interpretation. To our knowledge, 

the simultaneous interpretation of spatial and spectral information using convolutional deep 

learning in MSI has yet to be reported. We demonstrate one way the UwU-Net architecture 

could be used in MSI by simultaneously predicting the highly specific monoisotopic peak 

locations of 12 drugs from low mass resolution binned images.

Finally, the third task demonstrates the capability of the UwU-Net to perform label-free 

prediction of fluorescence images from SRS microscopy images. SRS microscopy is 

a hyperspectral imaging technique where molecular vibrational bonds are coherently 

interrogated by two ultrashort laser pulses52–54. While the vibrational information afforded 

by SRS microscopy can be specific to a given molecule, there are often many overlapping 

contributions to vibrational signals that confound image interpretation. In this work, we 

show that the specificity of SRS microscopy can be improved by deep learning to predict 

fluorescence images that are highly specific to an organelle. Further, we show that the 

trained algorithms can be multiplexed to create label-free cell organelle images in live cells.

Indian Pines Classification

To demonstrate this flexibility and to validate the architecture’s capability to classify an 

arbitrary number of features from hyperspectral images, a 1-U UwU-Net (where there is 

1 spatial U-Net at the center of the architecture) and 17-U UwU-Net (where there are 17 

spatial U-Nets at the center) were trained to classify the Indian Pines AVARIS dataset39. 

The hyperspectral images consist of 200 spectral channels (where 20 of the original 220 

bands have been removed due to water absorption) across a broad range of wavelengths 

(400-2500 nm) with 144 x 144 pixel images (cropped from 145 x 145 to be compatible 

with the spatial U-Nets) at each wavelength. The images contain a high-altitude 2 mile by 

2 mile field of view of farmland in northwest Indiana. The ground truth images consist of 

non-mutually exclusive hand-drawn maps of the various crops and foliage depicted in the 

field of view. In total, there are 16 classifications shown in Figure 1c and listed in Table 1. 

Here, the UwU-Net is trained to predict a 17 x 144 x 144 image stack (16 classifications plus 

an unused background) from the 200 x 144 x 144 input image stack. The initial 200 channels 

are first reduced via convolution to 100 then to the final 1 (for the 1-U UwU-Net) or 17 (for 

the 17-U UwU-Net) before spatial learning. The output predicted images are thresholded 

to create a binary map to compare against the ground truth image. Looking at the results 

in Table 1, the 17-U UwU-Net performs well with nearly all classifications exceeding 99% 

accuracy. The exceptions are the classification of an untilled corn field in the upper left of 

the field of view that are instead identified as a mixture of the three soybean classifications. 

We also note the prediction of crops at the top-middle, top-right, and bottom of the field of 

view. While these areas contribute to the error, we note that crops do exist in these parts of 

the hyperspectral images (as seen in the composite image in Figure 1c) but are unidentified 
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in the hand-drawn truth maps. To better reflect the model’s performance, especially in 

these cases, counts of false positive and negative pixels and the intersection over union 

(IOU) for each class is provided in Extended Data Table 1. The overall accuracy (99.48% 

± 0.50%), however, is in concordance with state-of-the-art architectures for hyperspectral 

classification on the Indian Pines dataset41,42,55–57. Three of these architectures’ (ResNet, 

Multi-Path ResNet, and Auxillary Capsule GAN) classification accuracies are shown in 

Table 1 for comparison with the 17-U UwU-Net demonstrating the highest accuracy. We 

note that the 1-U UwU-Net (with its more modest modifications to the original U-Net) 

performs worse than the other models suggesting that the additional spatial parameters 

afforded by the parallel U-Nets at the center of the UwU-Net contribute towards a more 

accurate model. For additional comparison, a basic U-Net (where the initial and final layers 

have been simply adjusted to accommodate the desired input/output channel number) was 

also trained. However, it was unable to classify any of the labels properly suggesting that 

UwU-Nets spectral layers are critical for proper identifications. A representative example of 

one of the basic U-Net’s errant classifications is shown in Extended Data Figure 1. These 

results demonstrate the UwU-Net’s ability to simultaneously segment and classify features 

from hyperspectral images with high accuracy. However, the UwU-Net is not limited to a 

binary pixel classification, like some hyperspectral architectures here compared, but can also 

predict intensity features as shown in the demonstrations below.

Drug Location Prediction in Mass Spectrometry Images.

To further demonstrate the utility of the UwU-Net in deep learning of hyperspectral images, 

we predict the location of multiple drugs (most of which are cancer treatment drugs) in a 

rat liver slice from publicly available mass spectrometry imaging data originally taken by 

Eriksson et al58. Here, a frozen-fixed rat liver section was spiked with 5 mixtures of diluted 

drugs, where each mixture contains some combination of 4 of the 12 potential drugs at 

varying concentrations. MSI was then performed on the liver slice in the mass (m/z) range 

of 150 – 1000 m/z at a mass resolution of 0.001 m/z. This means that this particular raw 

hyperspectral dataset contains 850,000 images which is not uncommon for MSI datasets. 

