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Duplications and triplications of the α-synuclein (SNCA) gene increase risk for PD, suggesting increased expression levels of the
gene to be associated with increased PD risk. However, past SNCA expression studies in brain tissue report inconsistent results.
We examined expression of the full-length SNCA transcript (140 amino acid protein isoform), as well as total SNCA mRNA
levels in 165 frontal cortex samples (101 PD, 64 control) using quantitative real-time polymerase chain reaction. Additionally,
we evaluated the relationship of eight SNPs in both 5′ and 3′ regions of SNCA with the gene expression levels. The association
between postmortem interval (PMI) and SNCA expression was different for PD and control samples: SNCA expression decreased
with increasing PMI in cases, while staying relatively constant in controls. For short PMI, SNCA expression was increased in PD
relative to control samples, whereas for long PMI, SNCA expression in PD was decreased relative to control samples.

1. Introduction

One of the genes ubiquitously involved in Parkinson dis-
ease (PD, OMIM no. 168600) is the α-synuclein (SNCA)
or PARK1/4 gene. The SNCA gene encodes two major
transcripts: the full-length NM 000345.2 transcript and the
NM 007308.1 transcript (corresponding to the NACP140,
and the NACP112 protein isoforms, resp.). Missense muta-
tions in SNCA [1–3], as well as duplications and triplications
of the SNCA locus [4–6], have been shown to lead to
familial PD in an autosomal dominant manner, suggesting
that increased levels of SNCA are associated with PD risk.
Several studies have compared sporadic PD and control
SNCA mRNA levels, as well as α-synuclein protein levels in
various tissues [7–14]. SNCA expression in human brain has
been shown to be significantly different between sporadic PD

cases and controls, although the direction of results varies
among different studies (Table 1).

Variations in both the 3′ and the 5′ regions of the
SNCA gene have also been associated with increased risk for
idiopathic PD [15–22]. Additionally, there is evidence that
single-nucleotide polymorphisms in the 3′ region of SNCA
influence the gene’s mRNA levels [13, 23–25].

None of the past SNCA expression studies contrasting
PD cases and controls used more than 32 total brain samples
per brain region (Table 1). Small sample sizes reduce power
to detect consistent effects and may have contributed to
the conflicting results. We present the largest study to date
contrasting SNCA expression between PD and control brain
samples, with analysis performed for both full-length SNCA
transcript (140 residue protein isoform, hereafter referred to
as SNCA-FL), and total SNCA mRNA in the frontal cortex.
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Table 1: Previous brain SNCA expression studies.

Study Method Brain Region
#Samples
(PD/C)

PMI, hours
(range)1

Expression in PD
compared to controls

SNCA Transcript

Neystat et al.
(1999) [7]

Ribonuclease
protection assay

Substantia nigra 15 (9/6)
11.55 (4–18)

10.62 (3.5–17)
Decreased, both

transcripts
NM 000345.2
NM 007308.1

Frontal cortex 15 (9/6)
11.55 (4–18)

10.62 (3.5–17)
No significant

differenceKingsbury et
al. (2004) [9] Semiquantitative

in situ
Substantia nigra 11 (7/4)

23.2 (9.3–56)
33.0 (22–53)

Decreased
NM 000345.2

Hybridization Frontal cortex 12 (8/4)
24.4 (10.6–40)
33.0 (22–53)

Decreased

Temporal cortex 12 (8/4)
24.4 (10.6–40)
33.0 (22–53)

No significant
difference

Chiba-Falek et
al. (2006) [11] Real-time PCR Mid-brain 14 (7/7)

16.93 (2.00–22.08)
18.62 (14–24)

Increased
NM 000345.2

Frontal cortex 7 (4/3)
14 (2–20)

24.66 (22–28)
No significant

differenceFuchs et al.
(2008) [13]

Real-time PCR Substantia nigra 22 (8/14) All: 25 (N/A)
No significant

difference
NM 000345.2

Cingulate gyrus 32 (13/19) All: 22 (N/A)
No significant

difference

Cerebellum 10 (5/5) All: 15 (N/A) DecreasedBeyer et al.
(2011) [14]

