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Electroconvulsive therapy (ECT) was established based on Meduna’s hypothesis that

there is an antagonism between schizophrenia and epilepsy, and that the induction

of a seizure could alleviate the symptoms of schizophrenia. However, subsequent

investigations of the mechanisms of ECT have largely ignored this originally established

relationship between these two disorders. With the development of functional magnetic

resonance imaging (fMRI), brain-network studies have demonstrated that schizophrenia

and epilepsy share common dysfunctions in the default-mode network (DMN), saliency

network (SN), dorsal-attention network (DAN), and central-executive network (CEN).

Additionally, fMRI-defined brain networks have also been shown to be useful in the

evaluation of the treatment efficacy of ECT. Here, we compared the ECT-induced

changes in the pathological conditions between schizophrenia and epilepsy in order to

offer further insight as to whether the mechanisms of ECT are truly based on antagonistic

and/or affinitive relationships between these two disorders.

Keywords: electroconvulsive therapy (ECT), schizophrenia, temporal lobe epilepsy (TLE), brain networks, graph

theory

INTRODUCTION

Electroconvulsive therapy (ECT) is one of the oldest therapeutic modalities in psychiatric clinical
practice. The therapeutic effects of ECT putatively depend on the ECT-induced manifestation of
seizure-like states, which was first proposed by the Hungarian neuropsychiatrist Ladislas Meduna
in 1934 (1). This hypothesis arose from conspicuously opposite pathological results in epileptic
vs. schizophrenic patients; Meduna observed an excess of glial cells in the brain tissue of epileptic
patients (2), while his colleague found a reduction of glial cells in the brain tissue of schizophrenic
patients (3). This findings convinced Meduna that there was an antagonism between schizophrenia
and epilepsy, and gave birth to the idea that induction of seizure might help to alleviate the
symptoms of schizophrenia. Subsequently,Meduna conducted the first human experiment by using
camphor intramuscular injections (4). Finally, camphor was replaced by electricity to achieve more
stable therapeutic effects by Ugo Cerletti and Lucio Bini, from which ECT was born (5).
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Although Meduna’ hypothesis has since been refuted by the
finding that different glial subtypes have different pathological
features and do not exhibit a homogeneous opposing relationship
between epilepsy and schizophrenia (6, 7), the relationship
between these two disorders is still an interesting topic and
has been debated for many years (8, 9). Schizophrenia is
a serious psychiatric disorder that is always characterized
by positive symptoms (hallucinations and delusions), negative
symptoms (emotional disorders and impaired motivations), and
cognitive impairment (10). Temporal lobe epilepsy (TLE) is the
most widely studied and specific subtype of epilepsy (11, 12).
Since these two neuropsychiatric disorders always shared some
common symptoms, such as psychosis (13), emotion recognition
disorders (14), and cognitive impairment (15), TLE showed
a tight relation with schizophrenia in clinical diagnosis. The
primary point of controversy is whether these two disorders
have biological antagonism or affinity with one another. Some
recent neuropathological studies still supported the antagonistic
hypothesis for decreased astrocyte numbers in schizophrenia
(16, 17) and increased astrocyte numbers and size in epilepsy
(7). However, increasing sources of data also indicate that these
two disorders may share some similarity. One study reported that
there were some overlapping etiological factors between epilepsy
and schizophrenia based on a population-based family study
(18). Another study reported that schizophrenia and epilepsy
share common features at the genetic level (19). As such, the
relationship between epilepsy and schizophrenia is still an open
question and requires further exploration for its elucidation.

Originating from the putative relationship between epilepsy
and schizophrenia, ECT is now widely used for depression, acute
manic episodes, catatonia, and treatment-resistant schizophrenia
(20). Over the past 80 years, numerous psychological,
psychoanalytical, and biological theories have been built to
posit the potential therapeutic mechanisms of ECT (5). The
present putative mechanisms of ECT have been primarily
focused on structural, functional, and compositional changes of
the brain after ECT treatment (21). Among these phenomena,
the roles of cerebral blood flow (22), the blood-brain barrier (23),
neurotransmitters (24), and the immune system (25) during
ECT have been investigated. However, the potential mechanisms
of ECT based on the correlation of epilepsy and schizophrenia
remain largely unknown.

With the development of structural magnetic resonance
imaging (sMRI) and functional MRI (fMRI), both structural
and functional neuroimaging studies have provided more
information to help better understand the relationship between
schizophrenia and epilepsy (11, 26). Based on neuroimaging
data, brain networks have been defined as correlational networks
between several related brain regions in resting or task
conditions. Disrupted brain networks—including the default-
mode network (DMN), dorsal-attention network (DAN), central-
executive network (CEN), and saliency network (SN)—have
been detected in both schizophrenic (27, 28) and epileptic
patients (29–31). These shared brain networks may help to
better understand the relationship between schizophrenia and
epilepsy. These disease-disrupted brain networks can also be
used as valuable biomarkers for assaying the therapeutic effects

of ECT (32–34), which have shown apparent changes after
ECT treatment at both structural and functional levels. Thus,
comparison of the ECT-induced changes in the pathological
conditions of schizophrenia and epilepsy may offer further
insight as to whether the mechanisms of ECT are truly based
on antagonistic and/or affinitive relationships between these
two disorders.

