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Abstract

Cardiopulmonary exercise testing (CPET) using a spectrum of different approaches demonstrates usefulness for objectively

assessing patient disease severity in clinical and research settings. Still, an absence of trained specialists and/or improper data

interpretation techniques can pose major limitations to the effective use of CPET for the clinical classification of patients. This

study aimed to test an automated disease likelihood scoring algorithm system based on cardiopulmonary responses during a

simplified step-test protocol. For patients with heart failure (HF), pulmonary hypertension (PAH), obstructive lung disease (OLD),

or restrictive lung disease (RLD), we compared patient scores stratified into one of four ‘‘silos’’ generated from our novel

algorithm system against patient evaluations provided by expert clinicians. Patients with HF (n¼ 12), PAH (n¼ 9), OLD

(n¼ 16), or RLD (n¼ 10) performed baseline pulmonary function testing followed by submaximal step-testing. Breath-by-

breath measures of ventilation and gas exchange, in addition to oxygen saturation and heart rate were collected continuously

throughout testing. The algorithm demonstrated close alignment with patient assessments provided by clinical specialists: HF

(r¼ 0.89, P< 0.01); PAH (r¼ 0.88, P< 0.01); OLD (r¼ 0.70, P< 0.01); and RLD (r¼ 0.88, P< 0.01). Furthermore, the algorithm

was capable of differentiating major disease from other disease pathologies. Thus, in a clinically relevant manner, these data suggest

this simplified automated disease algorithm scoring system used during step-testing to identify the likelihood that patients have HF,

PAH, OLD, or RLD closely correlates with patient assessments conducted by trained clinicians.
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Introduction

Comprehensive cardiopulmonary exercise testing (CPET)
has traditionally been offered as a clinical diagnostic tool
in large-to-mid-sized medical centers. It is typically con-
ducted as a test aimed at pushing patients to maximal exer-
tion, which includes acquisition of physiological data via 12-
lead ECG, pulse oximetry, blood pressure, and metabolic
cart systems. For successful completion of CPET this com-
monly requires two trained specialists with oversight by a
physician, which can often take 1 h or longer for prepar-
ation, testing, cool down, and discharge. In addition, the
majority of commercially available metabolic cart systems
display an array and sometimes daunting number of

cardiopulmonary measurements, often displayed breath-
by-breath, which typically requires a higher level of expertise
for test interpretation.1 Thus, with the overall complexity of
CPET requiring specialized personnel and time involvement,
modest-to-moderate patient risk, and the need for techno-
logical integration of multiple tools, the cumulative effect of
these factors can act as a barrier for the routine implemen-
tation of this powerful clinical assessment resource.
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Previous reports from our group have demonstrated that
various simplified forms of submaximal exercise testing can
be used to improve the pathophysiological understanding
of abnormal breathing patterns and gas exchange in patients
with heart failure (HF) and/or pulmonary hypertension
(PAH).2–6 As an important next step for this line of
research,7 we propose there is immediate clinical utility in
developing a simplified disease likelihood algorithm based
on data acquired via a combination of rest and submaximal
exercise physiological testing. Output from our novel algo-
rithm would consider patient responses from a basic resting
forced vital capacity (FVC) maneuver in addition to con-
tinuous breath-by-breath measurements from a sequence
involving 2min of rest, a 3-min progressive step test, and
1min of recovery. The overarching goal of such a system is
to simplify clinical exercise testing while alleviating burdens
such as complex data interpretation.

To determine how well our disease likelihood algorithm
performs in properly identifying different cardiopulmonary
disease types, we recruited adult patients demonstrating
a primary diagnosis of restrictive lung disease (RLD),
obstructive lung disease (OLD), chronic HF, or PAH.
Patient outputs from algorithm scoring provided ranks for
the likelihood of a given disease, which were then compared
with separate patient scoring provided by expert clinician
reviewers (i.e. professionals whose primary responsibility is
the interpretation of clinical exercise tests). Accordingly, this
study tested the hypotheses that: (1) scores provided by our
novel disease likelihood scoring algorithm would align with

those provided by clinicians; and (2) algorithm scores can be
used to properly categorize patients in hierarchical order
with respect to the most likely primary diagnosis.

