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Abstract: Near-infrared spectroscopy (NIRS) has become a more popular approach for quantitative
and qualitative analysis of feeds, foods and medicine in conjunction with an arsenal of chemometric
tools. This was the foundation for the increased importance of NIRS in other fields, like genetics
and transgenic monitoring. A considerable number of studies have utilized NIRS for the effective
identification and discrimination of plants and foods, especially for the identification of genetically
modified crops. Few previous reviews have elaborated on the applications of NIRS in agriculture
and food, but there is no comprehensive review that compares the use of NIRS in the detection
of genetically modified organisms (GMOs). This is particularly important because, in comparison
to previous technologies such as PCR and ELISA, NIRS offers several advantages, such as speed
(eliminating time-consuming procedures), non-destructive/non-invasive analysis, and is inexpensive
in terms of cost and maintenance. More importantly, this technique has the potential to measure multiple
quality components in GMOs with reliable accuracy. In this review, we brief about the fundamentals and
versatile applications of NIRS for the effective identification of GMOs in the agricultural and food systems.

Keywords: chemometric analysis; deep learning; environmental risk; genetically modified organisms;
near-infrared; spectroscopy

1. Introduction

Nowadays, genetics has a wide range of applications in various sectors of science,
it is used by a variety of techniques and methods, and resulting in a rapid increase in
growth rate. The production of genetically modified organisms (GMOs) is one of the most
important applications. The number of GMOs is increasing in several countries, particularly
in the field of agriculture. Genetically modified (GM) crops have several advantages, such
as insect, weed, disease, and drought resistance, improved nutritional value, and increased
production [1]. Transgenic plants are grown in 29 countries, and their cultivated area
has increased 100 times since 1996, hitting 190.4 million hectares [2,3]. However, across
a significant portion of the world, non-governmental organizations and/or the general
public are hesitant or opposed to the production and use of GM crops [4]. Furthermore, it
has been argued that the use of GM technology could result in unpredicted negative effects
on food and environmental safety. In several countries where the commercial cultivation
of GM crops is not allowed, GM seeds/products are reportedly, being imported for food
and other applications [5]. In this case, unintentional release into the environment is the
major issue. For example, it has been reported in various countries, like Japan, Canada,
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Switzerland and Australia, that GM crops are sometimes found growing on the roadsides
as a result of the spilling of GM seeds during transport. Pollen-mediated transfer of
uncontrolled foreign genes into nearby wild plants may lead to the production of toxins
linked to GM food, and it can change the host plant’s biodiversity by altering the expression
of existing genes [6]. Therefore, the regulatory bodies enforce legal pressure to limit the
production of GMOs. Consequently, there is a need for precise and inexpensive GMO detection
methods. Several DNA and protein based analytical methods, such as polymerase chain
reaction (PCR)/restriction enzyme assay and so on (Figure 1), have been used for detection,
characterization and authentication of GM crops and their derived agricultural products [7].
Overall, the DNA based methods offer adequate confidence and reliability when compared
to other methods for identifying transgenics [8,9]. However, these approaches are destructive,
time-consuming, laborious, and expensive, making them unsuitable for online applications [8].
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Apart from the DNA/protein-based methods, a few methods like chromatography
and spectroscopic techniques such as mid-infrared (MIR), near-infrared (NIR) spectroscopy,
terahertz and laser-induced breakdown spectroscopy were found to be effective in the
identification of GM crops [10] (Table 1). Among them, near infrared spectroscopy (NIRS)
was the most common. NIRS is a rapid and not tedious technology that has been widely
used as a non-destructive approach for identifying GMOs. NIRS is a well-known and
powerful method for obtaining quantitative data on the chemical and physical characteris-
tics [11] of different biomasses [12]. It includes visible near-infrared (Vis-NIR) and Fourier
transformed near-infrared (FT-NIR) spectroscopies. The most significant advantages of
this technique over previous GMO research processes are its low cost, little to no sample
preparation, and less time-consuming procedures [1]. Another advantage is that there are
no chemicals used in the analytical method, making it ecologically friendly. NIRS has been
used for varietal identification in various crops, including wheat, maize and rice and for
detecting GM crops [13]. It is also being used to detect transgenic foods and adulterations
in food products [1,4,14]. The technique could also predict important food components in
vital agricultural products such as tomatoes [15] and mung beans [16]. Nonetheless, there
is still a major gap with regards to a detailed and thorough application of NIRS from its
fundamentals to its application in GMO analysis. In this review, we will focus on the basic
principles, test methods, and applications of NIRS for the detection of GMOs.
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Table 1. The different detection methods for genetically modified organisms.