Real-time PCR Caudate nucleus 21 (7/14)
6.03 (3.5–7.0)

7.40 (3.5–13.0)
No significant

difference
NM 007308.1

Pons 21 (7/14)
6.03 (3.5–7.0)

7.40 (3.5–13.0)
No significant

difference

Temporal cortex 21 (7/14)
6.03 (3.5–7.0)

7.40 (3.5–13.0)
No significant

difference

C: Control; PD: Parkinson disease.
NM 000345.2 =140 amino acid isoform; NM 007308.1 =112 amino acid isoform.
1The postmortem interval mean and range data for PD samples are on the first line and those for control samples are on the second line. The Fuchs et al.
study (2008) only had aggregate mean postmortem interval data available.

Additionally, we analyze the relation of eight SNPs in the 5′

and 3′ regions of SNCA to SNCA expression levels.

2. Materials and Methods

2.1. Brain Samples. Brain tissue from the frontal cortex
Brodmann area 9 was collected from 118 PD cases and 87
control brains. The brain tissue was obtained from three dif-
ferent brain banks: the Harvard Brain Tissue Resource Center
(HBTRC) McLean Hospital, Belmont, Massachusetts, the
Human Brain and Spinal Fluid Resource Center (HBSFRC)
VA West Los Angeles Healthcare Center, California, and the
Sun Health Research Institute (SHRI) Sun City, Arizona.

2.2. pH Measurements. The pH of all samples was measured
following a previously established protocol [26]. A minimum
of two pH measurements were taken for each brain sample
and the average value of all readings was used.

2.3. Neuropathological Information. Neuropathology reports
were available for case and control samples. These reports
were used to verify the PD diagnosis in the cases, and to

evaluate the presence of Alzheimer disease (AD) character-
istics in all brain samples. The AD variable for each brain
was categorized as 0, 1, or 2 and was determined by a
grading of plaques and the Braak score [27, 28]. A value of
0 corresponds to brains that had no indication of Alzheimer
pathology, a value of 1 corresponds to brains that had
suggestive Alzheimer pathology, and a value of 2 corresponds
to brains with unequivocal Alzheimer pathology (Supple-
mentary Table 1 available at doi:10.1155/2012/614212).

2.4. Quantitative Real-Time Polymerase Chain Reaction

2.4.1. RNA Extraction and cDNA Synthesis. Total RNA
from the brain samples was extracted using the TRIzol
reagent (Invitrogen, Carlsbad, CA). The obtained RNA was
quantified at 260 nm using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE). One micro-
gram cDNA was synthesized for each brain sample using the
iScriptTM cDNA Synthesis Kit (BIO-RAD, Hercules, CA).

2.4.2. Endogenous Control Gene and the Analysis Method.
We considered both the Relative Standard Curve and the
ΔΔCt methods for the real-time PCR quantification of SNCA
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expression. QARS (encoding for Glutaminyl-tRNA syn-
thetase) was selected as a control gene, given its successful use
in previous cortex expression studies [29, 30]. Predesigned
TaqMan primers for QARS (Hs00909458 g1), SNCA tran-
script NM 000345.2 (Hs00240907 m1, e.g., SNCA-FL), and
all SNCA transcripts (Hs01103383 m1, total SNCA) were
obtained from Applied Biosystems (Foster City, CA). Each
sample was run in triplicate for each assay on an ABI PRISM
7900HT Sequence Detection system (Applied Biosystems,
Foster City, CA). The control gene did not have the same PCR
amplification efficiency as the SNCA target assays, which
is a requirement for valid ΔΔCt calculations (Validation
Experiment, ABI qRT-PCR manual). Therefore, the Relative
Standard Curve Method was used to assess the expression
data. The standard curves for the three assays were created
from pooled cDNA from all available samples and were
used to transform the Ct values into quantity units. For
each sample that passed the QC filtering criteria, the
quantity units for the SNCA-FL and total SNCA assays were
standardized by division to the QARS control assay quantity
value.

2.4.3. DNA Extraction. DNA from the brain samples was
extracted using QIAGEN’s Puregene Core Kit A (QIAGEN,
Valencia, CA) according to the manufacturer’s protocol.