This review will focus on brain-network changes in
schizophrenia and epilepsy to discuss the affinity and/or
antagonism between these two disorders. Our view was
synthesized based on brain networks including the DMN, DAN,
CEN, and SN, and a more large scale assessment of networks
from graph theory. Additionally, changes in brain networks after
ECT treatment will be compared under these two pathological
conditions to help better understand the principles of ECT. All
of the cited articles included in this review were written and
published in English and were published before January 2019.
The search engine, PubMed, was used with MESH terms.

DEFAULT-MODE NETWORK

Initial fMRI studies mainly focused on task-induced increases
in regional brain activities during goal-directed behaviors.
Subsequently, it was found that there are also consistent and
task-independent decreases in regional brain activities, which is
a phenomenon that has been defined as the baseline or default
mode of brain function (35). Since then, the default mode
of brain function has generated far more interest, discussion,
and controversy, and it has called more attention to the
importance of intrinsic brain activities (36). Combined with
blood-oxygen-level-dependent (BOLD) signals and diffusion-
tensor imaging (DTI) data, these intrinsic brain activities have
been shown to depend on networks across several brain regions,
which collectively has been termed the DMN and consists of
the following: the posterior cingulate cortex (PCC); adjacent
precuneus (PCUN); medial prefrontal cortex (mPFC); mesial
and inferior temporal lobes (mTL/iTL); and the inferior parietal
lobe (iPL) (37) (Figure 1A). Functionally, these intrinsic brain
activities of the DMN are activated at rest, become deactivated
at the initiation of a task, and play an important role in
cognitive functions and emotional processing (38). In the N-
back working-memory task, when cognition load increased,
the functional connectivity within the DMN concomitantly
decreased (39). Additionally, during long-term stabilization
of memory, the intra-network synchrony of the DMN was
positively corelated to individual performance (40). In emotional
processing, less decreased DMN activity was highly related to
poor emotionality (41). These physiological signatures of the
DMN have attracted more and more attention in terms of
their promising clinical applications in assessing and treating
neuropsychiatric disorders.

Brain network studies have demonstrated increasing evidence
of correlations between the DMN and some symptoms of
schizophrenia (42). Auditory verbal hallucinations represent
the most common positive symptom of schizophrenia and
induce alterations of functional connectivity within the
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FIGURE 1 | Components of DMN, DAN, CEN, and SN. (A) Spatial components of DMN. (B) Spatial components of DAN. (C) Spatial components of CEN. (D) Spatial

components of SN. DMN, default mode network; DAN, dorsal attention network; CEN, central executive network; SN, salience network; mPFC, medial prefrontal

cortex; iPL, inferior parietal lobe; iTL, inferior temporal lobes; PCC, posterior cingulate cortex; PCUN, adjacent precuneus; FEF, frontal eye fields; IPS, intraparietal

sulcus; dlPFC, dorsal lateral prefrontal cortex; pPC, posterior parietal cortex; ACC, anterior cingulate cortex; AI, anterior insula.

DMN (43). Additionally, patients with delusions also exhibit
reduced regional deactivation of the DMN (44). Besides typical
symptoms, positive symptoms scored by Positive and Negative
Syndrome Scale (PANSS) have also been shown to be positively
correlated with increased deactivation of brain regions, including
the medial frontal, temporal, and cingulate gyri (45). For negative
symptoms, emotional disorders of patients were found to be
positively related to the magnitude of deactivation of rAC and
mPFC regions (46). Additionally, negative symptoms scored
by SANS have been shown to have a linear correlation to the
functional connectivity within the DMN (47). These results
indicate that changes of deactivation and functional connectivity
within the DMN may represent a valuable means for assessing
positive and negative schizophrenic symptoms; however, further
evidence is required before this potential utility is sufficiently
verified. Since the DMN is an important brain network that
participates in cognitive processes, the relationship between the
DMN and cognitive impairment of schizophrenia has also been
widely studied. In a working memory task, the mPFC showed
less deactivation (48) and greater activation (49). When the task
load changed, DMN functions were over-recruited during a low-
task load, and hyper-deactivated during a high-task load (50).
Other brain regions, such as the left-superior temporal gyrus,
have also been shown to be positively correlated to cognitive

impairment (51). In addition to BOLD-based functional studies,
DTI anatomical data have also revealed that altered frontal
structural connectivity is corelated to cognitive ability as well as
schizophrenic symptoms (52).