Parameter
Protein-Based DNA-Based Microscopy Chromatography Spectroscopy

Western Blot ELISA Lateral Flow
Strip Southern Blot Qualitative

PCR
Real-Time

PCR
Classical

Microscopy
HPLC and

GC-MS
NIRS and
Vis-NIRS

TeraHertz
Spectroscopy

Ease of use Difficult Moderate Simple Difficult Difficult Difficult Difficult Difficult Simple Moderate
Needs special

equipment Yes Yes No Yes Yes Yes Yes Yes Yes Yes

Sensitivity High High High Moderate Very High High High Very High High High

Duration 2 d 30–90 min 10 min 6 h 1.5 d 1 d 1 d 1–2 d Less than
1 min * 15 min

Cost/sample
(US$) 150 5 2 150 250 450 2 20 ** 10

Gives
quantitative

results
No Yes No No No Yes No Yes Yes No

Suitable for
field test No Yes Yes No No No No No Yes In progress

Employed
mainly in Academic labs Test facility Field Testing Academic labs Test facility Test facility Test facility Test facility All fields Test facility

Technical Yes Yes No Yes Yes Yes Yes Yes No No
Selective Yes Yes Yes Yes Yes Yes Yes Yes No No
Portable

/handheld
versions
available

No No Yes No No No No No Yes In progress

ELISA, Enzyme linked immunosorbent assay; DNA, Deoxyribonuclic acid; PCR, Polymerase chain reaction; HPLC, High pressure liquid chromatography; GC-MS, Gas chromatography mass spectroscopy; NIR,
Near infrared spectroscopy; Vis-NIRS, Visible-Near infrared spectroscopy. *: Depends on instrument type. **: Depends on handheld or benchtop.
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2. Principles and Characteristics of NIRS

NIRS is based on the absorption of light by various materials in the Vis-NIR region
of the electromagnetic spectrum. The normal wavelength range for NIR is between 780
and 2500 nm, whereas the spectral range for the Vis-NIR wavelength region range is
from 350–2500 nm (Visible (350–780) and NIR (780–2500)) and it overlaps with the optical
radiation range (100–1000 nm) [17,18]. The absorptions detected by Vis-NIRS spectroscopy
are primarily overtones and combinations of vibrational modes involving C–H, O–H,
and N–H chemical bonds [19]. The NIR spectrometers contain a light source, a beam
splitter system (wavelength selector), a sample detector, an optical detector, and a data
processing/analyzing system (optional). These parts can have varying characteristics and
should be chosen based on their intended usage in order to produce an effective and
consistent instrument. Most NIRS systems operate either in transmission, reflection, diffuse
reflectance, or transflectance mode depending on the type of instrument being used and
the type of analysis being performed. Initially, the spectra of samples are collected using
an NIR spectrometer. After the collection of data, chemometric analysis is performed to
create the calibration model for evaluating the target component (s) using important bands
in the NIR spectrum. This step is critical because the precision at this stage ensures that the
final calibration model (s) guarantees high reliability. Therefore, the major disadvantage of
NIRS is that it always requires reference data for quantitative analysis, which necessitates
the use of chemical analysis through conventional analytical instruments [9].