2.4.4. Genotyping. Eight SNPs around the SNCA gene on
chromosome 4 (Table 3) were genotyped in the available
brain samples using the TaqMan technology implemented on
an ABI PRISM 7900HT Sequence Detection system (Applied
Biosystems, Foster City, CA). Pairs of SNPs rs356219-
rs356229 (r2 = 0.51) and rs4106153-rs1504489 (r2 = 0.27)
were in modest LD, as calculated by using all available brain
samples.

2.5. Quality Control

2.5.1. RNA and DNA Extraction. Samples with RNA or DNA
extraction yields below 5 μg after several attempts were
removed from the study.

2.5.2. RT-PCR. Samples were removed from the study if the
variation in expression across the triplicate Ct values for
any of the four gene expression assays was larger than 2
(Section 2.4).

2.5.3. Postmortem Information. Samples were excluded if
their PMI information was missing.

2.5.4. Neuropathological Information. Samples were removed
when controls showed signs of Lewy bodies, or when PD was
not confirmed neuropathologically (e.g., absence of Lewy
bodies).

2.5.5. Age at Death. The age at death was available for cases
and controls, but the range of values differed by disease

status. All controls outside of ±5 years of the PD range
(Table 2) were excluded from the case-control contrasts.

2.5.6. Genotyping. All samples with missing genotypes for
more than 4 SNPs (less than 50% call rate) were removed
from the genotype-expression part of the study. All geno-
typed SNPs had call rates higher than 92.12%.

2.5.7. Statistical Analyses. The statistical analyses were per-
formed using SAS 9.1 for Windows. The base 10 logarithm of
the standardized SNCA-FL and total SNCA expression values
was used for all analyses, to ensure the normal distribution
of data required by the statistical tests performed. The
distributions of the log10 SNCA-FL and log10 total SNCA
expression values were examined within site, sex, and disease
status subgroups. Samples were removed from analysis if
they had SNCA-FL and total SNCA expression values lower
than the 1st quartile minus 1.5∗ interquartile range, or
greater than the 3rd quartile plus 1.5∗ interquartile range. In
the final sample data-set, the SNCA-FL and total SNCA log10
transformed expression values did not deviate significantly
from the normal distribution (Shapiro-Wilk test), except for
two of the total SNCA subgroups (SHRI/female/Control and
HBTRC/male/PD).

2.6. Regression Models

2.6.1. Association of SNCA Expression with Disease Status. We
considered several covariates when looking at the association
between SNCA expression and disease status, including sex,
PMI, source of the specimen, pH, AD, and age at death.
Since the PMI was highly correlated to the brain bank source
(Table 2), the use of either PMI or site as a covariate yielded
comparable results in our models. We retained PMI in these
models. PMI and pH were selected as covariates because
they were found to be associated with SNCA expression.
Sex was retained due to a prior report, showing differences
in SNCA expression between men and women [31]. Age
at death was retained in the final model because it was
significantly associated with SNCA expression in controls
and was a modest confounder of the relationship between
disease status and SNCA expression. AD was not associated
and was not a confounder of SNCA expression; therefore, it
was not included in the regression analyses. The interaction
between PMI and disease status was included to adjust for
the observed variation in SNCA expression between PD cases
and controls at different PMIs.

2.6.2. Genotyping Analysis. Eight SNPs were tested for
association with disease status, as well as for association
with SNCA-FL and total SNCA expression. Each SNP was
evaluated in additive and, whenever the rare homozygote
was present, recessive models. Disease association models
included adjustment for sex and age at death. Expression
models were analyzed for the set of all brains, as well as
within only PD cases and only controls. The entire sample
analysis included adjustment for disease status, sex, pH, age
at death, as well as for the interaction between PMI and
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Table 2: Characteristics of the PD cases and controls included in analysis.