Methods

Study design and patients

To test our study aims, 12 patients with HF, nine patients
with PAH, 16 patients with OLD, and ten patients with
RLD were screened and recruited using our medical records
system. All aspects of the study protocol were reviewed and
approved by the Mayo Clinic institutional review board.
Before participating in study testing, all patients voluntarily
provided written informed consent. Table 1 demonstrates
baseline participant characteristics stratified by disease type.

Patients performed upright seated pulmonary function
testing while at rest to assess basic measurements of FVC,
forced expiratory volume in 1 s (FEV1), and the FEV1/FVC
ratio according to ATS guidelines.8 This was followed by a
brief rest period and a submaximal exercise step test. The
exercise protocol consisted of three phases including 2min
of standing rest, 3min of submaximal incremental stepping
exercise, and 1min of recovery. During the exercise phase,
step rates were increased every minute (60, 80, and 100 step/
min controlled via metronome) equivalent to 15, 20, and 25
steps/min, respectively. During all phases, ventilation and
gas exchange were continuously measured breath-by-
breath (SHAPE Medical Systems Inc., St. Paul, MN,

Table 1. Participant characteristics and baseline pulmonary function across groups.

Variables HF (n¼ 12) PAH (n¼ 9) OLD (n¼ 16) RLD (n¼ 10) �2 P value

Gender (female/male) 8/4 7/2 10/6 1/9

Age (years) 60� 13 50� 15 54� 12 68� 8

Height (cm) 170.8� 9.2 164.4� 6.1 169.4� 7.8 176.7� 7.5

Weight (kg) 84.8� 15.5 82.3� 12.5 83.3� 14.7 92.9� 9.3

BMI (kg/m2) 29.3� 6.1 30.5� 4.9 28.9� 3.8 29.9� 3.6

LVEF (%) 42� 11 N/A N/A N/A

NYHA (I/II/III/IV) 0/7/4/1 – – –

FVC (L) 2.70� 0.94 2.96� 0.64 3.26� 0.81 2.83� 0.77 3.95 0.27

FVC (%pred.) 69� 16 80� 13 81� 12* 64� 10 11.42 <0.01

FEV1 (L) 2.35� 0.78 2.54� 0.62 2.66� 0.82 2.59� 0.64 1.21 0.75

FEV1 (%pred.) 78� 17 87� 14 85� 18 79� 11 2.92 0.40

FEV1/FVC 88� 6 85� 5 81� 11* 92� 4 10.29 0.02

FEV1/FVC (%pred.) 113� 6y 108� 8z 103� 12* 124� 8 21.13 <0.001

Data presented as means� SD.

Table P value and �2 value (dF¼ 3) represents Kruskal–Wallis H test for the overall group effect for each variable. Pairwise differences for significant Kruskal–Wallis

H tests were assessed using Wilcoxon rank-sum tests.

*P< 0.05, OLD vs. RLD.
yP< 0.05, HF vs. OLD;
zP< 0.05, PH vs. RLD.

HF, heart failure; PH, pulmonary hypertension; OLD, obstructive lung disease; RLD, restrictive lung disease; FVC, forced vital capacity; %pred., percent of predicted

values; FEV1, forced expiratory volume in 1 s.
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USA). Heart rate (HR) and rhythm via 12-lead ECG as well
as oxygen saturation (SpO2) via forehead pulse oximetry
were also continually monitored.

With respect to our study aims, a pathology likelihood
algorithm based on breath-by-breath ventilation and gas
exchange responses during testing was used to create patient
group stratifications or ‘‘silos.’’ The silo likelihood that a
patient demonstrated a given primary disease was scored
on a range of 0–3 commensurate with the likelihood of
having HF, PAH, OLD, or RLD, respectively. Presented
in Table 2 are key cardiopulmonary variables input into
the scoring algorithm in order to derive each unique silo
with respect to a given patient group.