Given this colossal spectral density, MSI datasets must be narrowed to small “windows” 

(e.g. only 1000 images between 300.000 m/z – 300.999 m/z are shown) and/or “binned” 

(e.g. all the 0.001 m/z images from 300.000 m/z – 300.999 m/z are summed together to form 

a single 1 m/z bin image) to be viewable. Both windowing and binning sacrifice information 

for interpretability. Windowing allows for only seeing a few mass components at a time 

while binning sacrifices the hallmark specificity of mass spectrometry59. Analysis of these 

large datasets can also be cumbersome, taking potentially hours or longer to interpret per 

dataset.

The work we present here demonstrates a potential solution to this information trade-off 

issue by predicting high mass resolution drug location images (corresponding to each 

drug’s monoisotopic peak) from a window of hyperspectral low-resolution binned mass 

images of the spiked rat liver tissue. Specifically, the region of 330 – 630 m/z (a window 

containing all monoisotopic drug peaks) was binned into 1 m/z images and concatenated 

into a hyperspectral image stack. Then, the 0.001 m/z resolution images corresponding to 

the monoisotopic peaks of the 12 drugs (as determined in the previous publication) were 
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isolated from the raw MSI data and concatenated to produce a stack where each image 

corresponds to a specific drug. The UwU-Net architecture was trained to predict 12 drug 

images from the 300-channel hyperspectral images. Figure 2 shows the results of these 

predictions and the corresponding 1 m/z bin image that contains the monoisotopic peak. 

While some of these low mass resolution bins are already highly correlated with the specific 

monoisotopic peak (e.g. Ipratropium and Vatalanib in Figures 2a and 2b, respectively), 

other images have strong background contributions and or conflicting drug spot signal 

due to fragment peaks from other drugs (e.g. Erlotinib and Gefitinib in Figures 2c and 

2f, respectively). From Figure 2, it is apparent that the deep learning algorithm is able to 

reliably predict each drug’s location from the low resolution hyperspectral data even when 

there are conflicting background/fragment peaks or when the drug concentration is low (as 

in Lapatinib and Trametinib in Figures 2k and 2l). Even in Trametinib, where the drug 

is near the sensitivity limit for this MSI experiment, the UwU-Net correctly predicts the 

spot where the drug is present. Though the exact pixels predicted do not cleanly match (as 

noted by the PCC values for Trametinib in Table 2), the grouping of these sparse pixels in 

the correct spots suggest that the UwU-Net is picking-up the relevant spectral and spatial 

components for prediction.

To better understand the role of spectral and spatial learning in the UwU-Net, other U-Net 

and UwU-Net models were trained on this data with some varying parameters and compared 

in Table 2. To first understand the role of spectral vs spatial learning and their interplay on 

model accuracy, multiple basic U-Nets were trained on a single drug at a time. Here the 

single 1 m/z bin image and corresponding high mass resolution peak image were used for 

training. While some of the drugs are correctly identified and predicted (suggesting spatial 

learning of a single image from the hyperspectral stack may drive some drugs’ predictions), 

many of the drugs (sunitinib, gefitinib, sorafenib, dabrafinib, and trametinib) go partially 

or entirely unpredicted. A single basic U-Net modified to accept 300 channels and output 

12 channels again produces unacceptable results (Extended Data Figure 1). The use of a 

UwU-Net with a single spatial U-Net at its center (denoted as 1-U in Table 2) allows for 

spectral learning of the data in addition to spatial learning. When a stack of just the 12 drug 

1 m/z bins is used for training (1-U, only drug bins in Table 2), only gefitinib, dabrafinib, 

and trametinib were unidentified. The use of the full 300 hyperspectral stack in the 1-U 

UwU-Net shows further improvement leaving only one spot of dabrafenib unpredicted. This 

suggests additional spectral information improves the accuracy of the model in drugs where 

spatial information from the principal bins is insufficient for prediction. The use of a 12-U 

UwU-Net on the full hyperspectral data eliminates any unidentified drug spots, but errantly 

predicts spots in sunitinib and initinib that do not exist in the respective truth images. A 

5-U UwU-Net demonstrates the most accurate prediction of drug spots with no missing 

or errantly predicted spots for any of the 12 drugs (as seen in Figure 2). This analysis 

and comparison suggest that, like “depth” in a traditional U-Net or ResNet, architecture 

parameters such as spectral depth or number of spatial U-Nets at center can be empirically 

tuned to improve model accuracy.

These results highlight a capability of the UwU-Net to mine MSI datasets for relevant 

features from both spatial and rich spectral features afforded in MSI in a convolutional 

manner. One way this is potentially useful for MSI is in the design and execution of 
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experiments. If a priori ground-truth information is available (in this case, the masses of 

the drug molecules sought, their locations, and their concentrations), a UwU-Net model can 

be trained and utilized in other similar experiments to vastly improve analysis speed. For 

example, while the training of this algorithm took ~8 hours, the final prediction of all images 

shown takes only ~1 second. This upfront single-time investment of training then affords 

analysis of further samples to be performed extremely quickly in comparison to costly linear 

analysis of each dataset. The specific demonstration presented here could also be highly 

useful for the miniaturization of MSI systems for in situ use where the tradeoff of reduced 

mass resolution would be mitigated by a pretrained algorithm. We also note the possibility 

of combining MSI with an orthogonal method such as fluorescence or Raman imaging, to 

predict alternate imaging modalities using the UwU-Net as we demonstrate below.