Studies of the DMN in TLE have indicated altered task-
related deactivations compared with those of healthy controls
(53) and reduced functional connectivity (54). However, it may
be difficult to confirm the affinity or antagonistic relationship of
psychiatric manifestations between schizophrenia and TLE based
on the present DMN results. More well-designed investigations
are needed in terms of elucidating the short-term and long-term
effects of seizure on the DMN, and for the comparison of the
symptoms of these two disorders. Similar to schizophrenia, the
role of the DMN in TLE-induced cognitive impairment has also
been comprehensively studied. In the N-back working-memory
task, the ACC showed greater deactivation in TLE patients
(55). Additionally, there was decreased functional connectivity
between the mPFC and mTL/iTL (54), as well as the mPFC and
hippocampus (56). Interestingly, comparison of the cognitive-
related DMN changes between TLE and schizophrenia suggests
an affinity between these two disorders. This relationship may be
due to similar pathological changes in terms of the hippocampus
exhibiting overlapping pathological features between the two
disorders (57).
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Clinical practices have demonstrated that ECT can effectively
ameliorate the positive symptoms of schizophrenia (58)
and significantly reduce PANSS scores (59). Additionally,
a brain network study revealed that increased mTL
connectivity and PCC volume were accompanied by
clinical improvement (33). These results may suggest that
the therapeutic effects of ECT are achieved by an opposite
regulation of the DMN in schizophrenia. However, this
hypothesis still requires additional evidence from large-sample
investigations. Additionally, whether this opposing change of
the DMN can be detected in TLE patients requires further
investigation. By exploring seizure-induced changes in TLE
patients, we may better elucidate the relationship between
schizophrenia and TLE and any therapeutic outcomes of
ECT. Although ECT is effective, the side effects of ECT still
harbor great concerns (60). Also, although similar cognitive
impairments between schizophrenia and TLE have been
documented, further studies are required to determine
whether the side effects of ECT are related to seizure-induced
hippocampal dysfunction.

DORSAL ATTENTION NETWORK

The DAN has been defined as a network that is comprised of
the intraparietal sulcus (IPS) and the frontal eye fields (FEF)
(61) (Figure 1B). Both IPS and FEF within the DAN play an
important role in the maintenance of spatial attention, saccade
planning, and visual working memory (62). The DAN is also
activated during feature-based attention and provides a spatial
coding in multiple reference frames (63). Furthermore, there is
an interaction between the DAN and the DMN to carry out brain
functions (64).

The DAN has been found to be altered in schizophrenic
patients while carrying out several tasks that are mainly
related to cognitive impairment. In visual attention and motor
learning tasks, patients had reduced activation in the dorsal
neocortical visual attention network (65). In a visual oddball task,
connectivity between the right IPS (intraparietal sulcus) and right
anterior insula (AI, a component of the ventral network) was
significantly decreased in schizophrenic patients (66). In an N-
back task, patients with schizophrenia had decreased inhibitory
self-connections within the DAN regions, particularly in the left
FEF and the left SPL (67). The interacting changes between the
DAN and other networks have also been found. In schizophrenics
during a working memory task, the DMN connectivity with the
DAN was decreased (68, 69). In contrast to the default mode,
patients demonstrated less connectivity in the executive control
and dorsal attention networks (70).

Patients with TLE presented decreased functional connectivity
in almost all of the regions within the DAN (31, 71). For example,
the FC values of the bilateral frontal eye field (FEF) and left
intraparietal sulcus (IPS) were decreased (72). Thus, the DAN can
also be regarded as a biomarker to explain the common cognition
pathological mechanisms between schizophrenia and TLE, for
which neuroimaging studies have revealed similar connectivity
changes. ECT has also been shown to influence the DAN in

depressed patients (73). However, the influence of the DAN in
schizophrenia requires further investigation.

CENTRAL-EXECUTIVE NETWORKS

The CEN is a brain network that links the dorsal lateral
prefrontal cortex (dlPFC) and posterior parietal cortex (pPC)
(74) (Figure 1C). The CEN is frequently activated during typical
fMRI executive tasks and its activity is often contrary to that
of DMN activity (75). Brain imaging studies have shown that
intelligence differences are positively correlated to functional
interactions within the CEN, in both children and adults
(76). Additionally, another important role of the CEN is to
inhibit the DMN functions under certain conditions (77). This
coordination between the CEN and the DMN is important in
many neuropsychiatric disorders.

From recent literature, most results have reported that the
CEN participates in a triple network including the DMN, the
CEN, and the salience network (SN) rather than serving an
isolated role in schizophrenia (78). Thus, we will be discuss this
topic after introducing the SN.