Site Type Gender
Age, years

(range)
PMI, hours

(range)
Tissue pH (range)

PD Duration,
years (range)

HBSFRC
2 C 2M 86.5 (80–93) 19.5 (13–26) 6.41 (6.26–6.55) N/A

17 PD 9F/8M 82.2 (63–95) 16.3 (9–37) 6.30 (6.02–6.62) 11.5 (4–28)

BTRC
39 C 39M 61.4 (36–106) 21.9 (10–39.6) 6.71 (5.95–7.32) N/A

35 PD 35M 76.3 (64–95) 17.9 (6.6–30.7) 6.50 (5.86–7.13) 11.2 (3–23)

SHRI
23 C 13F/10M 84.3 (63–97) 2.68 (1–5.5) 6.71 (6.29–7.13) N/A

49 PD 11F/38M 78.5 (64–90) 3.11 (1–10) 6.59 (6.17–7.44) 10.4 (0–40)

All
64 C 13F/51M 70.5 (36–106) 14.9 (1–39.6) 6.70 (5.95–7.32) N/A

101 PD 20F/81M 78.3 (63–95) 10.4 (1–37) 6.51 (5.86–7.44) 10.9 (0–40)

Final C Set∗ 46 C 13F/33M 77.2 (58–97) 11.7 (1–39.6) 6.67 (5.95–7.32) N/A

C: Control; PD: Parkinson disease.
HBSFRC = Human Brain and Spinal Fluid Resource Center VA West Los Angeles Healthcare Center.
HBTRC = Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts.
SHRI = Sun Health Research Institute in Sun City, Arizona.
∗after removing controls with age at death ± 5 years beyond age at death of cases (< age 58 or > age 100).

disease status. In the analyses stratified by disease status only,
sex, pH, age at death, and PMI were included in the model.

3. Results

Unless otherwise stated, a significance level of α = 0.05 and
log10 expression values (see Section 2.5.7) were used for all
tests.

3.1. Samples Excluded from the Final Analyses. One control
brain and one PD case from HBTRC were excluded from
the study due to low DNA extraction yields. One control
sample from HBSFRC and seven control samples from SHRI
were excluded from further analyses due to low RNA yields.
Eleven PD cases (5 from HBTRC, 5 from SHRI, 1 from
HBSFRC) and eleven controls (5 from HBTRC, 5 from
SHRI, 1 from HBSFRC) were excluded due to inconsistencies
among the Ct values in replicates. One control and one
PD case from HBSFRC were discarded due to missing PMI
information. One HBTRC control showing Lewy bodies
at the neuropathological exam, and one HBTRC PD case
with very long duration of disease but no Lewy body
pathology were removed from analysis. Four brain samples
(1 control from HBTRC, 1 PD from HBSFRC, and 2 PD
from SHRI) were outliers for both SNCA-FL and total SNCA
expression assays and were, therefore, removed. Four PD
cases from HBTRC with missing genotypes for at least 6 SNPs
were removed from the genotype-expression analysis only.
Eighteen controls from HBTRC that were outside the ± 5
years age at death range for the PD group were removed for
the expression analyses. The description of the final set of
samples used in the study is presented in Table 2.

3.2. Correlations and Associations. SNCA-FL and total SNCA
expression values were highly correlated (Pearson correlation
r value = 0.76, P < 0.0001 in the 165 samples).
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Figure 1: Age at death versus total SNCA expression values adjusted
for pH, PMI, and sex in 64 controls.

We observed a significant association between age at
death and SNCA expression values in controls, after adjust-
ment for pH, PMI, and sex (Figure 1 and Supplementary
Figure 1; total SNCA: β = −0.0059, P = 0.0053; SNCA-
FL: β = −0.0031, P = 0.0324). No significant association
between age at death and expression values was observed in
PD cases after adjusting for pH, PMI, and sex (total SNCA:
P = 0.84; SNCA-FL: P = 0.72). The significant association
between SNCA expression and age at death remained in
controls even after removing samples outside the PD age
at death range ± 5 years (total SNCA: β = −0.0107, P =
0.0075; SNCA-FL: β = −0.0056, P = 0.0317). Our results
confirm the previous finding by Tan et al. (2005), who
observed a similar relationship of total SNCA expression with
age at death in lymphocyte samples from 80 ethnic Chinese
control subjects [10].
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Figure 2: Adjusted total SNCA expression values by PMI for (a) all samples and (b) only samples with PMI less or equal to 5.5 hours.
Controls are depicted as crosses (dotted regression line) and PD samples as circles (solid regression line).