Label-free Organelle Prediction from SRS Microscopy Images

Label-free prediction via deep learning has been a recent area of interest for augmenting the 

information acquired from a given microscopy modality60. The label-free prediction usually 

involves a microscopy image, such as transmitted light or autofluorescence microscopy, 

being converted to an image that mimics a more complex label-requisite modality like 

fluorescent or histologically stained images18,33,61. The value of this type of work is clear 

due to the elimination of staining protocols and the disadvantages associated with labeling 

the sample (photobleaching, toxicity, disruption of biological structures or functions, etc.). 

However, the quality of label-free prediction depends heavily on the information present in 

the input images62. For example, while transmitted-light microscopy is relatively simple to 

perform, it only reveals information based on light scattering due to differences in refractive 

index. In the context of cells and their organelles, there may not be significant enough 

difference between an organelle and cytosol to produce relevant information for a deep 

learning algorithm to reliably predict a corresponding organelle’s fluorescence.

Compared to simple bright field or autofluorescence imaging, Raman imaging is a 

much more information-rich, label-free alternative. The Raman spectrum of a sample 

reflects specific molecular vibrations quantitatively associated with the molecules within. 

Hyperspectral SRS imaging improves the conventional Raman imaging by significantly 

speeding up the image acquisition by 3-4 orders of magnitude53,63,64. Regardless of the 

acquisition method, for biological samples, the Raman spectra are often congested and 

highly convolved due to the overlapping Raman bands from many different molecules. 

Principle component analysis and phasor analysis have been used to extract individual 

organelles from the myriad of vibrational signatures in a cell15,18. However, the subtle 

variations of Raman spectra for individual organelles present significant challenges to 

the analysis of smaller structures such as mitochondria and endoplasmic reticulum (ER). 

Previous attempts to produce label-free staining based on hyperspectral Raman imaging 

have shown promising results for some organelles but not as rich of predictions for smaller 

ones18. The architecture we present here shows improved fluorescence prediction across 

3 organelles. Deep learning using the rich spectral and spatial information afforded by 

hyperspectral SRS microscopy also outperforms previous work of label-free prediction 

from transmitted light microscopy33. As shown in Figures 3a – 3c, we create label-free 

prediction algorithms for nuclei, mitochondria, and endoplasmic reticulum fluorescence in 
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fixed lung cancer cells (A549, from ATCC).. The accuracy of the predictions is quantified 

in Table 3 by Pearson’s correlation coefficient (PCC), normalized root mean squared 

error (NRMSE), and feature similarity index (FSIM)65,66. Across all computed quality 

metrics, we find high correlation and acceptably low error between predicted images 

and their respective truths. Previous work reported PCC values of 0.58, 0.69, and 0.70 

for DNA (nucleus), mitochondria, and endoplasmic reticulum, respectively33. Thus, we 

see a significant improvement in label-free organelle prediction with the information-rich 

hyperspectral SRS microscopy in comparison to bright field microscopy. A basic U-Net was 

again trained for comparison as seen in Extended Data Figure 1. While this task was more 

successful than in the previous demonstrations, unacceptable residual SRS features were 

also present in the image. For additional comparison to another modern architecture used 

for image reconstructions, a U-Net utilizing ResNet Blocks36,67 was also trained to predict 

the organelles (Extended Data Figure 2 and Extended Data Table 2). While the Res-U-Net 

showed slightly improved organelle predictions in comparison to previously reported results, 

the UwU-Net predictions still outperformed across all organelles and metrics.

The utilization of both spectral and spatial information is paramount towards demonstrating 

utility of this architecture. This is most clearly demonstrated in the mitochondria prediction 

model by the differentiation of the organelle from lipid droplets in the cell. In SRS images, 

lipids droplets appear as bright “dots” typically ~1 μm in size. This means they have a 

similar size and shape to mitochondria, yet the trained models have clearly learned to 

exclude such similar features. This suggests that the model is not simply searching for 

the spatial features in the image to isolate and predict, but likely utilizing both spatial 

and spectral information to determine the position of the desired organelles. To confirm 

this, a simple 2D U-Net was trained using the single brightest SRS image to predict the 

fluorescence image (Extended Data Figure 3). While the PCC values demonstrated by this 

traditional U-Net training still outperform previous work (likely due to the higher input 

image quality with respect to transmitted-light microscopy), they slightly underperform the 

UwU-Net where spectral information augments the prediction capability (Extended Data 

Table 3). Moreover, the 2D U-Net models predict some spurious features such as nucleoli 

(Extended Data Figure 3) or lipid droplets (Extended Data Figure 4) as they are incapable of 

seeing the difference in vibrational spectral information for such features.

Finally, to demonstrate the multiplexing capability of the trained algorithms, hyperspectral 

SRS images of live A549 cells with none of the dyes present are used to predict organelle 

fluorescence in Figures 3e and 3f. Here new prediction models have been trained for live 

cells in a similar manner as in the fixed cells (Extended Data Figure 5). However, instead of 

predicting based on SRS images of cells where the dye is present (such as in Figures 3a – 3c 

and Extended Data Figure 5), the live cells are first imaged with SRS when no dye is present 

(Figure 3e, left). The cells are then stained while still mounted on the microscope and 

reimaged with two-photon fluorescence to acquire reference fluorescence images (Figure 

3e, right, bottom row). The stain-free SRS images are used to predict fluorescence images 

using the pretrained models (Figure 3e, right, top row) and overlaid for comparison against 

the reference images (Figure 3f). As shown in Figure 3f, the label-free prediction in 

live cells matches well with the truth fluorescence images. We do, however, note slight 

mismatches in fields of view and cellular shape. This is due to both the sample moving 
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and focus changing slightly during the staining process while mounted on the microscope. 

