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Abstract: Amyloid formation plays a major role in a number of neurodegenerative diseases,
including Alzheimer’s disease. Amyloid-β peptides (Aβ) are one of the primary markers associated
with this pathology. Aβ aggregates exhibit a diverse range of morphologies with distinct pathological
activities. Recognition of the Aβ aggregates by using small molecule-based probes and sensors should
not only enhance understanding of the underlying mechanisms of amyloid formation, but also facilitate
the development of therapeutic strategies to interfere with amyloid neurotoxicity. BODIPY (boron
dipyrrin) dyes are among the most versatile small molecule fluorophores. BODIPY scaffolds could be
functionalized to tune their photophysical properties to the desired ranges as well as to adapt these
dyes to various types of conditions and environments. Thus, BODIPY dyes could be viewed as unique
platforms for the design of probes and sensors that are capable of detecting and tracking structural
changes of various Aβ aggregates. This review summarizes currently available examples of BODIPY
dyes that have been used to investigate conformational changes of Aβ peptides, self-assembly
processes of Aβ, as well as Aβ interactions with various molecules.

Keywords: amyloids; protein folding; Alzheimer’s disease; Aβ1-42; BODIPY; fluorescent dyes;
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1. Introduction

Protein folding is one of the most complex, challenging, and fascinating phenomena of modern
science and medicine. Amyloids are a group of peptides and proteins that are prone to misfolding,
i.e., adaptation of non-native conformations, assemblies, etc. In general, biomolecule misfolding or
abnormal interactions lead to formation of various types of deposits, which are typically pathological
in nature [1,2]. Although specific amino acid sequences are typically required for amyloid formation,
abundant globular proteins could also be forced into amyloid-like structures [3,4].

In order to track diverse range of intermediates leading to amyloid formation, various types of
probes and sensors are required. Notably, due to synthetic accessibility of broad range of functionalities,
small molecular probes and sensors (dyes) have been widely used to monitor various biological
processes, including those related to amyloids. Among many useful fluorescent dyes, BODIPY (boron
dipyrrin or 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes (Figure 1) have received a large amount
of attention due to their structural and functional versatility, which contributes to their use in a very
diverse range of applications, in particular as probes and sensors [5–8]. It should also be pointed that
some BODIPY dyes have been mentioned in numerous recent reviews on small molecule probes and
methods for amyloid detection [9–16]. However, no detailed, comprehensive analyses and summaries
in regard to the BODIPY dyes and amyloid-β peptides have been made to date.
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Figure 1. (A) Structure of BODIPY core and the numbering system; position-8 is also referred to as 
meso-position. (B) Representative absorption (blue, βab is the absorption maximum) and emission 
(red, βem is the emission maximum) spectra of a generic BODIPY dye. 

In light of increasing number of accounts, as well as diversity of reported structures and 
approaches, it is warranted to summarize the information that specifically deals with BODIPY dyes 
as probes and sensors of conformational changes, self-assembly processes, and interactions of 
amyloid-β peptides. This review is based on the information available in the primary literature 
accounts that are published in scientific journals. Patents that are related to amyloids and BODIPY 
dyes were not included in this review due to scarcity of experimental information typically given in 
patent literature. 

2. Amyloid-β and Alzheimer’s Disease 

Amyloid peptides undergo self-assembly processes that lead to formation of a diverse range of 
structures with various degrees of neurotoxicity. So-called amyloid-β or Aβ peptides have been the 
cornerstone of the amyloid hypothesis of Alzheimer’s disease (AD) [17–19]. Aβ peptides are 
typically 37–43 amino acid long sequences, with Aβ1-40 being the most prevalent, and Aβ1-42 being 
the most neurotoxic, i.e., the most prone to formation of oligomeric and higher order aggregates. 
With regard to Aβ neurotoxicity, Aβ fibril-dependent [20–22] and Aβ oligomer-dependent [23–28] 
pathways (or a combination of both) could be envisioned (Figure 2). Although some earlier studies 
suggested that monomers of amyloid-β might not have deleterious effects [29,30], some recent 
accounts might implicate the monomeric form’s involvement in some pathological pathways [31]. 

Figure 1. (A) Structure of BODIPY core and the numbering system; position-8 is also referred to as
meso-position. (B) Representative absorption (blue, βab is the absorption maximum) and emission
(red, βem is the emission maximum) spectra of a generic BODIPY dye.

In light of increasing number of accounts, as well as diversity of reported structures and approaches,
it is warranted to summarize the information that specifically deals with BODIPY dyes as probes and
sensors of conformational changes, self-assembly processes, and interactions of amyloid-β peptides.
This review is based on the information available in the primary literature accounts that are published
in scientific journals. Patents that are related to amyloids and BODIPY dyes were not included in this
review due to scarcity of experimental information typically given in patent literature.