In utilizing the silo system, scores representing each of
the four disease categories were recorded for each partici-
pant. Importantly, the silo algorithm was designed to
weigh scores in an incremental manner based on increasing
to decreasing likelihood of a participant demonstrating any
one of the primary diseases. Additionally, in utilizing the
same scoring scale, separate weighted scores for each of the
four disease stratifications were recorded for each partici-
pant by three separate expert clinicians from the Mayo
Clinic Cardiovascular Health Clinic stress testing practice.
Thus, clinician scores were considered the ‘‘criterion’’
method, whereas the silo scoring system was considered
the ‘‘practical’’ method to be tested for validity and reli-
ability in being able to identify patients with either HF,
PAH, OLD, or RLD. Clinician experts in our stress prac-
tice typically review over 50 stress tests daily across a wide
spectrum of patient disease etiologies.

Statistical analyses

Where applicable, data are presented at means�SD.
Relationships between silo and clinician scores for each
group were assessed using Pearson product moment correl-
ation tests. Mean differences between silo and clinician scor-
ing across disease stratifications were tested using two-factor
mixed model analysis of variance (ANOVA) models, which
included silo-by-clinician interaction terms for each model.
In the event of significant interaction terms, Tukey–Kramer

post-hoc corrections were performed to identify where
between-within significance occurred. Validity was deter-
mined using the following indices: standard error of estimate
(SEE) with 95% confidence limits (CL); mean bias (mean
difference between silo and mean clinician scores) with 95%
limits of agreement (LOA, � 1.96� SD of differences
between scores);9 and Pearson product moment correlation
coefficient (r) with 95%CL.We interpreted the magnitude of
r values based on thresholds of Cohen10 as follows:
small¼ 0.10; medium¼ 0.30; and large¼ 0.50; whereby
larger is better. Interrater reliability was determined by intra-
class correlation coefficients (ICC¼sB

2/(sB
2
þsW

2), where
sB

2 is between variance, whereassW
2 is within variance) with

95%CL as well as standard error ofmeasurement (St.SEM¼
SD�ˇ(1–ICC)) with 95% CL.11,12 Interpretation of ICC
was determined using the following thresholds: poor <0.40;
moderate 0.40 to< 0.74; excellent> 0.75. All two-tailed stat-
istical significance was determined using an alpha level set at
0.05. Statistical analyses were performed using SPSS pro-
gramming (version 22.0).

Results

All participants were able to complete exercise testing as
described above. At end exercise, there were no significant
differences for respiratory exchange ratio (HF versus PAH
versus OLD versus RLD; 0.92� 0.09 versus 0.92� 0.06
versus 0.97� 0.14 versus 1.05� 0.23, respectively;
P> 0.05), HR (HF versus PAH versus OLD versus RLD;
102� 18 versus 115� 16 versus 115� 14 versus 108� 16
bpm, respectively; P> 0.05), relative VO2 (HF versus PAH
versus OLD versus RLD; 15.2� 4.2 versus 16.6� 4.8 versus
16.6� 3.7 versus 13.9� 4.3mL/kg/min, respectively;
P> 0.05), and the ratio of ventilation to maximal voluntary
ventilation (HF versus PAH versus OLD versus RLD;
0.43� 0.16 versus 0.57� 0.15 versus 0.44� 0.21 versus
0.51� 0.17, respectively; P> 0.05).

For baseline pulmonary function, HF and RLD demon-
strated significantly lower FVC than PAH and OLD (both
P< 0.01), whereas there were no significant differences in
FEV1 across groups (P> 0.05). Consequently, HF and

Table 2. Key variables in disease pathology likelihood algorithm.