Additionally, organelle movement and cellular reorganization between SRS and fluorescence 

imaging (~10 minutes) leads to mismatch of exact spatial features. Regardless of these 

differences, the UwU-Net demonstrates a firm ability in predicting label-free fluorescence of 

organelles from SRS images of live cells.

Discussion

In this work we have presented UwU-Net, a new architecture for deep learning using 

hyperspectral images. The architecture is highly flexible in both the types of tasks it 

can perform (e.g. classification, segmentation, label-free prediction) and the types of 

hyperspectral images with which it is compatible (e.g. remote sensing, MSI, and SRS 

microscopy). Specifically, we show excellent performance of Indian Pines classification 

with 99.48% overall accuracy for all classifications. We also demonstrate successful drug 

location prediction in fixed tissue from MSI data from windowed and binned images. 

This highlights the capability to mine spectrally dense MSI datasets using both spectral 

and spatial information and offers new possibilities for deep learning in MSI. Finally, we 

show improved label-free prediction of organelle fluorescence by using hyperspectral SRS 

microscopy. We note a significant improvement in nuclear, mitochondrial, and ER prediction 

correlation with respect to previous work by the use of the UwU-Net to interpret spectral 

and spatial information.

We further note that while all models were trained using randomized starting parameters 

and stochastic gradient descent to minimize mean squared error (MSE) between output and 

truth images, the architecture is easily amenable to transfer learning methods and more 

complex error functions for particular tasks. We also note that the UwU-Net architecture 

can potentially be used in a generative adversarial network (GAN) framework to perform 

an even broader class of tasks2,68. However, GAN training of a UwU-Net is not feasible 

currently given memory constraints.

Finally, while only a subset of tasks and imaging techniques are demonstrated here, we 

expect the UwU-Net to be broadly applicable or adaptable to any reasonably designed 

computer vision task involving a hyperspectral imaging technique with potential use in 

medical imaging, microscopy, and remote sensing.

Methods

The following are the methods for the label-free fluorescence prediction demonstration 

experiments and utilization of the UwU-Net algorithm. The methods for the publicly 

available datasets (Indian Pines and the MSI of Spiked Rat Liver) are briefly discussed 

above and details of their experimental parameters can be found in their respective original 

publications39,58.

Cell Sample Preparation

A549 cells were cultured in ATCC F-12K medium with 10% fetal bovine serum at 37 

°C with 5% CO2 atmosphere. Cells were seeded on coverslips 24 hours prior to imaging. 
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Fixed cells were first dyed then fixed using 2% paraformaldehyde. Live cells were first 

mounted, imaged with SRS and then stained for fluorescence imaging. The fluorescent 

dyes used were Hoescht 33342, MitoTracker Red CMXRos, and ER-Tracker Green for 

nucleus, mitochondria, and ER respectively. All dye protocols were based on the provided 

instructions from the manufacturer.

Simultaneous SRS and Fluorescence Microscopy

SRS Microscopy was performed on a homebuilt SRS microscope as described previously. 

Briefly, an Insight DeepSee+ provides synchronized 798 nm and 1040 nm laser pulses 

which are passed through high density glass and a grating stretcher pair, respectively, to 

control pulse chirp. The 1040 nm bean is modulated by an electro optical modulator and 

polarizing beam splitter to operate in the stimulated Raman loss scheme. Time delay of 

the 1040 beam was controlled by a computer-controlled Zaber X-DMQ12P-DE52-KX14A 

delay stage. Both pulses are combined on a dichroic mirror before being directed through 

the microscope by a pair of scanning galvo mirrors. The microscope is a Nikon Eclipse FN1 

equipped with a 40x 1.15 NA objective. The 800 and 1040 nm laser powers were set to 20 

mW at focus for both beams in all experiments. Light passed through the sample is collected 

by a 1.4 NA condenser, filtered by a 700 nm long pass filter (to remove fluorescence 

light) and 1000 nm short pass filter (to remove the 1040 nm light), and finally collected on 

a homebuilt photodiode connected to a Zurich Instruments HF2LI lock-in amplifier. Two 

photon fluorescence is captured in the backwards direction by a 650 long pass dichroic 

towards a photomultiplier tube. SRS signal from the lock-in amplifier and fluorescence 

signal from the photomultiplier tube were collected simultaneously using ScanImage69. 

Images were acquired with 512 x 512 pixels and a pixel dwell time of 8 μs at each of the 10 

vibrational transitions as noted in Figure 3d. It is noted that the transitions noted in Figure 

3d represent only the center of the probed band with 19 cm−1 spectral resolution. This means 

that at the step size of ~15 cm−1 per image in the stack, the full CH region is probed during 

hyperspectral imaging.

