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Ensemble empirical mode decomposition (EEMD) has been recently used to recover a signal from observed noisy data. Typically
this is performed by partial reconstruction or thresholding operation. In this paper we describe an efficient noise reduction
method. EEMD is used to decompose a signal into several intrinsic mode functions (IMFs). The time intervals between two
adjacent zero-crossings within the IMF, called instantaneous half period (IHP), are used as a criterion to detect and classify the
noise oscillations. The undesirable waveforms with a larger IHP are set to zero. Furthermore, the optimum threshold in this
approach can be derived from the signal itself using the consecutive mean square error (CMSE). The method is fully data driven,
and it requires no prior knowledge of the target signals. This method can be verified with the simulative program by using Matlab.
The denoising results are proper. In comparison with other EEMD based methods, it is concluded that the means adopted in this
paper is suitable to preprocess the stress wave signals in the wood nondestructive testing.

1. Introduction

Recovery of a signal from observed noisy data is usually
regarded as an important preprocessing and has been an area
of research for decades. Many algorithms for noise reduc-
tion have been reported so far in the literature including
traditional linear filter, such as Butterworth low pass filter,
Wiener filter, and wavelet based thresholding filter [1]. Most
of them have been proved to be effective in removing the
unwanted components. For example, Hsu et al. succeeded
in removing the aliasing on the original step-edge response
curve (SRC) caused by the binning of Moire patterns [2].
However, the linear filtering methods are not very effective
when the signals contain sharp edges and impulses of short
duration [3]. As for wavelet based denoising methods, it’s
difficult to select the wavelet base, scale, threshold function,
and optimal threshold value.

In 1998, empirical mode decomposition (EMD) was
designed by Wu and Huang primarily for decomposing the
nonlinear and nonstationary signals into a series of intrinsic
mode functions (IMFs) [4]. The main advantage of EMD is
that it depends entirely on the data itself. Consequently, the

results preserve the full nonstationarity characteristics of the
target signals. Seen in this light, the EMD method is superior
to the wavelet analysis approach, where the basic functions
are fixed and, thus, do not necessarily match all real signals
[3]. The property of EMD to behave as a dyadic filter bank
resembling those involved in wavelets [5] has been useful in
signal denoising and received more and more attention [3, 5–
11].

However, the EMD algorithm may encounter the prob-
lem of mode mixing when a signal contains intermittency.
Therefore the ensemble empirical mode decomposition
(EEMD) was introduced [12]. The algorithm defines the IMF
set for an ensemble of trials, each one obtained by applying
EMD to the signal of interest with added independent
identically distributed white noise of the same standard
deviation. Taking into account properties of the white noise,
the problem of mode mixing can be overcome [13]. Owing to
the impressive performance, EEMD has been used to address
several problems in the field of science and engineering.
It was employed to calculate the residual signal with the
purpose of detecting localized gearbox faults of damage at
an early stage [14]. In [15], the authors used it to predict
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the short term passenger flow with back-propagation neural
networks (BPN). Zhang and Xie decomposed the impact
echo signals into different spectral composition for defect
signal extraction [16].

As a more robust and noise-assisted version of EMD,
EEMD can be used as an alternate in EMD based denoising
methods. Furthermore, the use of the EEMD process as a
filter and its comparisons with the EMD method have just
recently been studied in [17, 18]. An improved filtering
performance can be achieved by EEMD than EMD with
suitable added noise and sufficient trial number. In our
earlier paper, we proposed a signal denoising strategy using
EEMD combined with the instantaneous half period (IHP)
to restore stress wave signal from observed raw data [19].

In this paper, we investigated an improvement based on
the above method. The main contribution of this paper is
that, utilizing the consecutive mean square error (CMSE),
we can determine the optimum threshold adaptively. The
method can work well on condition that no prior knowledge
is required. The whole procedure is fully data driven.

2. Conventional EEMD Based
Filtering Approach

2.1. EMD Algorithm. The EMD algorithm can be described
as follows [4].

(1) Extract all the local maxima and minima of x(k).

(2) Form the upper and lower envelop by cubic spline
interpolation of the extrema point developed in step
(1).

(3) Calculate the mean function of the upper and lower
envelop, m1(k).

(4) Let h1(k) = x(k) − m1(k). If h1(k) is a zero-mean
process, then the iteration stops and h1(k) is an IMF1,
named c1(k), else go to step (1).