2. Amyloid-β and Alzheimer’s Disease

Amyloid peptides undergo self-assembly processes that lead to formation of a diverse range
of structures with various degrees of neurotoxicity. So-called amyloid-β or Aβ peptides have been
the cornerstone of the amyloid hypothesis of Alzheimer’s disease (AD) [17–19]. Aβ peptides are
typically 37–43 amino acid long sequences, with Aβ1-40 being the most prevalent, and Aβ1-42 being
the most neurotoxic, i.e., the most prone to formation of oligomeric and higher order aggregates.
With regard to Aβ neurotoxicity, Aβ fibril-dependent [20–22] and Aβ oligomer-dependent [23–28]
pathways (or a combination of both) could be envisioned (Figure 2). Although some earlier studies
suggested that monomers of amyloid-β might not have deleterious effects [29,30], some recent accounts
might implicate the monomeric form’s involvement in some pathological pathways [31].

Biosensors 2020, 10, x FOR PEER REVIEW 3 of 20 

 
Figure 2. Simplified schematic representation of amyloid-β-related oligomers and fibrillar aggregate 
interactions that lead to neuronal damage in Alzheimer’s disease (AD). 

General Comments on the Preparation of Aβ Monomers, Oligomers, and Fibrils 

Typically, lyophilized peptides are treated either with hexafluoroisopropanol (HFIP), dilute 
NaOH, or NH4OH solution to disaggregate Aβ, sometimes followed by sonication. Subsequently, 
HFIP is removed, and the resulting film is dissolved in appropriate buffer (with or without addition 
of organic solvents, such as DMSO, for example); in the case of NaOH (or NH4OH) treatments, direct 
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solution. Considering that Aβ1-40 and Aβ1-42 do undergo continuous aggregation, in most aqueous 
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cases, additional steps, such as centrifugation or dialysis, could also be introduced [32]. 
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General Comments on the Preparation of AβMonomers, Oligomers, and Fibrils

Typically, lyophilized peptides are treated either with hexafluoroisopropanol (HFIP), dilute NaOH,
or NH4OH solution to disaggregate Aβ, sometimes followed by sonication. Subsequently, HFIP is
removed, and the resulting film is dissolved in appropriate buffer (with or without addition of organic
solvents, such as DMSO, for example); in the case of NaOH (or NH4OH) treatments, direct dilution into
appropriate buffer is carried out to obtain a desired concentration of the Aβ stock solution. Considering
that Aβ1-40 and Aβ1-42 do undergo continuous aggregation, in most aqueous buffers, storage of high
concentration (e.g., 1 mM–100 µM) stock should be minimized. Below is a brief outline and some notes
on representative preparations of Aβ monomers, oligomers, and fibrils.

• Aβ monomers

In view of high aggregation propensity of Aβ peptides, obtaining an exclusively monomeric
form is challenging. It is typically assumed that freshly prepared solutions of Aβ peptides contain
mostly monomers. This is often confirmed by antibody binding/dot blot or SDS-PAGE assays. Yet,
the presence of higher order aggregates cannot be excluded. The measurements of the diluted solutions
of Aβ should be initiated immediately following the preparation of the solutions.

• Aβ oligomers

Stock solution of disaggregated Aβ peptides is diluted to the desired peptide concentration,
and the resulting solution is allowed to equilibrate for several hours prior to the measurements. In some
cases, additional steps, such as centrifugation or dialysis, could also be introduced [32].

• Aβ fibrils

Typically, allowing the diluted Aβ oligomer solution to equilibrate for up to 5–7 days at room
temperature (or 1–2 days at 37 ◦C), with or without additional perturbations [32], leads to the formation
of the Aβ fibrils.

The specific details on the preparation of Aβ aggregates (oligomers and fibrils) that have been used
for establishing sensing abilities of BODIPY dyes have been typically based on literature precedents.
Without a doubt, from a practical point of view, robust and reproducible preparations of various forms of
Aβ aggregates are required. More importantly, regardless of the desired form of the amyloid-β, uniform,
standard conditions for Aβ preparations (i.e., specific/fixed concentration of Aβ, disaggregation agents,
concentration and pH of the buffer, time of incubation, etc.) should be utilized to allow for meaningful
comparison among various amyloid probes and sensors.

In addition, it should also be noted that most studies on assessing aggregation propensity
(and neurotoxicity) of amyloid peptides are performed using homogeneous, synthetically made
Aβ peptides with specific and fixed sequences and lengths. It could be argued that these model
studies might not be providing realistic information about the behavior of Aβ in biological settings,
where heterogeneous (in regard to composition, i.e., length of peptides) mixtures of Aβ peptides are
present [23]. Furthermore, the presence of other cellular components and macromolecular crowding
effects should be considered, not only in regard to amyloids themselves, but also in regard to the
probes and sensors.