Generally, after collecting the spectra from the spectrometer, the following processes
take place: (1) pretreatment or preprocessing of the spectra, (2) building of the calibration
models, (3) model transfer, if necessary [20]. There are models and processes for each of
the above portions, which are discussed herein.

2.1. Preprocessing Methods

In the first step, generated spectra should be pretreated with specific processes, the
main goal of this step is to remove irrelevant information from the collected spectra [21,22].
Besides wavelength selection, baseline correction (Savitzky Golay smoothing filter), mul-
tiplicative scatter correction (MSC), noise removal, and scaling are four steps in a typical
preprocessing step for NIRS analysis [23]. The objective of the preprocessing procedure
might be one of three factors: to enhance a forthcoming exploratory analysis, to improve
a subsequent bi-linear calibration model (to compel the data to satisfy Lambert-law),
or to improve a subsequent multivariate data analysis model [24]. The two most used
preprocessing approaches in NIRS are scatter-correction methods and spectral derivatives.

The scatter-correction methods of preprocessing include Multiplicative Scatter Cor-
rection (MSC), Inverse MSC (ISC), Extended MSC (EMSC), Extended Inverse MSC, de-
trending, Standard Normal Variate (SNV) and normalization [25]. Furthermore, a wide
range of normalization methods, such as mean-centering (MC), auto scaling (AS), vector
normalization (VN), and area normalization (AN), are commonly applied in one or more
stages of the preprocessing module [22] (Figure 2).

These methods are intended to decrease the (physical) variability between sam-
ples caused by scattering. Martens et al. [26] presented MSC in its basic form, while
Geladi et al. [27] further expanded on it. MSC is built on the concept that artifacts or im-
perfections (for example, unwanted scatter effects) will be excluded from the data matrix
prior to data modeling. As Pedersen et al. [28] have pointed out, applying the inversed
version of MSC, known as ISC, is quite a simple procedure to apply. The main problem
with MSC is defining an appropriate reference spectrum among the multiple spectra [25].
Generally, SNV and normalization methods are based on similar principles. They do not
use least squares fitting to estimate their parameters, but they can be susceptible to noisy
entries in the spectrum. More robust counterparts of these statistical moments should be
used as correction parameters instead of the average and standard deviation methods [29].
Generally, MSC and SNV are two widely known methods that reduce spectral distortions
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due to scattering. They proved effective in correcting problems of non-homogeneous
distribution of the particles and changes in refractive index in food applications [30].
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Spectral derivatives have been utilized in analytical spectroscopy for decades because
they may eliminate both additive and multiplicative effects in the spectra. The spectral
derivative methods include Norris-Williams (NW) derivatives and Savitzky-Golay (SG)
polynomial derivatives. All preprocessing methods aim to reduce un-modeled variability
in the data to improve the feature sought in the spectra, which is frequently in a linear
relationship with a phenomenon (e.g., a constituent) of interest. This can be achieved by
using an appropriate preprocessing method, but there is always the risk of employing the
incorrect preprocessing technique, which can result in the removal of essential informa-
tion [25,31]. The NW derivation is a fundamental approach to avoiding noise amplification
in finite differences. Norris [32] proposed this methodology and Norris and Williams [33]
elaborated on it as a method for calculating the derivative of NIR spectra. The NW deriva-
tive works because of the high degree of co-variation and smoothing of the NIR spectra
and not necessarily due to spectroscopic reasoning. Savitzky and Golay [34] popularized
a method for numerically deriving a vector that includes a smoothing step. The SG is an
efficient spectral preprocessing method which has a wide variety of SG modes with a wide
scope of applications [25,35]. While simultaneously using various preprocessing methods
like SG first derivative, normalization by range, SNV, multiplicative scatter-correction,
continuum removed reflectance (CRR), and the transformation to absorbance with different
models, it was suggested that CRR could be the best method [36].