UwU-Net Functional Description

An input hyperspectral stack of dimensions (L, X, Y) is first passed to the architecture. Here, 

L represents the number of input channels of the hyperspectral stack (e.g. 200 for Indian 

Pines, 300 for MSI drug location prediction, or 10 for SRS images) and X and Y are the 

number of spatial pixels in the image (in all cases here X = Y). The stack is first reduced to 

(M, X, Y) in the channel dimension, where L > M, with a 3x3 kernel convolution of stride 

1 over all L channels followed by a batch normalization and rectified linear unit (ReLU) 

activation function. The new stack is then reduced once more in the channel dimension by 

the same process to a stack of (N, X, Y) where N is the desired final number of spatial 

tuning channels. The stack is then split at the channel dimension (if N > 1) such that there 

are now N number of (X,Y) images. Each of these images is passed to its own U-Net for 

spatial feature learning as described previously33. The resulting N number of images from 

each spatial U-Net are then reconcatenated in the channel dimension to reform a (N, X, Y) 

stack. This (N, X, Y) stack is then concatenated in the channel dimension to the (N, X, Y) 

stack from prior to splitting (mimicking the recovery of information as in the traditional 

U-Net) to form a stack of (2N, X, Y). This (2N, X, Y) stack is reduced to (O, X, Y) by a 3x3 
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kernel convolution of stride 1 over the 2N channels followed by a batch normalization and 

ReLU activation function. This predicted stack is then compared to the truth stack (also of 

dimension [O, X, Y]), a mean squared error is calculated for all channels, and parameters are 

tuned in a backpropagating fashion.

Training Parameters, Data Preparation, and Hardware

The models trained and shown in this paper were developed and built using the pytorch-fnet 

framework originally developed by Ounkomol et al33. All models were trained using the 

pytorch-fnet default parameters with a few exceptions. The models were trained using 

randomized starting parameters on batches of randomized patches from the given dataset. 

Model parameters are tuned in a stochastic gradient descent manner based on minimization 

of mean squared error. The pytorch-fnet framework utilizes an Adam optimizer with a 0.001 

learning rate and beta values of 0.5 and 0.999. The rat liver drug prediction model which 

was trained only for 23,000 iterations due to the satisfactory prediction accuracy and long 

training iteration time. The Indian Pines and rat liver drug prediction models were trained 

with buffer size of 6 due to the reduced number of training datasets. The Indian Pines 

classification and rat liver drug prediction model used patch sizes of 64 x 64 pixels for 

training, while all organelle prediction models utilized patch sizes of 256 x 256 pixels.

Nearly all image preparations and processing discussed below were performed using Fiji, 

an imageJ platform. The exception was the additional use of Datacube Explorer for initial 

processing of the raw MSI data.

The 200 band Indian Pines dataset was used natively from the published source. The ground 

truth stack was created by separating the individual labeled images via thresholding then 

concatenating all truth images into a TIF stack. The native pytorch-fnet cropper was used 

to crop the images to 144 x 144 pixels from 145 x 145 pixels to accommodate the spatial 

learning in the central U-Nets of the UwU-Net architectures. Training data was augmented 

by rotations and flips with the original dataset withheld for testing. This equated to 6 

training datasets and 2 test datasets. Final predictions were recolored for each label and then 

overlaid into the shown prediction image (Figure 1c). The UwU-Nets reported in Table 1 use 

1 (1-U) or 17 (17-U) spatial U-Nets at their center during training.

The rat liver MSI dataset was first prepared by saving the 330-630 m/z window at 1 m/z 

bins from the raw data using Datacube Explorer. All 300 images were concatenated into 

a TIF stack using Fiji. The monoisotopic images at 0.001 m/z resolution were then saved 

for each drug using Datacube Explorer following the m/z peaks and appropriate FWHM 

bins as noted by Eriksson et al58. The 12 drug peak images were concatenated into a TIF 

stack using Fiji. Both stacks were padded with zeros in Fiji from their native 247 x 181 

pixel size to 256 x 256 pixels to be compatible with the spatial U-Nets within the UwU-Net 

architecture. Training data here was also augmented by rotations and flips with the original 

dataset withheld for testing. There were 7 datasets used for training. The shown 1 m/z bin, 

truth peak, and predicted peak images for the drugs were normalized, contrast adjusted to 

the same level, and colored using the “Red Hot” Fiji lookup table. The UwU-Nets reported 

in Table 1 use 1 (1-U), 5 (5-U), or 12 (12-U) spatial U-Nets at their center.
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The simultaneously collected SRS and Fluorescence images were first separated into 2 

respective TIF stacks. The SRS stack was used as is for training and prediction. The 

fluorescence stacks were averaged to a single image and used as the truth for training and 

prediction. The fixed cell nucleus, mitochondria, and ER models utilized 43, 46, and 35 

images, respectively, with a randomized 80%/20% train-test split for each model. Images 

predicted by the model were normalized, contrast adjusted to the same level, then colored 

using the “mpl-inferno”, “Cyan”, “Green”, and “Magenta” Fiji lookup tables for SRS, 

nucleus, mitochondria, and endoplasmic reticulum, respectively.