(5) Define r(k) = x(k)− c1(k).

(6) If r(k) still has least 2 extrema then go to step (1) else
decomposition process is finished.

At the end of the procedure, we have a residue r(k) and a
collection of n IMF, named from c1(k) to cn(k). The original
signal can be represented as

x(k) =
n∑

i=1

ci(k) + r(k). (1)

2.2. EEMD Algorithm. The steps for EEMD are as follows
[12].

(1) Initialize the number of ensemble J , the amplitude of
the added white noise, and j = 1.

(2) Add a white noise series to the targeted sig-
nal, xj(k) = x(k) + nj(k).

(3) Apply EMD to the noise-added signal xj(k) to derive
a set of IMFs ci, j(k) (i = 1, 2, . . . ,n) and residues
r j(k), where ci, j(k) denotes the ith IMF of the jth
trial, and n is the number of IMFs.

(4) Repeat steps (1) and (2) until j > J .

(5) Average over the ensemble to obtain the final IMF of
decompositions as the desired output:

ci(k) = 1
J

J∑

j=1

ci, j(k) (i = 1, 2, . . . ,n),

r(k) = 1
J

J∑

j=1

r j(k).

(2)

Just as the EMD method, the given signal, x(k) can be
reconstructed according to the following equation:

x(k) =
n∑

i=1

ci(k) + r(k). (3)

In contrast with EMD, EEMD skillfully eliminates the
mode mixing phenomenon and the results obtained by
EEMD reflect the nature of signals more accurately [20].
In spite of a heavy computational load, it is still suitable
for getting better performance [17, 18]. So the EEMD
algorithm is utilized in this study. Furthermore, to illustrate
the performance of the present approach, we restricted
ourselves to the EEMD method which was used as the mean
to decompose the signal in both EMD based method and
EEMD based method involved in this study.

2.3. EEMD Based Filtering Approach. A conceptual model
of EEMD based filtering approach is depicted in Figure 1.
It consists of three steps. First, noisy signal is adaptively
decomposed into IMFs by means of EEMD algorithm. In
the next stage, these IMFs are classified and detected in
terms of their different properties under certain criteria and
those undesirable IMFs are thereby removed by switching
corresponding switches “off”, that is, setting the values of
the corresponding ci(k) to zeros, and will not be used in the
signal reconstruction. Finally, the recovered signal is recon-
structed with only a few IMFs which are signal dominated.
Thus it is reasonable to assume that a full restoration is
possible by this approach if enough information is available
on the characteristics of underlying signals, depending on the
selection and rejection of the IMFs.

The second step is typically performed by two operations.
Based on this, the existing EEMD based method can be
divided into two categories: EEMD based thresholding filter
[6, 8, 21] or EEMD based low pass filter [3, 17, 21]. The
former method reconstructs the signals with all the IMFs,
which use the previous threshold as in wavelet analysis.
Because most of the important structures of the signal are
often concentrated on lower frequency components (high
order IMFs), and they generally decrease towards the high
frequency modes (low order IMFs), the noise power can
be reduced significantly by adding a suitable threshold on
the high frequency modes. However, when applying the
threshold on the high order IMFs with little or no noise, the
main features of the original signal may be lost or changed
accordingly.
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Figure 1: Conceptual model of noise reduction method using EEMD.

The latter method, EEMD-based low pass filter, was
developed based on the assumption that the IMFs derived
by EEMD can only be divided into two classes: noise-only
IMFs and signal-only IMFs. Accordingly, it is feasible to use
a criterion to classify and remove the noise-only IMFs, which
leads to the result that the signal-only IMFs are partially
reconstructed. However, noises are usually distributed over
all IMFs. Thus the low pass filter based on EEMD will remove
the high frequency components of both the noise and the
signal, and the low frequency components of noise also
remain.