2.2. Chemometric Analyses

NIR spectra are mainly composed of highly overlapping weak bands. For quantitative
analysis of NIR spectra, a multivariate calibration approach should be used. It is becoming
more popular as an analytical technique in various fields. The reagent-free NIRS analysis
has been established in parallel with chemometric developments, which have high potential
for detection of GMOs and various applications. One of its most popular uses is for
classification studies using chemometric approaches such as soft independent modeling
of class analogies (SIMCA) [37], principal component analysis (PCA) [38], hierarchical
cluster analysis (HCA), partial least-squares discriminant analysis (PLSDA) [39], and
artificial neural networks (ANNs) [40], linear discriminant analysis (LDA) [41], locally
weighted regression (LWR) [42], multivariate adaptive regression splines (MARS) [43],
back propagation neural network (BPNN), Moving window partial least squares (MWPLS),
least squares-support vector machine (LS-SVM) [44] (Figure 2) and other methods, has
been applied to differentiate samples according to the spectral properties [4,45]. These
chemometric techniques are often regression-based techniques or classification techniques,
and can be either linear or non-linear, supervised or non-supervised methods.



Int. J. Mol. Sci. 2021, 22, 9940 6 of 16

Deep learning is a rapidly emerging field in machine learning that has found widespread
use in image and audio recognition [45,46]. Machine learning enables systems to auto-
matically learn and improve based on their experiences. With the emergence of large
spectral libraries, we must seize the opportunity to use big data analytics to aid in the
use and processing of spectral data, which goes beyond commercial software or packaged
machine learning methods [47]. Deep learning-based model is different from traditional
neural networks, which have been utilized in NIR spectra processing, as it is made up of
multiple processing layers and deeper architectures to learn data representation [45]. Deep
learning neural networks may use unprocessed or raw data (such as images or spectra)
to automatically find the representations required for prediction. At each layer, the data
is modified, magnifying key elements of the input data and suppressing irrelevant data
for better prediction [48]. With the emergence of artificial intelligence and deep learning
methods, several new model systems, such as Gaussian processes [49], local partial least
squares regression [50], convolutional neural networks (CNN) [48], recurrent neural net-
works (RNNs) [51], fuzzy rule-based systems [52], DeepSpectra model [53], residual neural
networks (ResNet), multi-kernel support vector machines [54] have been introduced and
have become widely used model systems. Among the most popular deep learning-based
models, the DeepSpectra model outperforms all the other model systems [55]. The combi-
nation of deep learning with spectroscopic detection methods is a promising approach for
quality assessment of food and agro-products and GMO detection [55,56].

3. Overview of Biological Applications of NIRS

NIRS has an array of biological applications that include agricultural sciences, agron-
omy, soil sciences, and so on (Figure 2). Over the past four decades, it has been used
to determine the characteristics of agricultural systems, notably in crop and food sci-
ences [56,57]. The NIRS technique is frequently used for variety discrimination [58] and
internal properties such as water content, pH, oil content, protein content, fatty acid com-
positions (oleic acid, erucic acid, etc.), glucosinolate, acid detergent fiber (ADF), sinapate
ester content and rigidity in various plant varieties [59–61]. The total anthocyanin content
of the red-grape homogenates [62], black rice seeds [63] were predicted using NIRS. We
can use NIRS for the detection of diseased plants also. Spectral differences between normal
and diseased plants can be differentiated using NIRS. Previously, this method was used
for identification of disease incidence in plants and postharvest food products [64,65].
Basati et al. [66], have used NIRS for the detection of pest attacks on wheat plants based on
pattern recognition as few researchers have detected pesticide residues on the surface of
plant leaves and fruits in agricultural fields and forestry [67,68].