All model development, training, and prediction as well as image processing was performed 

on a homebuilt machine running Ubuntu 18.04. The machine is equipped with an AMD 

2950X processor, Nvidia Titan RTX graphics processing unit, 64 GB memory, and a 2 

TB solid state drive. All dependency software versions were based on the pytorch-fnet 

requirements. On our machine, trainings for Indian Pines, rat liver drug, and organelle 

models took ~4, ~8, and ~5 hours respectively. In all models, prediction of individual test 

images took 1 second or less.

Quantitative Metrics

Prediction quality was assessed by overall accuracy (OA), Intersection Over Union (IOU) 

Pearson’s correlation coefficient (PCC), normalized root mean squared error (NRMSE), and 

feature similarity index (FSIM)

OA is used to evaluate the binary pixel values assigned for each classification. Here, the 

number of errantly predicted pixels are counted, subtracted from the total number of pixels, 

then divided by the total number of pixels. A percentage score is reported here where 

accuracy closer to 100% indicates a more accurate prediction.

IOU also measures the segmentation and classification accuracy by taking the ratio of 

the intersection between predicted pixels and true pixels (i.e. true positives) and union of 

predicted pixels and true pixels (i.e. true positives plus false positives). The resulting ratio 

indicates how accurately the model segments and classifies areas where values closer to 1 

indicate more accurate prediction.

PCC is used to correlate the pixels of the truth and predicted images. The covariance of 

the two images is divided by the standard deviation of the two images to provide a value 

indicating pixel-to-pixel correlation. A PCC of 1 would indicate perfect correlation while 0 

would indicate no correlation.

NRMSE is used to express the accuracy of a predicted pixel versus the same pixel in the 

truth image. Here a value closer to 0 indicates a more accurate prediction model.

FSIM is used as an image quality assessment metric that mimics human perception of image 

similarity. Like the structural similarity index (SSIM), FSIM incorporates the spatially 

associated pixels in the images during calculation to provide a better notion of perceived 

similarity. However FSIM emphasizes low-level features of images to more accurately 

reflect the human visual system’s perception of image similarity66. Here an FSIM of 1 

indicates perfectly similar images while 0 would indicate no similarity.
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Quantitative metrics were calculated using Fiji “Coloc 2” (PCC), and “SNR” (NRMSE) 

plugins on the normalized images produced by the trained prediction model. FSIM was 

calculated using the MATLAB code provided by Zhang et al66, following the prescribed 

instructions.

Extended Data

Extended Data Fig. 1: 
Representative predictions facile U-Nets for Hyperspectral images.

Panel a shows the Grass (Mowed Pasture) Indian Pines classification prediction with no 

thresholding. Panel b shows the prediction of Ipratropium from the MSI dataset. Panel c 

shows prediction of nuclear fluorescence from SRS images with contrast values set to mimic 

the images shown in Figure 3. Panel d shows the same image as Panel c with higher contrast 

to demonstrate the U-Net’s inability to remove non-nucleus features. Panel e shows the 

UwU-Net prediction from Figure 3a with high contrast demonstrating superior non-nuclear 

feature removal.
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Extended Data Fig. 2: 
Fluorescence predictions the Modified U-Net with ResNet blocks.

Panel a shows nucleus fluorescence prediction. Panel b shows mitochondrial prediction. 

Panel c shows endoplasmic reticulum prediction. All truth fields of view are the same as in 

Figure 3.
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Extended Data Fig. 3: 
Predicted Organelle fluorescence using traditional U-Net.

Panel a shows prediction of nucleus fluorescence. Panel b shows prediction of mitochondrial 

fluorescence. Panel c shows prediction of endoplasmic reticulum fluorescence. We note the 

improper inclusion of lipid droplets in the mitochondria model and off nucleoli in both the 

mitochondria and endoplasmic reticulum models. The comparison between lipid droplets 

and mitochondria is further depicted in Extended Data Figure 4.

Manifold et al. Page 15

Nat Mach Intell. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4: 
Comparison of mitochondria prediction between UwU-Net and traditional U-Net.

Panel a shows a zoomed in field of view from Figure 1b where a UwU-Net is trained to 

predict mitochondrial fluorescence from a hyperspectral SRS stack. The shown input SRS 

only corresponds to the brightest image out of the 10-image hyperspectral stack. Normalized 

pixel values are plotted below each image corresponding to the drawn dashed lines. In the 

SRS image, a strong lipid droplet is found at ~1.4 μm but is properly removed during 

prediction of the mitochondria at ~1.8 μm and ~3 μm. Panel b shows a zoomed in field 

of view from Extended Data Figure 3b where a traditional U-Net is trained to predict 

mitochondrial fluorescence from a single SRS image. The normalized pixel value plots 

beneath each zoomed-in field of view show a marked difference in how lipid droplets are 

handled. Here the lipid droplets at ~0.8 μm and ~1.8 μm are not removed during prediction.
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Extended Data Fig. 5: 
UwU-Net predicted fluorescence in live-cell SRS imaging.

Panel a shows prediction of nucleus fluorescence. Panel b shows prediction of mitochondrial 

fluorescence. Panel c shows prediction of endoplasmic reticulum fluorescence.
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Extended Data Table 1:

Prediction Accuracy of the UwU-Net for the Indian Pines Dataset.

The table lists the count of false positive, false negative pixels, and intersection over union 

(IOU) per classification class.