HF silo PAH silo OLD silo RLD silo

VE/VCO2 slope14,15 VE/VCO2 slope14,15 SpO2 at peak16 SpO2 at peak16

O2 p/VO2 slope17 peak GxCap13 FEV1% pred.18,19 FVC% pred.19

OUES20,21 MPIph22–24 PECO2/PETCO2
25 VTmax/rest26

CirEquVO2
27 SpO2 at rest Breathing res.16 Lung stiffness slope28

HR rec29 SpO2 at peak16

HF, heart failure; PAH, pulmonary arterial hypertension; OLD, obstructive lung disease; RLD, restrictive lung disease; VE/VCO2, ventilatory

efficiency; O2p, oxygen pulse: oxygen consumption/heart rate; VO2, oxygen consumption; OUES, oxygen uptake efficiency slope; CircEq VO2

% pred, circulatory equivalent oxygen consumption; HR, heart rate; MPIph, multi-parameter index for pulmonary hypertension; GxCap,

pulmonary capacitance: oxygen pulse� the partial pressure of end tidal CO2; SpO2, oxygen saturation; FEV1, forced expiratory in 1 s; PECO2,

the partial pressure of mean expired CO2; PETCO2, the partial pressure of end tidal CO2; FVC % pred, % predicted of forced vital capacity.
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RLD demonstrated higher FEV1/FVC when compared to
PAH and OLD (P< 0.01, Table 1).

Figure 1 illustrates there was close alignment between silo
and clinician scoring for the likelihood of each possible diag-
nosis. For HF, the score relationship was strong between
silo and clinician (r¼ 0.89, P< 0.01; Fig. 1a). Scoring for
PAH between silo and clinician was also strong (r¼ 0.88,
P< 0.01; Fig. 1b). Likewise, scoring between silo and clin-
ician was strong for both OLD (r¼ 0.70, P< 0.01) and RLD
(r¼ 0.88, P< 0.01; Fig. 1c and d, respectively).

Validity outcomes using the silo system (practical
method) against mean Clinician scores (criterion method)
presented in Table 3 demonstrated an overall large magni-
tude of validity across silo 1–4 within each stratification.
This was accompanied by consistency of validity scoring
across indices for the likelihood of predicting scores given
by Clinicians for HF, PAH, OLD, and RLD, irrespective of
the primary disease stratification.

Likewise, interrater reliability that considered patient
scores for each group, which consisted of scores from each
Clinician as well as the silo system, demonstrated modest
levels of interrater variability both between and within
stratification (Table 4). Overall interrater reliability was par-
ticularly strong with respect to scores provided for a pri-
mary disease associated with a given group (Table 4). This
was followed by a general trend where ICC values for at
least three out of four secondary disease classes were> 0.65
within each grouping.

Score distribution patterns across diseases between silo
and Clinician scores were similar. In addition to being
able to properly score the likelihood of a primary disease,
each disease silo was capable of discretely differentiating the
likelihood of a given secondary disease. As such, the overall
score distribution pattern for the likelihood of HF was not
different between silo and clinician (P> 0.05; Fig. 2a).
Similar outcomes were observed for PAH (P> 0.05; Fig.
2b), OLD (P> 0.05; Fig. 2c), and RLD (P> 0.05; Fig. 2d).

Finally, and consistent with observations above, for the
HF silo in Fig. 2a, the diagnosis of HF demonstrated the
highest score for both silo and Clinicians (P< 0.05). Similar
results were also observed for PAH (P< 0.05; Fig. 2b) and
RLD (P< 0.05; Fig. 2d). However, OLD did not demon-
strate a ‘‘highest’’ score for the OLD silo (P> 0.05; Fig. 2c).