Although more research on food quality analysis has been conducted, the use of
NIRS in food safety evaluation and control is also increasing [69,70]. For example, the
quality assessment of lamb meat using NIRS has proven to be an effective technique
for assessing tenderness [71], pH, fat, protein, and water content [72], and fatty acid
composition in lamb meat [73]. On-line monitoring of meat attributes may also be set
up with handheld/portable NIRS, allowing for industrial applications [70,74]. Various
applications of NIRS in different food products have been reviewed by several researchers.
The in-depth review by Prieto et al. [75] provided an outstanding overview of the ability of
NIRS to determine meat chemical composition and quality. In addition, Nicolai et al. [76],
Lin and Ying [77] and Chandrasekaran et al. [78] reviewed the use of NIRS to assess the
quality and safety of fruits and vegetables. Huang et al. [57] and Wang et al. [79] presented
an updated overview of food and beverage quality monitoring. Alishahi et al. [1] and
Dale et al. [80] reviewed the use of NIRS to distinguish between transgenic and non-
transgenic foods, feeds, and other products. Furthermore, Fu and Ying [81], Qu et al. [69]
and Caporaso et al. [82] provided different aspects of the applications of NIRS in food
safety measurement and control. Apart from this, NIRS is used as a potential analytical
technique in a variety of physical and chemical analyses in various industrial fields [68,83]
and also in new emerging fields referred to as aquaphotomics. Aquaphotomics is a
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new scientific field that is increasingly being explored by many researchers dealing with
aqueous systems [16]. It revolves around the principle of using water as a holistic marker
to extract information about many different water molecular conformations and their
interaction with surrounding solutes by means of their absorbance bands and a light-water
phenomenon [84]. Aquaphotomics has been used for noninvasive bio diagnosis and also
for measuring low concentrations of sugar in water [84].

4. Applications of NIRS for the Detection of GM Crops and Transgenic Foods

Gene flow from genetically modified organisms might pose a threat to the environment.
Hence, it is critical to develop reliable, quick, and low-cost technologies for detecting and
monitoring GMOs in crops and their finished products. Researchers have started to
explore the potential of NIRS for the rapid detection of GMOs in both laboratory and field
conditions (Table 2). A typical example of the evaluation of GM crops using NIRS was
shown in Figure 3. Roussel et al. [42] were the first to use NIRS to distinguish Roundup
Ready® from conventional soybeans. Roundup Ready® soybean is a glyphosate resistant
GM soybean (5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS gene) developed
by Monsanto that accounts for more than 83% of global annual soybean production [85].
In the study, a database of around 8000 samples yielded an accuracy rate of 93% using
PLS, LWR and ANN chemometric models. Concurrently, Munck et al. [86] differentiated
normal barley seeds and lys3a (high-lysine gene) mutated seeds with both proteomics
and NIRS methods. They preprocessed the data with MSC and assessed the spectral
data with chemometric analysis (PCA, PLSR) and effectively discriminated the mutant
barley seeds with 100% accuracy rate. Later, Rui et al. [87] applied a back-propagation
approach to distinguish transgenic maize (Cry1Ac) from their parents with 98% accuracy
rate by using a continuous wave of NIR diffuse reflectance spectroscopy within the range of
4000–12,000 cm−1. Xie et al. [88] also employed Vis-NIRS for the discrimination of transgenic
tomatoes with the antisense ethylene receptor (LeETR2) gene. For preprocessing, they used MSC
and SG 1st and 2nd derivatives, whereas in the case of chemometric analysis, PCA, DA, and
PLS-DA were used for effective discrimination with the 100% accuracy rate. In other reports,
they have studied tomato plants with antisense LeETR1 transgene with various chemometric
methods like PLS-DA [89], PCA, SIMCA and DPLS [90] with a classification accuracy of 100%
(Table 2). Later, they studied the antisense LeETR2 inserted transgenic tomato with multiple
chemometric analyses such as LS-SVM, DA, SIMCA and DPLS (100% accuracy) [91]. In another
study, Xie et al. [92], used the SNV method of preprocessing and PCA, DA chemometric analysis
for the discrimination of transgenic tomatoes and succeeded with 100% accuracy.