Label False Positive Pixels False Negative Pixels IOU

Alfalfa 1 8 0.836

Corn (No Till) 65 231 0.803

Corn (Min Till) 19 149 0.806

Corn 11 35 0.812

Grass (Pasture) 6 101 0.787

Grass (Trees) 9 32 0.948

Grass (Mowed Pasture) 3 2 0.828

Hay (Windrowed) 13 6 0.962

Oats 0 4 0.800

Soybeans (No Till) 59 112 0.834

Soybeans (Min Till) 210 103 0.883

Soybeans (Clean Till) 80 79 0.769

Wheat 4 10 0.935

Woods 75 96 0.875

Buildings (Grass/Trees/Drives) 9 161 0.753

Stone-Steel Tower 6 13 0.812

Overall 570 1142 0.840

Extended Data Table 2:

Quality Metrics for Res-U-Net

PCC, NRMSE, and FSIM values for the Res-U-Net trained as in Extended Data Figure 2. 

The number of images for used for each calculation is the same as in Table 3. Uncertainty 

refers to standard deviation

Organelle Model PCC NRMSE FSIM

Nucleus 0.74 ± 0.04 0.379 ± 0.016 0.76 ± 0.05

Mitochondria 0.75 ± 0.15 0.172 ± 0.053 0.77 ± 0.06

Endoplasmic Reticulum 0.72 ± 0.13 0.112 ± 0.023 0.78 ± 0.03
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Extended Data Table 3:

Quality Metrics for Traditional U-Net Fluorescence Prediction

PCC metrics for the organelle fluorescence prediction models trained with a traditional 

U-Net using a single SRS image. While still highly correlated, we note the errant prediction 

of spurious features in Supplementary Figures 1 and 2.

Organelle U-Net PCC

Nucleus 0.84 ± 0.05

Mitochondria 0.81 ± 0.05

Endoplasmic Reticulum 0.93 ± 0.03

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Architecture Diagrams and Indian Pines Classification.

Panel a shows a schematic representation of the traditional U-Net (adapted from Ounkomel 

et al.33) where a single 2D image is convolved to encode and decode spatial features. 

The “U” in the upper right corner of panel a denotes its schematic representation as 

used in panel b. Panel b shows the schematic representation of the UwU-Net where an 

arbitrarily dimensioned hyperspectral stack is convolved both spectrally and spatially to 

produce an arbitrarily dimensioned output stack. The symbols used in panels a and b are 

noted at the bottom of the figure to show their operational meanings. Here, “conv” is short 

for convolution and the “NxN” shown describes with pixel size of the kernel used for 

convolution. Panel c depicts a false color composite of 3 different spectral bands from the 

original 200-band hyperspectral stack, the truth classifications, and predicted classifications 

from the UwU-net.
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Fig. 2: 
Mass spectrometry images of drug-spikes rat liver slice.

Each row (a-l) shows (from left to right) a 1 m/z bin image from the input 300 image 

hyperspectral stack that contains a given drug’s monoisotopic peak, the 5-U UwU-net 

predicted 0.001 m/z bin image of the drug, and the 0.001 m/z bin image specific to that 

drug’s monoisotopic peak. The following drugs are depicted in their respective panels: 

Ipratropium (panel a), Vatalanib (panel b), Erlotinib (panel c), Sunitinib (panel d), Pazopanib 

(panel e), Gefitinib (panel f), Sorafenib (panel g), Dasatinib (panel h), Imatinib (panel i), 

Dabrafinib (panel j), Lapatinib (panel k), Trametinib (panel l). Scalebar = 4 mm.
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Fig. 3: 
Predicted organelle fluorescence from hyperspectral SRS microscopy images.

All SRS images shown depict only the peak signal image from the hyperspectral stack. 

Panel a shows the prediction of nucleus fluorescence. Panel b shows the prediction 

of mitochondria fluorescence. Panel c shows the prediction of endoplasmic reticulum 

fluorescence. Panel d shows a typical cellular SRS spectrum (black) and the 10 vibrational 

transitions imaged and used for prediction (red). Note that the transitions marked in red 

represent the center of a band of probed transitions with a resolution of 19 cm−1. The 

15 cm−1 steps between each spectral image means the entire CH vibrational region is 

effectively probed during hyperspectral imaging. Panel e shows an SRS image of live cells 

(left) that contain no dye, each algorithms predicted fluorescence (right, top row), and 

fluorescence images taken after the cells are stained (right, bottom row). Panel f shows an 

overlaid combination of each organelle prediction (left), and the same group of cells after 

staining (right).
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Table 1:

Classification accuracy of the Indian Pines dataset.

The individual and overall classification accuracy of the Indian Pines dataset from various hyperspectral deep 

learning models and the presented UwU-Net model. Note the ResNet, MPRN, and AU-Caps-GAN models 

are reported as produced in their respective references, the ResNet and MPRN classifications were reported 

without uncertainties. Reported uncertainties refer to the standard deviation among the n= 16 classifications.