Discussion

The present study tested how well a novel automated algo-
rithm (i.e. silo scores), based on variables acquired from a
brief and simple cardiopulmonary test, is able to properly
differentiate primary and secondary disease types compared
with similar assessments made by trained Clinicians. These
data suggest that for each silo (i.e. HF, PAH, OLD, and
RLD), output scores closely correlated with scores provided
by Clinicians, which was accompanied by similar disease
score distributions across methods. In general, the present
observations suggest our automated cardiorespiratory

Fig. 1. Relationship between silo score and scores by the reviewers for entire group (n¼ 47). (a) HF (r¼ 0.89, P< 0.01); (b) PAH (r¼ 0.88,

P< 0.01); (c) OLD (r¼ 0.70, P< 0.01); and (d) RLD (r¼ 0.88, P< 0.01).
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Table 3. Validity indices of patient groups scored by clinicians (criterion) vs. silo algorithm (practical).

Group (Silo) SEE Std. SEE r Bias

HF (n¼ 12) 0.18 (0.12–0.31) 0.38 (0.27–0.67) 0.93 (0.77–0.98) �0.06 (�0.18–0.05)

HF (1) – – – –

PAH (2) 0.21 (0.15–0.36) 0.38 (0.27–0.67) 0.93 (0.77–0.98) �0.08 (�0.23–0.07)

OLD (3) 0.29 (0.20–0.51) 1.04 (0.73–1.82) �0.13 (�0.66–0.48) �0.21 (�0.41–�0.01)

RLD (4) 0.32 (0.22–0.56) 0.44 (0.31–0.78) 0.91 (0.69–0.97) �0.07 (�0.26–0.13)

PAH (n¼ 9) 0.36 (0.24–0.74) 0.55 (0.37–1.13) 0.85 (0.44–0.97) �0.13 (�0.39–0.13)

HF (1) 0.22 (0.15–0.45) 0.45 (0.29–0.91) 0.91 (0.62–0.98) �0.01 (�0.18–0.16)

PAH (2) – – – –

OLD (3) 0.44 (0.29–0.89) 1.02 (0.68–2.08) 0.29 (�0.46–0.80) �0.04 (�0.36–0.27)

RLD (4) 0.23 (0.16–0.48) 0.43 (0.29–0.88) 0.91 (0.63–0.98) �0.03 (�0.20–0.15)

OLD (n¼ 16) 0.33 (0.24–0.52) 0.48 (0.35–0.76) 0.88 (0.69–0.96) �0.11 (�0.29–0.07)

HF (1) 0.15 (0.11–0.23) 0.79 (0.58–1.24) 0.65 (0.23–0.87) 0.06 (�0.02–0.13)

PAH (2) 0.15 (0.11–0.24) 0.50 (0.36–0.79) 0.88 (0.67–0.96) 0.11 (0.00–0.21)

OLD (3) – – – –

RLD (4) 0.29 (0.21–0.45) 0.83 (0.61–1.31) 0.60 (0.15–0.84) �0.03 (�0.18–0.13)

RLD (n¼ 10) 0.37 (0.25–0.72) 0.65 (0.44–1.24) 0.79 (0.32–0.95) �0.16 (�0.46–0.14)

HF (1) 0.09 (0.06–0.16) 0.75 (0.50–1.43) 0.71 (0.15–0.93) 0.10 (0.00–0.20)

PAH (2) 0.14 (0.09–0.26) 0.32 (0.22–0.61) 0.95 (0.81–0.99) 0.15 (0.06–0.24)

OLD (3) 0.05 (0.03–0.10) 1.05 (0.71–2.02) 0.11 (�0.56–0.69) 0.22 (0.15–0.28)

RLD (4) – – – –

Validity indices reported with 95% confidence limits in parentheses. Validity indices were calculated using clinician mean scores (criterion) against corresponding silo

scores (practical). Rows with dashes correspond with data in the top for row for each patient group indicating the respective silo (no.) that was set to predict the

primary likelihood of that patient condition (e.g. for HF, silo 1 indicated in parentheses as (1), was set to primarily predict the likelihood of HF, and therefore validity

data for that Group-Silo pairing has been placed on the top row for patients with HF). There are validity scores for each condition within a given patient

stratification because irrespective of patient group, both clinicians and silo algorithm scored patients for the likelihood of having each of the four conditions.

