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Circular RNAs (circRNAs), which are generated mainly from back-splicing of exons in

precursor mRNAs (pre-mRNAs), are a novel class of endogenous covalently closed RNA

molecules. Their functions as microRNA sponges, protein scaffolds, and modulators of

transcription and splicing, as well as occasional templates for polypeptide production,

are beginning to be recognized, though the investigation of circRNAs is in its infancy.

circRNAs play critical roles in diverse cellular processes. Aberrant expression of circRNAs

in malignancies sustains cellular growth and proliferation, promotes cellular invasiveness,

and circumvents cellular senescence and death, suggesting their potential for exploitation

as clinical biomarkers and therapeutic targets. In this review, we highlight recent progress

in research on circRNAs in cancer, emphasizing the molecular mechanisms and potential

clinical value of circRNAs.
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INTRODUCTION

Circular RNAs (circRNAs), a novel class of endogenous covalently closed RNA molecules, have
attracted great attention in the past few years. They are generally derived from back-splicing
of precursor mRNA (pre-mRNA), during which the 3′ splice donor sequence is joined to the
downstream 5′ splice acceptor sequence (1, 2). In 1976, Sanger et al. (3) first identified the
single-stranded viroid RNA in circular formats with high thermal stability via electron microscopy.
Subsequently, this kind of circRNA transcript was found in hepatitis delta virus (4), yeast (5),
archaea (6), fruit flies (7), and mammals (8). In 1991, Nigro et al. (9) discovered the presence of
circRNA transcripts derived from the Deleted in Colon Cancer (DCC) gene in humans for the
first time; subsequently, other genes, including ETS-1 gene (10), the human cytochrome P450 gene
(11), the human dystrophin gene (12), and the antisense noncoding RNA in the INK4 locus (13),
were identified to produce circular transcripts. However, these circRNAs were long considered as
aberrant splicing by-products with low abundance and limited biological function (14).

With the development of high-throughput RNA sequencing (RNA-seq) and bioinformatics
tools, numerous circRNAs have been identified. Salzman et al. (15) explored the circRNA map
in pediatric acute lymphoblastic leukemia samples and revealed that large portions of spliced gene
transcripts are circRNAs. Jeck et al. (16) identified >25,000 circRNAs that are not degraded by
exonucleases in human fibroblasts. Circular splicing of RNA is accepted to be a general feature of
gene expression, but whether these circRNAs are functional is a primary concern of researchers.

Studies to date have reported that circRNAs are dysregulated in the pathophysiologic processes
of several diseases, including cardiovascular disease (17), neurodegenerative disease such as
Alzheimer’s disease (18), metabolic disorder (19), diseases caused by viral infection (20), and cancer,
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which is the focus of the following sections (21). Abnormal
expressed circRNAs can modulate gene transcription via indirect
interactions with other transcription factors, such as microRNAs
(miRNAs) and RNA binding proteins (RBPs) (22, 23). Sporadic
studies have also pointed out that some circRNAs containing
translation initiation elements can be translated into functional
proteins and peptides (24, 25).Moreover, the competitive splicing
mechanism of circRNAs also affects the expression of their parent
genes, thus producing biological effects (26). In addition to
functioning as regulators of gene expression, circRNAs are also
novel promising biomarkers for disease diagnosis and prognosis
assessment due to their stable closed circular structure and tissue-
and developmental stage-specific expression patterns (27, 28).

However, the understanding of circRNAs is in its infancy, and
knowledge of the biological characteristics of these molecules
requires further supplementation. More work is needed to
explore the emerging roles of circRNAs in cancer. In this
review, we introduce the biogenetic model, expression profile,
and functional mechanism of circRNAs and summarize recent
progress in circRNA research and their application in cancer.

MECHANISMS FOR circRNA GENERATION

circRNAs are divided into three main types according to their
sources, namely, exonic circular RNAs (ecircRNAs), circular
intronic RNAs (ciRNAs), and exon–intron circular RNAs
(elciRNAs), among which ecircRNAs are the most common (29).
Several circularization mechanisms produce circRNAs. These
elements shorten the spatial distance between the two ends of the
loop sequence and provide possibilities for back-splicing.