3. BODIPY-Based Sensors for Monitoring Aggregation and Conformational Changes
of Amyloids

BODIPY dyes are among the most versatile classes of small molecule fluorophores, primarily
because their photophysical properties could be fine-tuned over wide ranges using fairly straightforward
synthetic protocols [33–36]. Numerous synthetic approaches, including direct synthesis via
condensation of appropriately substituted pyrroles with various carbonyl-containing compounds,
with subsequent incorporation of BF2– or B-O– functionalities, have been introduced [33,34]. As a
complementary approach, so-called postfunctionalization of BODIPY scaffold has also been exploited
to expand the scope of functionally and structurally diverse BODIPY dyes [37].
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3.1. Non-Covalent Interactions of BODIPY Dyes with Aβ Fibrils

The first suggestion that BODIPY dyes could be used for visualizing Aβ fibrillar aggregates [38]
was based on the assumption that by conjugating BODIPY 1 with proven amyloid-binders
(e.g., 4-[2-[4-(methylamino)phenyl]ethenyl]phenol and 4-[2-[4-(methylamino)phenyl]ethynyl]phenol
and their corresponding glycol-containing derivatives, which exhibited low nM binding affinities
towards amyloid-β from AD brain homogenates [39,40]) could yield novel amyloid sensors and stains
BODIPY 2 and BODIPY 3 (Scheme 1). However, the ability of these probes to interact with Aβ

aggregates is yet to be explored.
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Scheme 1. Synthesis of BODIPY probes as suggested stains for amyloid aggregates from AD brain.

It should be noted that various synthetic approaches to incorporate styryl functionalities onto
BODIPY core have been reported (Scheme 2) [41–50]. Although styryl-containing pyrroles (Scheme 2A)
could be used for the synthesis of the corresponding BODIPY dyes [41], synthesis of styryl-containing
BODIPYs is more conveniently accomplished by using several relatively straightforward and facile
postfunctionalization protocols (Scheme 2B–D). Knoevenagel condensation between methyl-containing
BODIPY dyes and appropriate aldehydes have been used as the main route to introduce the alkenyl
moieties, mostly in view of the synthetic accessibility and/or commercial availability of the starting
materials (Scheme 2B) [42,43]. In addition, incorporation of the formyl group in various positions of the
BODIPY core was shown to occur under various sets of conditions (Scheme 2C) [44–46]. Subsequently,
these precursors could be converted to styryl-containing BODIPYs via Wittig reaction [47], for example.
Several other protocols have also been established to directly introduce ethenyl functionalities onto
BODIPY scaffold (Scheme 2D) [48–50]. However, the extended conjugation in position 3 and position 5,
as opposed to other positions, is typically preferred due to a more pronounced red shift of the emission
maxima for these BODIPY derivatives (Scheme 2B).

Compared to styryl-containing BODIPY dyes, from the structural and functional diversity points
of view, ethynyl-containing BODIPY dyes have received less attention (Scheme 3). BODIPY dyes
with ethynyl functionality in the 1, 2, or 3-positions are not particularly stable (Scheme 3A) [51,52],
and thus they should be either silyl-protected (Scheme 3B) [53] or should be converted to other
derivatives [51,52]. On the other hand, the presence of the ethynyl-group in the meso position (directly
attached to BODIPY or through an aromatic group), gives thermo- and photo-stable dyes, which could
be synthesized in a fairly straightforward manner using commercially available starting materials
(Scheme 3C) [54–57]. Considering that some ethynyl- and diyne-containing BODIPY dyes have been
used as environment-sensitive probes, primarily reporting on the viscosity fluctuations in various
types of media, including biological systems [58,59], it could be argued that some of these BODIPY
dyes could also have some potential for detecting amyloids.
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conjugation; (D) access to styryl-BODIPY dyes via direct olefination of BODIPY scaffolds.

Biosensors 2020, 10, x FOR PEER REVIEW 6 of 20 

 
Scheme 3. Some synthetic approaches towards ethynyl-containing BODIPY dyes. (A) synthesis of 
ethynyl-containing BODIPYs from halogenated pyrroles; (B) introduction of the ethynyl group on 
either substituted dipyrromethene or BODIPY scaffold via C-H functionalization; (C) one-pot 
synthesis of ethynyl-containing BODIPY or alkynylation of BODIPY scaffold. 

The ability of some styryl-containing BODIPY dyes to interact with Aβ aggregates has been 
explored in several accounts [60–63]. In general, a viable probe for detecting and staining Aβ 
aggregates from AD homogenates should fulfill the following criteria: (a) a near-IR emission, 
preferably above the 650 nm range; (b) specific labeling of the Aβ aggregates, with rapid clearing of 
the unbound probe; and (c) change of photophysical characteristics upon binding (i.e., emission 
intensity, wavelength, etc.). 