3. The Data-Driven IHP (DIHP) Approach

In our presented method, the ith IMF, i = 1, 2, . . . ,n, can be
denoted as ci(k), where n is the number of IMFs. Accordingly,
we can use mathematical operations to locate the zero-

crossings of ci(k). The symbol ZP
j
i is used to define the jth

zero-crossing of the ith IMF correspondingly. Moreover, the
time when the jth zero-crossing of the ith IMF emerges is

defined as τ
j
i . As a result, the time interval between ZP

j+1
i

and ZP
j
i can be treated as the half period of an oscillation,

which is used in our method as a criterion. Considering the
half periods may be different from each other, we define it as
IHP and the formula can be expressed as

T
j
i = τ

j+1
i − τ

j
i . (4)

Usually, the signal structures are corresponding to the
slow time variation of data. Besides, the frequency of the
signal is often lower than that of the noise structures [3].
Consequently, it can be supposed that the IHP of a signal
dominated oscillation is longer than the IHP of a noise
dominated oscillation. Based on this assumption, the symbol
thr is introduced to be a threshold, which allows us to
retrieve the most important structures of the signal from its
noisy version. If the IHP is bigger than thr, the waveforms
between the two adjacent zero-crossings will be considered
as signal dominated oscillations and be retained, whereas
the waveforms with smaller LHP will be treated as noise

dominated oscillations and be set to zeros. This process can
be described as

ĉi(k) =
⎧
⎨
⎩
ci(k), T

j
i ≥ thr,

0, others,
ZP

j
i < k ≤ ZP

j+1
i . (5)

Finally a reconstruction process of projecting the restored
IMF, ĉi(k), back onto the filtered signals is done as follows:

x̂(k) =
n∑

i=1

ĉi(k) + r̂(k). (6)

Note that the filtering effect is related to the value of
thr. A large thr would result in oversmoothing of the target
signal, thus removing some low-frequency oscillations while
these oscillations are signal dominated. Moreover a small thr
might not be able to remove the artifacts, hence resulting in
a signal of relatively low quality. We have earlier reported a
solution based on the maximum frequency and a constant
coefficient which can be determined with experience [19].
In this paper, we concern the method under the condition
that no prior knowledge about the target signal is required.
It is a very common problem because the prior knowledge
is unavailable or can be obtained with high cost in many
applications.

In general, the aim of the filtering is to find an
approximation reconstructed signal x̂(k) from the observed
signal x(k) with minimum errors, that is, with lower
distortion measures such as mean square error (MSE), mean
absolute error (MAE), or mean square difference (MAD).
Unfortunately, these measures can not be calculated because
the original signal is unknown in practice. Boudraa proposed
a criterion, called CMSE, based on the squared Euclidean
distance between two consecutive reconstructions of the
signal. It does not require any knowledge of the target
signal and is a fully data-driven approach. In this study,
we attempted to find the optimum threshold thropt by
minimizing the cost function CMSE

thropt = arg min
{

CMSE(x̂m(k), x̂m+1(k))
}

, (7)
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Figure 2: The self-developed signal collection system.
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Figure 3: A typical stress wave signal used in this study.
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Figure 4: The corrupted version of the signal shown in Figure 3.

The CMSE is defined as follows:

CMSE(x̂m(k), x̂m+1(k)) � 1
L

L−1∑

k=0

[x̂m(k)− x̂m+1(k)]2, (8)

where x̂m(k) and x̂m+1(k) are signals that are reconstructed
using the thr = m and thr = m + 1, respectively.

4. Experiments and Results

4.1. Stress Wave Signals Description. During the past few
decades, many advanced signal processing algorithms have
been utilized to analysis the stress wave signal for the
wood nondestructive testing, such as spectral analysis [22],
wavelet analysis [23]. Unfortunately, no developed method
or system is used worldwide until now due to the difficulty
to extract useful information directly from the raw signals.
The collected signals can be viewed as the result of multiple

interferences and reflections of these two waves fitting the
boundary conditions, which interfered with the stress wave
information identification [24]. Therefore, noise reduction is
a necessary step for any stress wave based wood test technique
to pave the way for further discovery in physics and nature
[19].

Figure 2 illustrates the signal acquisition system which
was used to collected stress wave signals in this study. We
selected a typical Cinnamomum camphora trunk with a
diameter of 27 cm as the sample. The piezoelectric receivers
BZ1106A, coupled with the matching charge amplifiers, from
Beidaihe Institute of Electrical Automation were employed.
The DAQ instrument was USB-6259 card manufactured by
National Instruments. A typical signal recorded is shown in
Figure 3. The sampling rate is 100 KHz and the duration is
10 ms.

Gaussian White Noise is added as noise with zero mean.
A noisy version of the signal shown in Figure 3 is depicted in
Figure 4. The SNR is 0 dB.