Intron pairing-driven circularization is mediated by 30–
40 nucleotide (nt) reverse complementary sequences in the
flanking regions of circularized exons; these sequences form
double-stranded RNA structures and therefore promote circRNA
production as cis-acting elements (2, 16). Alu is the most
common reverse complementary element in mammals. In
addition, some specific RBPs can bind to both sides of flanking
intron sequences and bring splice donors and splice acceptors
sufficiently close through protein–protein interactions (30), such
as Quaking (QKI) (31), NF90/NF110 (32), and FUS (33). In
contrast, other RBPs may inhibit circRNA production. For
example, adenosine deaminase acting on RNA 1 (ADAR1),
a common Alu editing element, was identified to deaminate
adenosine nucleosides to inosine (A-to-I editing) in regions
that complementary and proximal to the splice sites of
circularized exons and destabilize intron pairing interactions,
thereby antagonizing circRNA biogenesis (34). Lariat-driven
circularization occurs in the process of exon skipping. This
process produces a lariat intermediate containing introns and
exons, which then undergo back-splicing to form circRNAs.
The production of ciRNAs is a special situation in the lariat-
driven model (35). CircRNA biogenesis in vivo is indeed
very complicated. The expression level of a circRNA may be
influenced by various circularization mechanisms. In addition,
alternative splicing is a key component of circRNA production
and gene expression regulation (36, 37).

circRNA EXPRESSION AND
CHARACTERISTICS

circRNAs have been identified to be expressed widely in most
organisms. The size of circRNAs ranges from <100 to several
thousand nucleotides (30), and the common size reported in
human cells is a few hundred nucleotides comprising 2–3 exons.
The expression of most circRNAs is generally lower than that of
their linear transcripts (38), but a few circular transcripts exhibit
an expression level slightly or much higher than those of the
their linear transcripts, such as the products of the CDR1 and
Sry genes (8, 15, 16, 22). In addition, due to their unique closed
circular structure, circRNAs are protected from degradation by
exonucleases and are more stable than linear RNAs (16). Multiple
studies have reported that circRNAs have longer half-lives than
linear transcripts both in vitro and in vivo (39, 40). Moreover,
circRNA expression is generally tissue- and developmental stage-
specific. Several studies have shown that many circRNAs are
upregulated in the nervous system (41–44), a characteristic
that may be related to their posttranscriptional accumulation
in neurons (45–47). Therefore, scientists hypothesized that the
intracellular level of circRNAs was negatively correlated with the
cell proliferation index (48). This hypothesis may explain why
circRNA expression in tumor cells is generally lower than that
in normal cells. Moreover, circRNAs may have higher sequence
conservation than other types of RNA in mammals (41). Taken
together, the high conservation, stability, and specificity of
circRNAs imply that circRNAs may have multiple biological
functions and clinical applications and are unlikely to be simply
splicing by-products.

TECHNIQUES FOR STUDYING circRNAs

Although circRNAs were discovered decades ago, they could not
be detected by early routine poly(A)-enriched RNA sequencing
technology. Panda et al. (49) proposed a novel method, RNase
R treatment followed by polyadenylation and poly (A)+ RNA
depletion (RPAD), to enrich highly pure circRNAs. In this
method, total RNAs are first treated with RNase R to deplete
linear RNAs. The remaining RNAs with 3’-OH ends are
polyadenylated and removed by poly (A)+ RNA depletion via
oligo (dT) beads. The RPAD method eliminated the interference
of linear RNAs and significantly improved the reliability of the
data. However, RPAD is unsuitable for joint analysis of circRNAs
with other molecules such as miRNAs and mRNAs. Researchers
should adopt different methods to optimize RNA sequencing
libraries for the specific experimental purpose.

To date, a variety of algorithms have been developed to
identify circRNAs. CircRNAs are generated primarily from pre-
mRNA back-splicing, not canonical splicing; thus, the mapping
algorithms used in early transcriptome analysis cannot directly
match the fragments to the genome. Therefore, sequencing reads
that span back-splicing sites require further genomic alignment
and correction (50, 51). Various bioinformatics algorithms have
been developed for circRNA annotation and quantification
(51, 52). The use of two or more tools simultaneously is
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TABLE 1 | Databases about circRNAs.