Initially, BODIPY 4, which was prepared following a multi-step procedure from commercially 
available materials (Scheme 4), was designed to function as both a nuclear (upon incorporation of 
125I) and fluorescent imaging probe for in vitro (and potentially for in vivo) imaging of amyloid 
aggregates present in AD brains [60]. BODIPIY 4 was able to show reasonable in vitro binding 
affinity (around 100 nM range) towards Aβ1-42 aggregates. This dye showed an emission around 
615 nm, thus approaching the characteristics of a viable Aβ imaging probe. 

 
Scheme 4. Synthesis of BODIPY 4. 125I-containing BODIPY could be obtained from the 
SnBu3-BODIPY intermediate upon treatment with Na125I. 
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ethynyl-containing BODIPYs from halogenated pyrroles; (B) introduction of the ethynyl group on
either substituted dipyrromethene or BODIPY scaffold via C-H functionalization; (C) one-pot synthesis
of ethynyl-containing BODIPY or alkynylation of BODIPY scaffold.

The ability of some styryl-containing BODIPY dyes to interact with Aβ aggregates has been
explored in several accounts [60–63]. In general, a viable probe for detecting and staining Aβ aggregates
from AD homogenates should fulfill the following criteria: (a) a near-IR emission, preferably above the
650 nm range; (b) specific labeling of the Aβ aggregates, with rapid clearing of the unbound probe;
and (c) change of photophysical characteristics upon binding (i.e., emission intensity, wavelength, etc.).

Initially, BODIPY 4, which was prepared following a multi-step procedure from commercially
available materials (Scheme 4), was designed to function as both a nuclear (upon incorporation
of 125I) and fluorescent imaging probe for in vitro (and potentially for in vivo) imaging of amyloid
aggregates present in AD brains [60]. BODIPIY 4 was able to show reasonable in vitro binding affinity
(around 100 nM range) towards Aβ1-42 aggregates. This dye showed an emission around 615 nm,
thus approaching the characteristics of a viable Aβ imaging probe.
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Scheme 4. Synthesis of BODIPY 4. 125I-containing BODIPY could be obtained from the SnBu3-BODIPY
intermediate upon treatment with Na125I.

Subsequent optimization of the structure revealed that incorporation of the dimethylamino group
on the substituent in position 5 could not only produce BODIPY 5 (Scheme 5) with enhanced in vitro
affinity towards Aβ aggregates (Kd = 44 nM, i.e., around 2.5 improvement compared to BODIPY 4),
but also red shifted the emission maximum closer to the desired near-IR range (λem ≈650 nm) [61].
It should also be noted that BODIPY 5 was synthesized only in two steps from commercially
available materials (Scheme 5), which should facilitate the use of this dye in amyloid-related and
other applications.
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Scheme 5. Synthesis of BODIPY 5.

Further fine-tuning of the structure of the substituent at position 3 of the BODIPY core, i.e.,
adjusting the nature of the tether between the BODIPY and the amine functionality (essentially
combing the features of BODIPY 4 and BODIPY 5) yielded BODIPYs 6–9 (Figure 3), which exhibited
Aβ-binding affinities in the 20–150 nM range [62]. Emission of these probes was further red shifted
to the desired in vivo imaging studies 700 nm range. Remarkably, these probes showed drastically
enhanced emission intensities in the presence of equimolar amounts of Aβ1-42 fibrils, with BODIPY 9
exhibiting the largest increase of 23-fold. Since emission enhancement in the presence of large excess
of bovine serum albumin (BSA; 680 µM) was only around twofold for all BODIPYs 6–9, these sensors
showed very high specificity for amyloid aggregates [62].
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Subsequent studies focused on exploring the BODIPY probes that featured extended conjugation
not only in position 3, and both position 3 and 5, but also in the meso position of the BODIPY
core (Figure 4) [63]. Only a 2–3-fold enhancement of the emission intensity in the presence of Aβ

aggregates was noted in the presence of equimolar amounts of BODIPY sensors. However, due to the
extended conjugation, the emission maxima of these dyes were shown to be in the 650–760 nm range.
Considering that background interference in this spectroscopic window is typically not appreciable,
smaller fluorescence enhancements by these probes might still be useful. In addition, it appeared that
the position of dimethylamino-phenethyl substituent on the BODIPY core had a significant impact
on both photophysical properties and affinity towards Aβ1-42 aggregates (Figure 4). Furthermore,
it was demonstrated that Kd values did not correlate directly with the staining ability of these dyes [63].
For example, BODIPY 12 and BODIPY 13 exhibited somewhat close Kd values (i.e., around 50 nM and
100 nM, respectively), but drastically different staining capabilities. On the other hand, BODIPY 10
and BODIPY 12 had somewhat different Kd values (i.e., around 230 nM and 50 nM, respectively),
yet virtually the same staining capacity. However, more detailed structure–activity relationship studies,
with a broader scope of BODIPY sensors, might be required to develop general correlations between
photophysical properties, staining capabilities, and binding affinities.
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3.2. Non-Covalent Interactions of BODIPY Dyes with Aβ Oligomers