1 
 

 
Figure 3. A typical example for application of NIRS with chemometrics on the detection of transgenic plants.
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Table 2. Studies on genetically modified organism detection using near infrared spectroscopy.

S. No Plant Gene Preprocessing Method Chemometric Analyses Remarks Reference

1 Soybean Roundup Ready®

(EPSPS gene)
SNV PLS, LWR, ANN Around 8000 samples discriminated

with an accuracy rate of 93% [42]

2 Barley Mutation of lys3a MSC PCA, PLSR Effective discrimination of barley seeds [86]

3 Maize cry-gene - - Effective discrimination with
back-propagation approach [87]

5 Tomato Antisense LeETR2 MSC, SG 1st and 2nd derivatives PCA, DA, PLS-DA Effective discrimination of tomato with
highest accuracy [88]

6 Tomato Antisense LeETR1 MSC, SG 1st and 2nd derivatives PLS-DA Effective discrimination of tomato with
highest accuracy [89]

7 Tomato Antisense LeETR1 MSC, SG 1st and 2nd derivatives PCA, SIMCA, DPLS Effective discrimination of tomato with
highest accuracy [90]

8 Tomato Antisense LeETR2 - LS-SVM, DA, SIMCA, DPLS Effective discrimination of tomato with
highest accuracy [91]

9 Tomato Antisense LeETR1 SNV PCA, DA Effective discrimination of tomato with
highest accuracy [92]

10 Cotton cry1Ac MSC, SNV, SG 1st and 2nd
derivatives PLS, PCR Effective discrimination of cotton with

100% accuracy rate [93]

11 Rice RCH10, RAC22, B-1,3-glu, B-RIP SNV, SG 1st and 2nd derivatives PCA, PLS-DA
A comprehensive study for the GM

discrimination with multiple genes and
methods

[94]

12 Soybean EPSPS gene 2nd derivatives PCA, PLS-DA
Using Vis-NIRS for effective

discrimination of soybean with 100%
accuracy

[95]

13 Soybean Roundup Ready®

(EPSPS gene)
- PCA, PLS-DA Successful discrimination of Roundup

Ready® soybean [96]

14 Rice cry1Ab MSC, SNV, SG 1st and 2nd
derivatives PCA, PLS-DA, DA

Comparative analysis using fourier
transformed NIR (FT-NIR), Vis-NIR

and MIR spectroscopies for the effective
discrimination of GM rice

[97]

15 Rice Bt cry gene CDA PCA, PLS-DA, LS-SVM,
PCA-BPNN

Effective discrimination of GM rice and
non-GM rice seeds [48]

16 Sugarcane Bt and Bar genes SG PCA, LDA Effective discrimination of 456 GM and
non-GM sugarcane leaf samples [98]

17 Rice OsTCTP and Osmi166 SNV PLS-DA

Effectively discriminated rice lines
transformed with protein (OsTCTP)
and regulation (Osmi166) genes by

using NIRS

[99]
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Table 2. Cont.

S. No Plant Gene Preprocessing Method Chemometric Analyses Remarks Reference

18 Bread wheat RNAi mediated downregulation
of gliadin epitopes SNV/DT DPLS Discrimination of RNAi mediated GM

wheat with low gliadin (gluten) content [100]

19 Maize cry1Ab/cry2Ag-G10evo WT, SNV, MSC PCA, SVM Effective discrimination of GM maize
lines with 100% accuracy [18]

20 Rice CRISPR-Cas9 mediated mutation
of TGW6 WT SVM, ELM

Effective discrimination of CRIPR-Cas9
mutated rice (TWG6 gene) and normal

rice by using NIRS
[19]

21 Rice cry1Ab/cry1Ac NWS, SNV, MSC, SG 1st
derivatives PCA, SVM, PLS-DA Effective discrimination of GM rice

lines with highest accuracy rate. [3]

Transgenic Foods

1 Canola oil - - PCA, DPLS
117 canola oil samples were

discriminated with a 97.30% accuracy
rate

[101]