Database Website Function References

Circbase http://www.circbase.org/ Circbase collects and integrates published circRNA data and identifies

circRNAs in sequencing data by find_circ software

(53)

CIRCpedia v2 http://www.picb.ac.cn/rnomics/

circpedia

CIRCpedia contains transcriptome data from approximately 180 samples

across six species and systematically annotates alternative back-splicing

and alternative splicing events of circRNAs

(36)

DeepBase v2.0 http://rna.sysu.edu.cn/

deepBase/

DeepBase v2.0 collects a total of 107,913 circRNAs, of which 92.5% were

found in human

(54)

CircRNADb http://202.195.183.4:8000/

circrnadb/circRNADb.php

CircRNADb provides not only basic information about the chromosomal

position and sequences of circRNAs but also the information about their

protein-coding potential

(55)

TSCD http://gb.whu.edu.cn/TSCD TSCD collects tissue-specific circular RNAs in humans and mice (56)

CircInteractome http://circinteractome.nia.nih.

gov/

CircInteractome provides information about microRNA and RBP binding

sites on circRNAs and can design specific primers and siRNA for circRNA

experiment verification

(57)

CSCD http://gb.whu.edu.cn/CSCD/ CSCD collects circRNA data from 87 cancer cell lines and 141 normal cells,

describing cancer-specific circRNA

(58)

Circ2Traits http://gyanxet-beta.com/circdb/ Circ2Traits integrates 1,954 circular RNAs related to human diseases. The

included circRNA contains disease-related SNPs or can interact with

disease-related miRNAs

(59)

MiOncoCirc https://nguyenjoshvo.github.io/ MiOncoCirc collects the data of circRNA expression in different cancer

clinical samples

(60)

ExoRBase http://www.exorbase.org/ ExoRBase collects 58330 circRNAs from 92 serum exosomal RNA

sequencing samples

(61)

circRNA, circular RNA; RBP, RNA binding protein.

recommended to meet specific research demands for circRNA
identification (52). In addition, multiple databases have been
developed for circRNA analysis (Table 1). Through these
databases, researchers can search basic information about
circRNAs, predict interactions of circRNAs with target molecules
and their translation potential, and evaluate their relationships
with diseases.

FUNCTIONS OF circRNAs

Numerous reports have confirmed that circRNAs can regulate
gene expression directly or, more commonly, through binding
with miRNAs, RBPs, and other gene expression regulators,
thereby regulating various biological processes.

miRNA Sponging
miRNAs are a large class of small (∼22 nt) noncoding single-
stranded RNAs that can bind to their target mRNAs to inhibit
their translation or promote their degradation. Recent studies
have reported that many circRNAs can act as competitive
endogenous RNAs (ceRNAs), binding with miRNAs through
miRNA response elements (MREs) to downregulate the function
of the target miRNA. The most representative example is
CDR1as (antisense to the cerebellar degeneration-related protein
1 transcript), also known as ciRS-7 (22, 62). CDR1as contains 73
binding sites for miR-7, and the interaction of these two RNAs
can inhibit the function of miR-7. In addition, their interaction
provides a novel mechanism for miR-7 transport. Similarly,
circSry, derived from the mouse sex-determining gene Sry,
contains 16 binding sites for miR-138 and can act as a miRNA
sponge (29). Notably, most ecircRNAs are localized mainly in

the cytoplasm, indicating their availability to bind with miRNAs
and regulate their function (39). However, most circRNAs do
not contain multiple miRNA binding sites (29). Although this
mechanism is the most widely studied mechanism of circRNAs,
its importance remains to be confirmed. The abundance of most
circRNAs is generally low, which also limits the universality of
the miRNA sponge hypothesis.

Protein Scaffolding
CircRNAs contain many RBP binding sites in addition to MREs.
For example, human antigen R (HuR) has been reported to
bind with numerous circRNAs in human cervical carcinoma
HeLa cells (63). CircPABPN1, derived from the PABPN1 gene,
can compete with PABPN1 mRNA for binding to HuR, thereby
inhibiting the translation of PABPN1. In addition, elciRNAs and
ciRNAs, predominantly localized in the nucleus, were shown
to be able to interact with small nuclear ribonucleoprotein
U1 (snRNP U1) and enhance RNA polymerase II (Pol II)
transcriptional activity on their parental gene as cis regulators
(35, 64). Additionally, the binding of circRNAs to some
functional proteins may affect multiple signaling pathways
leading to homeostasis changes. Du et al. (65) found that the
circRNA circ-Foxo3 interacted with the anti-senescence protein
ID-1, the transcription factor E2F1, and the anti-stress proteins
FAK and HIF1α and retained them in the cytoplasm to hinder
their corresponding functions.