Soluble Aβ oligomers are considered the most neurotoxic forms of amyloid-β aggregates, having
detrimental effects on various neuronal processes [23–27]. Due to the transient nature of these species,
development of BODIPY probes and sensors for soluble Aβ oligomers is challenging.

Some earlier studies indicated that unmodified BODIPY dyes might not be viable sensors for
soluble Aβ oligomers, as relatively small (<2–3-fold) emission enhancements for BODIPY 14 and
BODIPY 15 (Figure 5A) were noted in the present of soluble Aβ1-42 oligomers [64]. However,
the introduction of a triazole-moiety in the meso position yielded so-called click-BODIPY dyes
and led to appreciable levels (around 10-fold for unordered oligomers, around 40-fold for ordered
oligomers) of fluorescent enhancement in the presence soluble oligomeric Aβ1-42 species (Figure 5B).
Thus, BODIPY 16 and BODIPY 17 were able to detect a conformational change from unordered to
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ordered, yet still soluble, Aβ1-42 oligomers [64]. Time-dependent aggregation of Aβ1-42 oligomers
monitored by these dyes revealed their ability to sense pre-fibrillar soluble aggregates as a continuous
increase (without a lag-phase that is typically noted for ThT [65]) of fluorescent intensity was
noted (Figure 5C). The dye-binding studies were in agreement with circular dichroism (CD) and
light-scattering data, which were used to monitor conformational changes of Aβ1-42 oligomers
from unordered, less aggregated to ordered, more aggregated, and β-sheet rich form of Aβ1-42 [66].
Importantly, (a) appreciable levels of emission intensity were achieved in the presence of large excess
of Aβ1-42 as compared to the amount of BODIPY 16 and BODIPY 17, and (b) neither of the dyes
altered the kinetics of the Aβ aggregation process.
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(C) of BODIPY 16 in the presence of unordered and ordered soluble amyloid-β peptide (Aβ)1-42
oligomers. Media: Tris buffer (10 mM, pH 8.7).

Thus, BODIPY 16 was recently used in a dye-binding assay to evaluate the effect of several
peptide inhibitors of Aβ1-42 oligomerization and fibrillization [67]. Significantly, BODIPY 16 assay
was contrasted with ThT-based assay [66,67], thus highlighting a complementary nature of both dyes
and demonstrating the need for availability of multi-sensor approaches when addressing complex
amyloid-related processes.

ThT, being a fibril-specific sensor [66,67] (as evidenced by the lag phase, i.e., no significant changes
of ThT’s fluorescence intensity was observed over initial 5–6 h) [67], could not recognize oligomeric
Aβ1-42 species, which were present at the early stages of Aβ aggregation, and as such ThT might
not be suitable for evaluation of inhibitors of early stages of amyloid aggregation/oligomerization.
On the contrary, and consistently with a previous account [64], continuous increase of BODIPY 16
intensity was noted over 15 h of aggregation of Aβ oligomers, thus suggesting that this sensor could
detect early stage Aβ aggregates [67]. In fact, using BODIPY 16 assay, it was possible to identify a
compound that could interfere with early stage, i.e., oligomeric Aβ1-42 aggregates, which, however,
was inefficient in suppressing formation of Aβ1-42 fibrillar aggregates (which was assessed by using
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a complementary ThT-based assay). This example further illustrates the need for readily accessible,
multi-targeting dye-binding assays for screening the inhibitors of various Aβ aggregation processes.