2 Soybean oil - Mean centering/MSC PCA, SVM-DA, PLS-DA
40 transgenic and 40 non-transgenic
soybean oil discriminated with 100%

accuracy rate
[4]
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Biradar et al. [93], have used MSC, SNV and SG 1st and 2nd derivatives preprocessing meth-
ods for the discrimination of transgenic cotton (cry1Ac) from non-transgenic plants. CrylAc
gene confers resistance to lepidopteron pests. They have used the Vis-NIR spectral range of
400–2500 nm in spectroscopic analysis and by utilizing PLS and PCR chemometric analysis,
they have attained a 100% accuracy rate in GM crop detection (Table 2). Jiao et al. [94]
used NIR, GC-MS, HPLC, and ICP-AES coupled with chemometric strategies for the dis-
crimination of transgenic rice from non-transgenic rice. Various types of transgenic rice
were used in this study, including anti-fungal genes (RCH10, RAC22, β-1,3-Glu and B-RIP),
chitinase gene (RC24), β-1,3-glucanase gene (β-1,3-glu), p35H containing a hygromycin
phosphotransferase gene (hpt) and insect resistant genes (sck gene and cry1Ac). They have
used various preprocessing methods (SVM, SG, first and second derivatives) and different
chemometrics (PCA, PLS-DA) for effective discrimination and found a higher level (100%
accuracy) of discrimination with PLS-DA chemometric analysis. Lee and Choung [95],
evaluated the potential of NIRS in the herbicide resistant transgenic soybean (EPSPS gene)
and the non-transgenic soybean. The spectral data from the Vis-NIR region (400–2500 nm)
was preprocessed and assessed with chemometric analysis (PCA, PLS-DA) for effective
discrimination with the accuracy rate of 100%. Using NIRS, Agelet et al. [96] compared five
varieties of Roundup Ready® soybean (EPSPS gene) to conventional soybeans. Though
the Roundup Ready® has been assessed previously [46], for effective discrimination with
advanced chemometric analysis, they have done the experiment and it resulted in successful
discrimination with PCA and PLS-DA (100% accuracy rate).

Rice producers face severe economic losses due to insect attacks. Although the use of
insecticides can help to mitigate the damage to some extent, it also raises production costs,
and pesticide residues lead to serious environmental risks. A better approach appears to
be the production of insect-resistant transgenic plants (cry1Ab, cry1Ac genes) [97]. The
comparative analysis of GMOs using Fourier transformed NIR (FT-NIR), Vis-NIR and
MIR spectroscopies for the effective discrimination of GM rice (cry1Ab) with its non-
transgenic parents was done by Xu et al. [97]. The preprocessing method used was
MSV, SNV and SG 1st and 2nd derivatives combined with the chemometric analyses
(PCA, DA, PLS-DA) resulted in successful discrimination with the highest accuracy rate
(100%). The comparative analysis of multiple spectroscopy methods helps to find the most
efficient spectroscopy, preprocessing method, and chemometric analysis for the prediction
of transgenic crops. Similarly, Liu et al. [44] used VNIR spectroscopy in combination with
chemometric tools (PCA, PLS, PCA-BPNN and LS-SVM) to distinguish GM rice seeds
(cry1Ab/cry1Ac) from non-GM rice seeds with an accuracy rate of up to 100% using the
LS-SVM model (Table 2). Guo et al. [98] also showed that utilizing NIRS detected obvious
distinctions between GM and non-GM sugarcane with up to 100% classification accuracy. A
total of 456 sugarcane leaf samples, comprising 150 non-transgenic and 306 transgenic with
Bt and Bar genes were studied. They have used the SG and moving-window waveband
screening method of preprocessing for the spectra in combination with PCA and LDA
analyses for effective discrimination. Long et al. [99] have discriminated between rice
lines transformed with a protein gene (OsTCTP) and a regulation gene (Osmi166) by using
NIRS. They used SNV and PLS-DA methods for preprocessing and chemometric analysis
respectively and resulted in a 100% classification rate.