4.2. The Performance Evaluation of Finding the Optimum
Threshold. In this section, we should validate the presented
method’s ability of finding the optimum threshold thropt.
Firstly, the signal shown in Figure 4 is decomposed into
several monotonic components (IMFs) of distinct time scales
as shown in Figure 5 using EEMD method. The parameters
used to run the EEMD are the number of ensemble, M, and
amplitude of the added white noise, k, which is set to 100
and 0.2 time standard deviation [12]. Here, we can see fast
oscillations in the lower-order IMFs, and slow oscillations as
the order of components increases.

Then CMSE was calculated under different value of m.
Figure 6 shows the variety of CMSE when the m changed
from 1 to 20. It is obviously suggested in the figure that the
CMSE reaches the minimum value when m gets the value 10.

After that, the thresholding operation as described in (5)
was performed and followed by the reconstruction process
defined in (6). Figure 7 shows the results. As a comparable
result, the purified signals are also given in the figure.
It is obviously obtained that the noise signals have been
restrained notably and the recovered signals come close to
the original signals.

4.3. Comparison with Other EEMD-Based Methods. To verify
the efficiency of the presented denoised method under
different levels of noises, we designed an experiment to
compare the results in different SNR with other two EEMD
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Figure 5: The decomposition result with EEMD.
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algorithms. The signals with distinct SNR were first gener-
ated and the SNR ranged from −5 to 15. The MSE was still
selected as the criterion of evaluation. The definition of MSE
is described as follows:

MSE = 1
L

L−1∑

k=0

[s(k)− x̂(k)]2, (9)

where s(k) and x̂(k) denote the values of the original signal
and restored signal, and L is the length.

The experimental results are shown in Figure 8. The MSE
in the figure was gained by computing the average value
of 10-time repeat. For comparison, the results of EEMD
based low pass filter, EEMD based thresholding filter, and
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Figure 7: The denoised stress wave signal using proposed method.

IHP filter [19] were shown in Figure 8. It is evident that
the proposed DIHP filter has given a better performance
compared to the EEMD based low pass filter and the EEMD
based thresholding filter. What should be emphasized here
is that the result of DIHP filter is close to that of IHP. It
is capable of producing better noise-removal results even in
cases where the signal quality is low (SNR value is −5 dB).
This means that the method is effective for very noisy signals.
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Figure 8: MSE obtained with different noise levels by proposed
method, IHP filter, EEMD-based low pass filter, and EEMD-based
thresholding filter.

It implies we can get the same effect on conditions that
any prior knowledge of the target signals is. The proposed
method is fully data driven.

5. Conclusions

A new technique for the signal enhancement has been pro-
posed and developed. Simulations results of the synthesized
signals have expressed the effectiveness of the new algorithm.
The technique differs from many EEMD based algorithms as
it uses IHP to detect and classify the noise oscillations and
utilizes CMSE to compute the optimum threshold adaptively.
The filtering method is a fully data-driven approach. As a
result, the proposed technique has the ability to be used as
a preprocessing step for computerized wood nondestructive
test using the stress wave technique.

Acknowledgments

The authors acknowledge the support from the National Nat-
ural Science Foundation of China (no. 60903144, 61272313,
61174023), Zhejiang Provincial Natural Science Foundation
(no. Y1100625, Y1090766, Y1110880), Scientific and Tech-
nological Program Foundation from Zhejiang Provincial
Science and Technology Department (no. 2012C21015)
and Scientific Research Foundation of Zhejiang Provincial
Education Department (no. Y201016534).

References

[1] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans-
actions on Information Theory, vol. 41, no. 3, pp. 613–627,
1995.

[2] S. W. Hsu, C. Y. Chang, Z. Y. Chung, and K. N. Wu, “Improved
measurement of dynamic modulation transfer functions on

display using pursuit camera method based on wavelet-
denoising method,” Optical Review, vol. 18, no. 1, pp. 153–156,
2011.

[3] A. O. Boudraa and J. C. Cexus, “EMD-based signal filtering,”
IEEE Transactions on Instrumentation and Measurement, vol.
56, no. 6, pp. 2196–2202, 2007.

[4] N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode
decomposition and the Hubert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings of the Royal
Society A, vol. 454, no. 1971, pp. 903–995, 1998.

[5] P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode
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