In a PMI, age at death, and sex-adjusted model, pH was
significantly, positively associated with expression of total
SNCA in PD cases (P < 0.0001) and controls (P = 0.002)
and with SNCA-FL in PD cases (P = 0.0024), but not in
controls (P = 0.14). We also observed a significant negative
association between PMI and both SNCA-FL and total SNCA
expression values in PD samples after adjustment for sex, age
at death, and pH (P < 0.0001 for both SNCA-FL and total
SNCA), but not in controls (total SNCA: P = 0.96; SNCA-
FL: P = 0.54).

The correlation between duration of disease in PD
samples and SNCA expression was not significant (total
SNCA: P = 0.97; SNCA-FL: P = 0.64). Additionally, no
significant association between the duration of disease in PD
samples and SNCA expression was observed after adjustment
for sex, age at death, and pH.

3.3. Expression Results. Interestingly, the PMI was deter-
mined to modify the relationship between expression and
disease status for both SNCA-FL and total SNCA. For PMI
of 5.5 hours or less (23 controls, 45 cases), PD cases had
higher total SNCA expression (β = 0.1501, P = 0.0319) and
higher SNCA -FL expression (β = 0.1195, P = 0.0051) than
controls. For PMI of 10 hours or more (23 controls, 48 cases),
PD cases had lower total SNCA expression (β = −0.2716,
P = 0.0005) and lower SNCA-FL expression (β = −0.1708,
P = 0.0093) than controls. The presented results were
adjusted for sex, age at death, pH, and PMI. The predicted
regression lines for total SNCA and SNCA-FL for PD cases
and controls after adjustment for age at death, pH, PMI, sex,
and disease status-PMI interaction are shown in Figure 2 and
Supplementary Figure 2, respectively.

3.4. eSNP Results. None of the eight SNPs had a significant
nominal P-value for association with disease status in our
data. Additionally, none of the SNPs had a P-value associated
with expression that was significant after Bonferroni adjust-
ment for multiple testing. Nevertheless, significant nominal
P-values (Table 3) were obtained for the following SNPs:
rs924033 for SNCA-FL expression using the additive model
in controls only, and rs1560488 for total SNCA expression
using the recessive model in controls only.

4. Discussion

The presence of the α-synuclein protein (α-syn) in Lewy bod-
ies [34], together with the findings of SNCA gene mutations
[1–3], SNCA gene duplications, and triplications in familial
PD [4–6], and SNCA SNP associations in PD genome-wide
association studies [32] make this gene a focal point of PD
research. The association of increased gene dosage with PD
risk strongly suggests that increased levels of α-syn increase
risk for PD. Yet, SNCA gene expression studies have yielded
inconsistent results with several reporting reduced SNCA
mRNA levels in PD versus control brains. In this study of 101
PD and 64 control brains, we found significant differences
for the effect of post mortem interval on SNCA levels in PD.
These results may shed light on the previous contradictory
expression findings and support the hypothesis that PD is
associated with increased SNCA levels.

We detected increased expression of the full-length SNCA
transcript, as well as overall SNCA gene expression, in
PD compared to control brains at PMI up to 5.5 hours.
Additionally, we observed significantly decreased levels of
full-length and total SNCA in PD compared to control brains
at PMI longer than 10 hours. The result obtained for short
PMI suggests the presence of biologically increased levels of
SNCA expression in PD compared to normal brains, while
the apparently conflicting findings between short and long
PMI groups could be attributable to a more rapid degra-
dation rate of SNCA, and possibly other transcripts, in PD
brains. The presence of increased RNA degradation activity
in PD compared to normal brains is conceivable, given the
large differences in expression profiles between normal and
affected brains [29]. Additionally, although little information
is available on the differential mRNA degradation levels
between neurologically healthy and diseased brains, there
exists a prior report of correlation between PMI and pH (and
indirectly between PMI and certain mRNAs level [26]) in
Alzheimer disease, but not in control brains [35].