NIRS was used by Garcia-Molina et al. [100] to distinguish GM wheat grain and
flour from non-GM wheat lines. The RNAi mediated GM wheat with low gliadin (gluten)
content was successfully discriminated with the various NIR spectral ranges coupled with
chemometric analysis (PLS) with a 99% accuracy rate. Gluten proteins are associated
with celiac disease and other complications. Because of their high proline and glutamine
concentration, they are referred to as prolamins [100]. Feng et al. [17] have assessed the GM
maize (cry1Ab/cry2Aj-G10evo proteins) with their non-GM parents by using hyperspectral
imaging in the NIR range of 874.41–1733.91 nm combined with chemometric (PCA, SVM
and PLS-DA) data analysis. They have discriminated between GM and non-GM maize
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with a 100% accuracy rate. Feng et al. [18] have assessed the CRIPR-Cas9 mutated rice
(TWG6 gene) and normal rice by using NIRS. The preprocessed (WT) spectra assessed with
chemometric methods (SVM, ELM) resulted in higher accuracy (100%) of discrimination
(Table 2). Recently, Hao et al. [3] have studied transgenic rice (cry1Ab/cry1Ac) for effective
discrimination against non-GM rice. In this study, they used multiple preprocessing (NWS,
SNV, MSC and SG 1st derivatives) and chemometric analyses (PCA, SVM, PLS-DA) and
resulted in 100% accuracy of differentiation capacity.

The NIRS has been used for the discrimination of foods for their quality, longevity,
and adulterations were quite common. As compared to transgenic crops, quite a few
studies have been performed on the detection of transgenic foods using NIRS. Previously,
Zhu et al. [101] used NIRS for the detection of transgenic canola oil in 117 canola oil samples
with PCA and DPLS chemometric analyses to assess its feasibility for discrimination. It
resulted in a 97.30% accuracy rate for the discrimination of transgenic canola oil by using
the DPLS method (Table 2). Later on, Luna et al. [4] used FT-MIR spectroscopy coupled
with chemometric analysis (SIMCA, SVM-DA, PLS-DA) for the effective discrimination
of transgenic soybean oil and resulted in a 100% accuracy rate. The eighty oil samples
were assessed (40 transgenic oil and 40 non-transgenic oil) and the multiple spectral
preprocessing methods such as MC, MSC, OSC and SG derivatives (first and second) were
used for the discrimination of transgenic oils.

5. Conclusions and Future Perspectives

The combination of fundamental science (e.g., plant physiology, biochemistry, and
other fields), spectroscopy, and multivariate data analysis enabled the development of
technology for reliable and quick on-farm or in-field low-cost analysis. The spectra from
NIRS can be used as a fingerprint to elucidate certain compositional features that are
difficult to identify using traditional chemical analysis. However, it has a few limitations,
such as the low precision and subjectivity of the reference models, which are also barriers
to their widespread applications. NIRS sometimes cannot detect or discriminate between
molecules/compounds with minor concentrations, but the indirect impacts of such variations
can be observed within the spectrum. Thus, more rigorous calibrations are needed in order to
improve sampling procedures and reference methods for the commercial applications of NIRS.

In agriculture and food industries, NIRS has become an important analytical technique
with multiple applications. Several studies, as discussed above, have demonstrated that
NIRS combined with chemometric tools has the potential to discriminate against transgenic
crops and foods since it enables quick and accurate identification of transgenics on a
larger scale. Although environmental factors could affect the spectral reflectance of the
object under the test, the wide availability of preprocessing tools has enabled successful
application of NIRS for transgenic analysis with reliable results. Furthermore, studies may
be required to develop targeted models for specific component analysis in transgenic foods
(Figure 4). Also, studying the spectrum of water through aquaphotomics is a novel field
that could be explored for monitoring transgenic foods.
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