BODIPY 18 was introduced as an Aβ1-40 oligomer-specific probe (Figure 6) [68]. This dye
was prepared in several moderate-to-high yield synthetic steps [68–70], and it was selected using a
diversity-oriented fluorescent library approach [71]. The specificity of this sensor towards oligomeric
form of Aβ1-40 was around 2–3-fold higher than that towards monomeric and fibrillar Aβ1-40 species
(Figure 6). On the contrary, ThT exhibited a strong preference toward fibrillar Aβ-40, with drastically
higher levels of emission enhancements, when compared to BODIPY 18 (Figure 6). Even though only
a ninefold increase of the fluorescence intensity and a relatively low affinity (Kd = 480 nM) towards
oligomeric Aβ1-40 was observed, BODIPY 18 was proven to be a viable in vivo probe, capable of
crossing the brain–blood barrier and successfully staining Aβ deposits in the transgenic mouse brain.
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Aza-BODIPY dye (Figure 7) is a viable near-IR analogue of BODIPY dyes with a broad range of
applications [72]. This dye was shown to differentiate between unordered and ordered conformations of
Aβ1-42 oligomers, as around 2.5-fold difference in emission intensity (with emission enhancements of
sixfold for unordered oligomers, and around 16-fold for ordered oligomers) was noted [73]. Similar to
click-BODIPY dyes (Figure 5), only small amounts of aza-BODIPY were required to attain significant
emission enhancement in the presence of Aβ1-42 oligomers. Considering that these types of dyes
could be synthesized in a relatively facile and straightforward manner [72,73], aza-BODIPY and its
analogues should be viable complements to BODIPY dyes for amyloid sensing.

Biosensors 2020, 10, x FOR PEER REVIEW 10 of 20 

Even though only a ninefold increase of the fluorescence intensity and a relatively low affinity (Kd = 
480 nM) towards oligomeric Aβ1-40 was observed, BODIPY 18 was proven to be a viable in vivo 
probe, capable of crossing the brain–blood barrier and successfully staining Aβ deposits in the 
transgenic mouse brain. 

 
Figure 6. Synthesis of BODIPY 18 (A), and emission intensities of BODIPY 18 and ThT in the 
presence of various forms of Aβ1-42 (B): selectivity (left) and emission enhancement (right) towards 
particular forms of Aβ. 

Aza-BODIPY dye (Figure 7) is a viable near-IR analogue of BODIPY dyes with a broad range of 
applications [72]. This dye was shown to differentiate between unordered and ordered 
conformations of Aβ1-42 oligomers, as around 2.5-fold difference in emission intensity (with 
emission enhancements of sixfold for unordered oligomers, and around 16-fold for ordered 
oligomers) was noted [73]. Similar to click-BODIPY dyes (Figure 5), only small amounts of 
aza-BODIPY were required to attain significant emission enhancement in the presence of Aβ1-42 
oligomers. Considering that these types of dyes could be synthesized in a relatively facile and 
straightforward manner [72,73], aza-BODIPY and its analogues should be viable complements to 
BODIPY dyes for amyloid sensing. 

 
Figure 7. Structure of aza-BODIPY dye; Tris buffer (10 mM, pH 8.6). 

3.3. Photoinduced Electron Transfer-Based BODIPY Sensors 

Ability to modulate fluorescent processes, including photoinduced electron transfer (PET) and 
fluorescence resonance energy transfer (FRET), by adjusting the structure of the fluorophores is of 

Figure 7. Structure of aza-BODIPY dye; Tris buffer (10 mM, pH 8.6).



Biosensors 2020, 10, 192 10 of 19

3.3. Photoinduced Electron Transfer-Based BODIPY Sensors

Ability to modulate fluorescent processes, including photoinduced electron transfer (PET) and
fluorescence resonance energy transfer (FRET), by adjusting the structure of the fluorophores is of the
outmost importance in designing and developing efficient fluorescence-based sensors. A number of
BODIPY probes, which operate under PET mechanism that allows for molecular and ionic sensing,
have been reported [74–76].

PET-based BODIPY 19 was reported to sense Aβ fibrillar aggregates [77]. Specifically, a gradual
decrease (over 5.5-fold at the highest concentration of Aβ) of the fluorescent intensity was observed
when BODIPY 19 (2 µM) was treated with increasing amounts of Aβ1-42 (from 0 to 2.9 µM). Notably,
a similar quenching behavior was observed when BODIPY 19 was treated with increasing amounts of
Cu(II). Although the specific details on the emission-quenching mechanism remain to be clarified, it
was suggested that the quenching mechanism was related to PET and FRET processes. Considering
that the photophysical properties (along with metal-binding capability and biological activities) of the
isomeric BODIPY 20 were drastically different from those of BODIPY 19 [78,79], it could be argued
that conformational changes, i.e., shape, distance between BODIPY, and chelating group, might be
occurring upon interaction with amyloid aggregates, thus triggering the PET-quenching mechanism.

The role of dipicolyl moiety in the interaction with Aβ has yet to be fully investigated, and only
BODIPY 21 (Figure 8) has shown some affinity towards Aβ aggregates (Zn2+-BODIPY 21 complex
exhibited EC50 = 650 nM, and around fourfold increase of emission intensity in the presence of Aβ

fibrils, albeit without any significant staining ability) [80]. It should be noted, however, that BODIPY 21
was designed as a tau-protein-specific probe.
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Thus, it is plausible that quenching of BODIPY 19 fluorescence, upon interaction with Aβ1-42
fibrils, was due to change of the distance and/or orientation between the metal-chelating group and the
BODIPY core, rather than due to specific interactions of the amyloids with the metal-chelating group.