Previous SNCA expression studies have consistently used
relatively small numbers of brain samples with mixed PMI
values (commonly above 10 hours), precluding an accurate
assessment of the effect of PMI [36]. Therefore, the previous
conflicting results (Table 1) might be an artifact of both small
sample sizes and heterogeneous PMI values.
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Table 3: Description of the genotyped SNPs and results for association with SNCA expression.

SNP
Position (Genome

Build 36.3)
Gene

Familial PD
GWAS

P-values [32]

SNCA
expression
estimate

SNCA
expression min

P-value

Samplea/
Transcriptb/Modelc

MAF in
expression

samples
A1/A2

rs1560488 90,444,858 GPRIN3 0.12 0.235 0.048 C/T/rec 0.229 T/C

rs4106153 90,463,499 intergenic 9.18 × 10−5 −0.048 0.206 All/T/add 0.196 C/A

rs1504489 90,477,611 intergenic 8.42 × 10−5 −0.124 0.089 PD/T/rec 0.425 T/G

rs924033 90,654,576 intergenic 0.02 0.165 0.041 C/FL/add 0.067 G/T

rs356229 90,825,620 intergenic 5.48 × 10−5 −0.099 0.247 C/FL/rec 0.360 C/T

rs356219 90,856,624 intergenic ∗2.24 × 10−6 0.053
0.040

0.062
0.085

PD/FL/add
All/FL/add

0.391 G/A

rs356188 90,910,560 SNCA 8.41 × 10−5 0.062 0.063
C/FL/add

0.278 C/T

rs3775478 91,061,863 MMRN1 6.07 × 10−5 0.035
0.017

0.672
0.672

C/T/add
All/FL/add

0.090 G/A

∗
imputed SNP result for published SNCA eSNP [13, 33].

aPD-Case, C-Control, All-Combined sample.
bFL-full length or T-total.
cadditive or recessive SNP model.
A1-minor allele, A2–major allele.

It is important to note, however, that the different sources
of tissue in our study were also related to different PMI
values (Table 2). Nearly all of the short PMI samples were
from the SHRI brain bank. Therefore, we cannot exclude
the possibility that the source of the tissue also influences
SNCA expression levels. Nevertheless, our statistical analyses
included all major variables that are commonly considered
in expression studies, and we do not know of any other
differences that may exist among the different brain tissue
sources and would influence SNCA expression. Additionally,
given the previous knowledge of frontal cortex homogeneity
in terms of expression [11], it is unlikely that variation within
the Brodmann area 9 from different brain banks is a factor in
the observed findings.

We acknowledge as a possible limitation for our SNCA
RT-PCR expression study the use of a single control gene.
To address this potential problem, we tried to evaluate
the obtained RT-PCR expression data by using expression
results from a recent microarray study [37]. The microarray
experiment was performed on the One-Color Agilent 60-
mer Whole Human Genome Microarray, which contains a
single 3′ UTR probe for the SNCA gene repeated 10 times
on the chip. The microarray experiment included a subset of
26 PD and 23 control samples from the RT-PCR study. The
range of PMI values for the microarray samples did not allow
the interaction study presented in this paper to be tested.
Nevertheless, we could evaluate the correlation between
the two RT-PCR SNCA probes and the median expression
value of the microarray SNCA probe, which measures total
expression of the gene. As expected, the correlation between
the total SNCA and the microarray SNCA probe (r = 0.68,
P = 6.6E−8) was strong and better than the correlation
between the SNCA-FL and the microarray SNCA probe (r =
0.43, P = 0.001). These correlation results imply the validity
of the RT-PCR data.

Our study suggests that sporadic PD is associated with
increased SNCA mRNA levels in samples with short PMI.
The observation of higher SNCA expression in controls
among samples with longer PMI suggests that SNCA tran-
scripts may degrade more rapidly in PD than in normal
brain; this result points to the importance of brain samples
with short PMI for an accurate evaluation of RNA levels
in PD. Therefore, brain banks such as the Sun Health
Research Institute, which can provide samples with very
low PMI to the research community, are valuable for future
neurodegenerative research.
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