Label UwU-Net (1-U) ResNet41 MPRN41 AU-Caps-Gan42 UwU-Net (17-U)

Alfalfa 97.40 98.33 98.89 99.15 99.96

Corn (No Till) 93.66 99.28 99.51 99.50 98.57

Corn (Min Till) 95.98 98.80 98.92 99.12 99.19

Corn 98.83 98.20 98.52 98.34 99.78

Grass (Pasture) 97.60 97.97 97.92 98.70 99.48

Grass (Trees) 98.26 98.80 99.08 99.42 99.80

Grass (Mowed Pasture) 99.98 100 98.18 98.74 99.98

Hay (Windrowed) 97.65 100 100 99.27 99.91

Oats 99.90 97.50 97.50 98.68 99.98

Soybeans (No Till) 96.35 97.99 98.14 98.45 99.18

Soybeans (Min Till) 79.37 99.27 99.38 99.12 98.49

Soybeans (Clean Till) 97.15 98.35 98.69 98.34 99.23

Wheat 99.50 99.14 98.90 98.69 99.93

Woods 94.87 99.88 99.98 99.33 99.18

Buildings (Grass/Trees/Drives) 98.07 99.55 99.68 99.41 99.18

Stone-Steel Tower 99.74 94.52 96.44 98.94 99.91

OA 96.52 ± 4.7 99.01 99.16 99.12 ± 0.25 99.48 ± 0.50
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Table 2:

Quality metric values for the MSI dataset predictions

The table shows spiked drugs, their respective masses, and the Pearson correlation coefficients (PCC, left 

column under each model) and normalized root mean squared error (NRMSE, right column under each model) 

for the low resolution and predicted images from various models with respect to the high resolution image for 

the drug. U-Nets (Non-HS) refers to individual traditional U-Nets trained from a single image input of low 

mass resolution (i.e. non-hyperspectral images). The “only drug bins” UwU-Net was trained on a 12 image 

input stack of only the relevant 1m/z images that contain the drug peak. All other UwU-Nets were trained 

using the full 300 image stack with various numbers of spatial U-Nets at their center (1-U, 5-U, or 12-U). The 

uncertainty values refer to the standard deviation among the respective metrics for the given model (n=12 for 

all).

1 m/z bin U-Nets (Non-HS) UwU-Net (12-U) UwU-Net (1-U, only 
drug bins)

UwU-Net (1-U) UwU-Net (5-U)
Drug (mass, 
m/z)

Ipratropium 
(332.223)

0.99 0.003 0.99 0.011 0.99 0.013 0.99 0.007 0.99 0.014 0.99 0.013

Vatalanib 
(347.107)

0.97 0.010 0.98 0.019 0.95 0.012 0.97 0.010 0.95 0.013 0.96 0.013

Erlotinib 
(394.177)

0.38 0.104 0.93 0.059 0.89 0.025 0.94 0.023 0.93 0.022 0.93 0.022

Sunitinib 
(399.220)

0.08 0.096 0.12 0.399 0.67 0.055 0.86 0.033 0.89 0.029 0.89 0.030

Pazopanib 
(438.171)

0.63 0.076 0.99 0.030 0.97 0.013 0.98 0.014 0.98 0.011 0.98 0.013

Gefitinib 
(447.160)

0.24 0.250 0.84 0.053 0.88 0.026 0.56 0.044 0.88 0.027 0.89 0.022

Sorafenib 
(465.094)

0.21 0.077 0.93 0.121 0.93 0.021 0.93 0.020 0.93 0.020 0.992 0.021

Dasatinib 
(488.267)

0.91 0.033 0.99 0.016 0.98 0.014 0.98 0.014 0.98 0.013 0.98 0.012

Imatinib 
(494.267)

0.25 0.240 0.72 0.096 0.59 0.057 0.73 0.042 0.78 0.040 0.75 0.039

Dabrafinib 
(520.143)

0.35 0.295 0.96 0.058 0.92 0.027 0.95 0.024 0.96 0.020 0.96 0.019

Lapatinib 
(581.143)

0.26 0.084 0.8 0.024 0.80 0.023 0.76 0.026 0.80 0.024 0.74 0.024

Trametinib 
(616.086)

0.05 0.047 0.11 0.023 0.12 0.030 0.03 0.024 0.10 0.025 0.24 0.023

PCC 0.44 ± 0.34 0.78 ± 0.32 0.81 ± 0.25 0.81 ± 0.28 0.85 ± 0.25 0.85 ± 0.21

NRMSE 0.110 ± 0.098 0.076 ± 0.11 0.026 ± 0.015 0.023 ± 0.012 0.021 ± 0.008 0.021 ± 0.007
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Table 3:

Quality metric values for the label-free prediction of organelle fluorescence.

The table shows pearson correlation coefficients (PCC), normalized root mean squared error (NRMSE), and 

feature similarity index (FSIM) values for the 3 organelles predicted from hyperspectral SRS images. Numbers 

shown are based on the average of all withheld test images (9, 9, and 7 images for nucleus, mitochondria, and 

ER, respectively) of 512 x 512 pixels. Uncertainty refers to the standard deviation among the withheld test 

images.

Organelle Model PCC NRMSE FSIM

Nucleus 0.92 ± 0.03 0.047 ± 0.022 0.89 ± 0.04

Mitochondria 0.84 ± 0.05 0.059 ± 0.019 0.93 ± 0.02

Endoplasmic Reticulum 0.94 ± 0.02 0.038 ± 0.016 0.92 ± 0.03
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