In support of the aforementioned assumption, the emission intensity of aniline-containing
BODIPY 22 upon interaction with Aβ aggregates was suggested to depend on the distance between
the aniline and BODIPY group [81]. Specifically, in the free form, BODIPY 22 was in a more
compact conformation (that minimized the interactions of the hydrophobic BODIPY with the aqueous,
hydrophilic media), which led to the quenching of the emission by the electron pair of the amine. On the
other hand, binding to Aβ aggregates induced a more elongated conformation, which reduced or
prevented PET quenching and led to increased fluorescence as a function of increasing concentration of
Aβ (Figure 9). This concept was further supported by an accompanying model study in which gradual
increase of steric constrains around aniline moieties, which were covalently tethered to BODIPY core,
led to gradual increase of the emission intensity [81].
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Subsequently, replacing an aniline group with tetrahydoquinoxaline moiety, along with
incorporation of conjugation in position 3, resulted in a superior PET-based BODIPY 23 sensor
(Figure 9) [82]. Importantly, the interactions with monomeric, oligomeric, and fibrillar Aβ species
were investigated. In the absence of Aβ, BODIPY 23 was shown to be non-emissive in aqueous
media. However, upon addition of increasing amounts of Aβ1-42 species, substantial increase of
the emission intensity was noted, albeit with a relatively small differentiation among various forms
of Aβ1-42: the fluorescence increase was 18-fold for monomers, 26-fold for oligomers, and 21-fold
for fibrils. It should be pointed out that binding affinities of BODIPY 23 towards various Aβ1-42
species were distinct, showing some preference for oligomeric Aβ1-42 (18 nM towards monomers, 6
nM toward oligomers, and 27 nM for fibrils). Importantly, during staining of the brain slices from AD
mice, the staining ability of BODIPY 23 was similar to staining ability of ab2454 antibody that could
recognize various forms of Aβ1-42 [82].

3.4. BODIPY–Amyloid Interactions in Membrane Environments

Alteration of structural integrity of biomembranes by amyloids has been the subject of numerous
studies, which established a complex nature of interactions between amyloids and membranes and
their components [83,84]. Thus, studies on the fibrillization and oligomerization processes of amyloid-β
in the membrane environments should aid in the further understanding of amyloid-related toxicities.

Viscosity-sensitive BODIPY 24 (Figure 10), which has been widely used as a probe to measure
viscosity in membrane environments [85], was utilized to assess the effect of Aβ oligomers and fibrils
on the Aβ-induced viscosity changes in several types of biomembranes, on the basis of the changes of
BODIPY 24 lifetimes [86]. Specifically, giant plasma membrane vesicles as well as live cells, such as
HeLa cells and SH-SY5Y, which are generally used as model systems for neurodegenerative diseases,
were utilized. In the presence of Aβ oligomers, after a few hours, membrane viscosities of giant
vesicles, HeLa cells, and SH-SY5Y cells were reduced by around 30, 15, and 15%, respectively. Notably,
such changes in viscosity did not result in any visible changes in the morphology of the vesicles and
cells. On the contrary, Aβ fibrils did not alter the membrane viscosity of HeLa and SH-SY5Y cells, as
no appreciable changes in BODIPY 24 fluorescence lifetimes were noted [86].
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Significantly, by using this BODIPY probe, it was shown that a neuroprotecting peptide could
suppress the ability of Aβ1-42 oligomers to alter membranes’ viscosity of SH-SY5Y cells [86]. This result
indicated that, similar to using dye-biding assays to screen for small molecule inhibitors of Aβ

aggregation, utilization of BODIPY-based rotors, i.e., viscometers, could provide an additional
parameter for assessing the neuroprotecting effects of various molecules directly in biologically
relevant environments.