HF, heart failure; PAH, pulmonary hypertension; OLD, obstructive lung disease; RLD, restrictive lung disease; SEE, standard error of estimate; Std. SEE, standardized

standard error of estimate; r, Pearson product moment correlation coefficient; bias, mean bias¼mean difference between values.

Table 4. Interrater reliability indices of patient groups scored by

clinicians and silo algorithm.

Group

(Silo) ICC St. EM Std. St. EM

HF 0.81 (0.57–0.94)* 0.25 (0.20–0.35) 0.50 (0.39–0.70)

HF (1) – – –

PAH (2) 0.93 (0.82–0.98)* 0.18 (0.14–0.25) 0.31 (0.24–0.44)

OLD (3) 0.42 (0.07–0.82)y 0.31 (0.24–0.45) 0.81 (0.63–1.19)

RLD (4) 0.86 (0.69–0.95)* 0.31 (0.25–0.44) 0.41 (0.33–0.57)

PAH 0.90 (0.74–0.97)* 0.25 (0.19–0.37) 0.37 (0.28–0.55)

HF (1) 0.98 (0.92–0.99)* 0.13 (0.10–0.20) 0.25 (0.19–0.38)

PAH (2) – – –

OLD (3) 0.47 (0.09–0.82)y 0.40 (0.31–0.61) 0.76 (0.59–1.15)

RLD (4) 0.98 (0.93–0.99)* 0.11 (0.09–0.17) 0.21 (0.16–0.31)

OLD 0.88 (0.72–0.97)* 0.30 (0.24–0.41) 0.41 (0.32–0.57)

HF (1) 0.47 (0.05–0.91)y 0.23 (0.17–0.38) 0.82 (0.60–1.34)

PAH (2) 0.74 (0.50–0.92)* 0.19 (0.15–0.25) 0.55 (0.44–0.75)

OLD (3) – – –

RLD (4) 0.83 (0.64–0.94)* 0.17 (0.14–0.23) 0.46 (0.37–0.61)

(continued)

Table 4. Continued

Group

(Silo) ICC St. EM Std. St. EM

RLD 0.96 (0.89–0.99)* 0.14 (0.11–0.20) 0.24 (0.18–0.34)

HF (1) 0.68 (0.36–0.90)* 0.08 (0.06–0.12) 0.61 (0.47–0.87)

PAH (2) 0.84 (0.64–0.95)* 0.20 (0.15–0.29) 0.44 (0.34–0.63)

OLD (3) 0.35 (0.00–0.73)y 0.06 (0.05–0.09) 0.83 (0.64–1.19)

RLD (4) – – –

Reliability indices reported with 95% confidence limits in parentheses.

Interrater reliability indices were calculated using each clinician score as well

as corresponding silo score. Rows with dashes correspond with data in the top

for row for each patient group indicating the respective silo (no.) that was set to

predict the primary likelihood of that patient condition (e.g. for HF, silo 1

indicated in parentheses as (1), was set to primarily predict the likelihood of

HF, and therefore reliability data for that Group-Silo pairing has been placed on

the top row for patients with HF). There are reliability scores for each condi-

tion within a given patient stratification because irrespective of patient group,

both clinicians and silo algorithm scored patients for the likelihood of having

each of the four conditions.

*P< 0.0001.
yP< 0.05.

HF, heart failure; PAH, pulmonary hypertension; OLD, obstructive lung disease;

RLD, restrictive lung disease; ICC, intraclass correlation coefficient; St. EM,

standard error of measurement; Std. St. EM, standardized standard error of

measurement.
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algorithm consistently demonstrated close scoring alignment
with primary patient disease class stratifications identified
by experienced Clinicians.