SALIENCE NETWORK

The SN is defined as a brain network comprised of the anterior
insula (AI) and anterior cingulate cortex (ACC) (79) (Figure 1D).
Physically, there is a strong functional connectivity within the SN,
which is important for sensory perception and the coordination
of behavioral responses (80, 81). Additionally, during many
forms of emotional processing, the brain regions within the SN
exhibit increased activity (82). The SN can also interact with the
DMN and CEN to form a triple network, which participates in
many mental process and disorders (83–85).

Schizophrenic patients show consistent abnormalities
of insular signatures in both structural and functional
neuroimaging studies, which indicates that the SN is involved
in pathological processes (86). The SN has a direct correlation
to schizophrenia symptoms, in which both auditory verbal
hallucinations and delusions were detected to induce aberrant SN
functional connectivity (87, 88). However, the strengths of these
functional connectivities are not always homogeneous, because
some studies have found a reduction in such connectivities
(86), whereas other studies have reported a mixed pattern of
increased and decreased connections (89). The interaction of the
SN and DMN showed delayed communication that was directly
correlated to positive and negative symptoms of schizophrenia
(90). Additionally, a disrupted SN-CEN circuit also accounted
for these schizophrenic symptoms (91). The triple network
formed by SN-CEN-DMN nodes has shown dysregulated
connections in schizophrenia (92) and mainly contributes to
positive symptoms (93).

In TLE patients, one study reported that there was decreased
connectivity to insula and ACC, suggesting a reduced SN (31).
However, this result still needs to be further confirmed by
more neuroimaging studies. When compared to schizophrenia,
TLE showed a similar changes of the SN activity. However,
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it is difficult to confirm this hypothesis since there is still
not enough neuroimaging evidence to properly assess this
phenomenon. After ECT treatment, enhanced inter-network
connectivity between the SN and the DMN has been found (73).
However, whether this enhanced connectivity would be found in
TLE patients requires further investigation.

THE EMERGING ROLE OF GRAPH THEORY

An increasing number of studies has supported that
schizophrenia and TLE are disorders involving abnormal brain
networks rather than several abnormal discrete brain regions
(29, 70). It may be difficult to reach a unifying result by analysis
of regional activation/deactivation or connectivity abnormalities.
Therefore, graph theory, which is a mathematical framework that
allows for the quantitative modeling and analysis of networks,
has been applied with increasing success to neuroimaging data
(94). In graph theory, the brain can be represented as a graph,
and the set of nodes may be composed of brain regions or voxels
(on a macroscopic level) or individual neurons (on a cellular
level). Thus, edges will represent the connections between
these brain regions/voxels or individual neurons depending
on the conditions (95). Then, this information can be encoded
in a mathematical data structure called a connectivity matrix.
Based on the connectivity matrix, graph theory provides a more
large-scale assessment of the human brain and can provide more
integrative information of various diseases (96).

The results of graph theoretical analysis on schizophrenia
are still inconsistent, but there has been some convergence
around the concept of topological randomization (97, 98).
Previous studies have shown that the functional brain networks
of schizophrenia are relatively shifted toward the randomness
of small-world topology (99). Another study also confirmed
that schizophrenics demonstrate significant randomization of
global network metrics (100). Additionally, the parameters of the
global-network topology of schizophrenia have been found to be
decreased in both functional and anatomical networks (96, 101).

On the contrary, graph theoretical analyses of networks
have provided evidence generally suggesting a shift toward
a more regularized topology in TLE patients (102). Within
the range of small-world topologies, a more regularized
network topology is present in TLE patients (103). The
increased path length and clustering in TLE patients
supports this more regularized arrangement (104). Thus,
interestingly, topological characteristics have revealed an
antagonistic feature between schizophrenia and epilepsy,
although these studies of schizophrenia and epilepsy were
independently conducted.

However, there are limited reports regarding the effects of
ECT on brain-network dynamics in schizophrenia. Whether
ECT treatment reverses randomized brain networks to a more
regularized pattern will require further investigations. As for
the side effects of ECT, graph analysis of TLE patients showed
that individuals with poor seizure control experienced more
severe memory impairment (105). These results may indicate
that a well-organized ECT practice may reduce side effects, but
further neuroimaging evidence is still needed to validate or refute
this hypothesis.

CONCLUSIONS

Functional brain networks, such as the DMN, the SN and
the DAN, have provided a new perspective to understand the
relationship between schizophrenia and epilepsy. At this level,
these two diseases show similar connectivity changes and suggest
that they have more of an affinity-type relationship due to their
similar pathological features. At larger scale, graph theoretical
analysis has indicated an antagonistic relationship between these
two diseases, although more evidence is needed to determine
the validity of these findings. In addition, ECT treatment has
been shown to modify the dynamics of these brain networks. If
future studies verify that ECT treatment can reverse randomized
brain networks in schizophrenia to more regularized patterns,
the original premise for the creation of ECT may be further
corroborated and better understood.
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