3.5. Covalent BODIPY-Aβ Probes

Fluorescently-labeled Aβ1-40 and Aβ1-42 peptides have been widely used to study amyloid
self-assembly processes as well as to investigate the amyloid β-related neurotoxicities [87–94]. It should
be noted, however, that some recent studies indicated that the nature of fluorescent groups that are
covalently linked to Aβ peptides might have a profound effect on the aggregation profile of Aβ [95,96].
Importantly, size of the fluorescent labels might not be the major factor that is contributing to the
altered aggregation kinetics of Aβ species. Notably, Aβ1-42, which was labeled with BODIPY 25
(Figure 11), was found to be the most prone to aggregation [95]. Thus, these studies highlighted the
fact that even reasonable assumptions and expectations with regard to the impact of the probe on the
properties of labeled amyloids (such as incorporation of uncharged amino acids in the unstructured
regions of Aβ for dye conjugation, for example) should be verified using not only imaging, but also
spectroscopic techniques, e.g., fluorescence correlation spectroscopy [95], which is typically used to
assess various parameters of biomacromolecular interactions and protein aggregation processes [97].
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In view of the importance of Aβ–ganglioside interactions for AD [98,99], one earlier study
focused on investigating the role of various membrane components on the aggregation of mutants
of Aβ1-40 [100]. Thiol-specific BODIPY 26 was introduced on the cysteine-containing (in positions
2, 12, and 26) Aβ1-40 peptides, and together with BODIPY-labeled gangliosides (BODIPY 27 shown
as a representative example), lipids, and fatty acids, the behavior of amyloid-β in membrane- and
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micelle-like environments were investigated using various fluorescence methods, e.g., emission,
steady-state fluorescent anisotropy and fluorescent lifetime measurements (Figure 12). It was
demonstrated that gangliosides could be controlling the modes of Aβ–membrane and Aβ–micelle
interactions [100].
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Figure 12. Structures of BODIPY 26 (the portion shown in blue is conjugated to Aβ1-40) and BODIPY
27 (shown in red).

Recently, in order to assess microviscosity fluctuations upon amyloid aggregation, BODIPY 28
was conjugated with Aβ1-42 [101] (Figure 13). This covalent attachment assured that this rotor—with
these fluorescence lifetimes being sensitive to viscosity fluctuations within the environment—could
report on the viscosity changes that are taking place in a close proximity of Aβ, thus providing valuable
information about specific Aβ interactions with cellular components. Conjugation was conducted
using naturally present lysine residues as well as the N-terminus of Aβ1-42 to produce single labeled
BODIPY 28–Aβ1-42 construct. It should be pointed out that some of the free BODIPY could not
be removed from the BODIPY 28–Aβ1-42 conjugate [101]. Even though the aggregation profiles of
Aβ1-42 and BODIPY 28–Aβ1-42 appeared to be the same, as judged by tyrosine quenching assays and
time-dependent TEM imaging, it is also possible that incorporation of BODIPY dye could be inducing
some aggregation of Aβ, which leads to the entrapment of BODIPY 28.
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Figure 13. (A) Structure of BODIPY 28 (only structure in green is covalently attached to an N-containing
residue of Aβ1-42). (B) A schematic representation of time-dependent fluorescence lifetime changes of
BODIPY 28–Aβ1-42 in the absence and presence of SH-SY5Y cell; the thin lines are only to guide the
eye through the data points.

Oligomerization of the BODIPY 28–Aβ1−42 construct was monitored following the changes in the
fluorescence lifetime of BODIPY 28 (Figure 13). Significantly, time-dependent microviscosity changes
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upon self-assembly of Aβ1-42 and/or interactions of Aβ1-42 with cellular components were shown to
be drastically different from those observed upon oligomerization (aggregation) of BODIPY 28–Aβ1-42
in vitro [101]. Although the specific details of the Aβ self-assembly in cellulo remain to be clarified,
the results unambiguously illustrated both complex nature of amyloid interactions and the need for
better model systems for in vitro, i.e., in spectroscopic cell (in cuvetto) types of studies.

4. Conclusions

Immense structural and functional complexity of amyloid interactions requires access to probes
and sensors, which possess tunable, diverse characteristics. Arguably, virtually unsurpassed versatility
of BODIPY dyes, with regard to synthesis and tunable photophysical properties, makes them one of
the privileged scaffolds for the development of probes and sensors for amyloids. Available literature
accounts have already firmly established the ability of these dyes to sense various fibrillar and
oligomeric forms of Aβ peptides (Table 1), not only in relatively simple model buffer conditions,
but also in in vitro; in cellulo; ex vivo; and, most importantly, in vivo settings.

Table 1. A list of BODIPY sensors used to date to detect Aβ peptide species.

Aβ BODIPY Reference

Fibrils/aggregates/AD
homogenates

BODIPY 4 [60]
BODIPY 5 [61]

BODIPY 6–9 [62]
BODIPY 10–13 [63]

BODIPY 19 [77]
BODIPY 21 [80]
BODIPY 22 [81]
BODIPY 24 [85]

Oligomers
BODIPY 16 [64,67]
BODIPY 18 [68]
BODIPY 23 [82]
BODIPY 24 [85]

These studies should provide fruitful foundation for further improvements of sensing ability
of BODIPY dyes, not only towards Aβ peptides, but also other types of amyloids. Considering
ever-improving synthetic methods allowing for introduction of ever-expanding functionalities, it is
highly likely that BODIPY dyes could be the torch that lights the path to solve the challenging problems
of amyloids’ behavior in various types of environments.
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