The observations from this study support the proposed
intent of our original disease likelihood/severity scoring algo-
rithm, which was designed to help with simplifying exercise
testing implementation and interpretation for routine use in
clinical and/or laboratory settings. These data are consistent
with our previous reports showing that for a spectrum of car-
diopulmonary diseases, clinical assessment of functional cap-
acity does not always require maximal exercise testing.2,5,6,13

The present observations suggest that changes in key cardio-
pulmonarymeasurements can be detectedwith relativelymild
to moderate levels of physical exertion. An additional
strength of our proposed algorithm system is that when con-
ducting submaximal exercise testing, the risk of patient events
may be reduced leading to the need for less strategic oversight
and required in-room personnel. Lastly, the physiological
assessment tool in the present study illustrates the ease
whereby clinical exercise testing may be able to be routinely
performed in the absence of needing to perform time consum-
ing data post-processing and advanced computations. Thus,
with the present system, itmaybepossible to reduce the ‘‘extra
layer’’ of interpretive expertise needed.

Our findings suggest that an automated scoring algorithm
based on patterns of cardiopulmonary responses from a

modified step-test exercise protocol of mild to moderate
physical exertion may be used to track common patient clin-
ical phenotypes including HF, PAH, RLD, or OLD. Based
on our sample size, we acknowledge the scope of our obser-
vations is preliminary in being able to determine the wide-
scale real-world clinical efficacy of our novel approach. Still,
these data suggest there is immediate potential associated
with the present simplified testing paradigm applied to less
traditional clinical settings where providing rapid feedback
can help with guiding clinical decision making and a simpler
way to track patients with chronic diseases to determine need
for more expert intervention.

Although it is well-recognized that diseases of the cardio-
pulmonary system are not exclusively centralized to cardiac
versus pulmonary limitations in patients, it remains a chal-
lenge for clinicians to routinely and quickly differentiate
contributions from primary versus secondary underlying
disease processes, such as is the case for example, in patients
with HF, PAH secondary to HF, or PAH without HF.
Therefore, it is promising that while frequently sharing simi-
lar signs and symptoms, these data suggest the current
approach may be helpful for separating out conditions
that align closely. Moreover, it is important to highlight
that the proposed value of this clinical exercise testing
method is using a pseudo ‘‘activities of daily living’’ exercise
setting (e.g. climbing stairs) where signs and symptoms of

Fig. 2. The pattern of score distribution across disease in silo and the reviewers: HF; PAH; OLD; and RLD.
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the present diseases are well-acknowledged to be commonly
exacerbated in patients.

In contrast to the proposed value of the present exercise
testing method aimed at identifying primary disease in
patients with HF, PAH, OLD, or RLD, we acknowledge
that calibration of sub-condition OLD scoring with clinician
scores did not consistently align within each strata. This was
followed by an inability of the silo algorithm to consistently
and clearly identify OLD from other diseases. Therefore,
our future direction will be to study a larger patient
sample, which will include a broader spectrum of OLD
severity that will prove to strengthen the capability of our
algorithm to identify this specific disease. Nevertheless, des-
pite this study limitation, it is important to note that the
chronic conditions tested in this study do not tend to exist
by themselves and, hence, a clear distinction in patients with
variable mild or modest disease is more difficult. With this,
we suggest this may be a strength of our algorithm since
output scores provide a more inclusive picture of ‘‘reality’’
rather than trying to suggest there is a single limiting factor
during activity.

Clinical implications

Clinical CPET produces a complex array of measurements that can
be integrated into algorithms allowing for a more simplified
approach to screen and track patients. Ultimately, with simplified

protocols, this allows CPET to move closer to a ‘‘point of care’’
approach or essentially a vital sign that could be pursued in pri-
mary care settings guiding the need and direction for sending
patients to subspecialty clinics.
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In memoriam

We are grateful to Dr. James ‘Jim’ E. Hansen, Professor Emeritus

at UCLA Harbor for his contributions on this study. Dr. Hansen
was supportive of sub-maximal exercise gas exchange testing to
advance its clinical application. James Hansen passed away in

May of 2017. He has authored numerous publications and a text-
book series on cardiopulmonary testing and its clinical utility in
heart, lung and pulmonary vascular disease.
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