Translational Templates
Although circRNAs have historically been considered noncoding
RNAs, several recent studies have indicated that some circRNAs
contain translation initiation sites and have translational
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potential (39). For example, some circRNAs with internal
ribosome entry sites (IRESs) can be translated into proteins
in vitro and in vivo (24). FBXW7-185aa is a novel protein
encoded by circ-FBXW7 and contains an IRES (66). N6-
methyladenosine(m6A), the most common RNA base
modification, is abundant in circRNA sequences and can
facilitate translation initiation by recruiting eIF4G2 and
YTHDF3 (67). Another study in 2017 found that circ-ZNF609
contained an open reading frame and could be translated in
human skeletal muscle. To date, only a few circRNAs have been
reported to be involved in the translation process. Although
some bioinformatics tools have been developed to predict the
translation potential of circRNAs, their accuracy needs to be
further improved and experimentally verified. In addition,
whether these proteins or peptides formed from circRNAs have
important functions needs exploration.

Other Functions
Moreover, the biosynthesis of circRNAs can compete with the
splicing of their linear transcripts, thus affecting their expression
and corresponding functions (68). Because of their stability,
circRNAs can also accumulate over time and may thus act as
memory molecules for the transcriptional history of a cell (69).
The presence of circRNAs in vesicles also suggests their function
as signaling molecules (70).

THE FUNCTIONS OF circRNA AND
CANCER

CircRNAs are abnormally expressed in many cancers, such as
lung cancer, breast cancer, digestive system cancers, ovarian
cancer, and glioblastoma. Hang et al. (71) identified 185
differentially expressed circRNAs between non-small-cell lung
cancer (NSCLC) tissues and adjacent normal tissues through
RNA sequencing. In addition, Zeng et al. (72) detected 192
upregulated and 239 downregulated circRNAs in colorectal
cancer (CRC) tissues from patients with or without pulmonary
metastasis. Whether this differential expression is related to
cancer development has been a focus of circRNA research.

Cell Proliferation
Via high-throughput sequencing, Xie et al. (73) screened a
circRNA related to bladder cancer (BC), BCRC-3. BCRC-3 is
poorly expressed in BC tissues and cell lines, and it can bind
to miR-182-5p to act as a ceRNA, thereby upregulating the
expression of p27 and inhibiting BC cell proliferation. Liang et al.
(74) found that circβ-catenin was upregulated in liver cancer
tissues compared to adjacent tissues. Silencing circβ-catenin
significantly inhibited malignant phenotypes. Mechanistically,
circβ-catenin can be translated into a 370-amino acid (aa)
β-catenin isoform. This β-catenin−370aa construct competed
with GSK3β to inhibit its degradation of β-catenin, thereby
activating the Wnt/β-catenin pathway in liver cancer to promote
tumor growth. Moreover, circACC1 has been reported to bind
the regulatory β and γ subunits of AMP-activated protein kinase
(AMPK), resulting in a ternary complex, which in turn activates
AMPK enzyme activity and then promotes fatty acid b-oxidation

and glycolysis (75). Overexpression of circACC1 can promote
tumorigenesis. A positive correlation between AMPK activation
and elevated circACC1 expression was identified in CRC tissues.
Zhang et al. (76) revealed that circNRIP1 can sponge miR-149-5p
and thus affect the AKT1/mammalian target of rapamycin
(mTOR) axis, acting as a tumor promoter in gastric cancer (GC).
This study also suggested that circNRIP1 can assemble into
exosomes and participate in exosomal communication among
GC cells (76).

Invasion and Metastasis
Recently, Hu et al. (77) identified a circRNA, circASAP1,
that is associated with pulmonary metastasis after curative
resection in hepatocellular carcinoma (HCC) patients. Studies
have shown that circASAP1 acts as a sponge of miR-
326 and miR-532-5p, which have mitogen-activated protein
kinase (MAPK)1 and colony stimulating factor (CSF-1) in
common as target genes, thereby promoting HCC cell invasion
and macrophage infiltration. In addition, Chen et al. (78)
discovered a circRNA, FECR1, derived from Friend leukemia
virus integration 1 (FLI1). Overexpression of FECR1 can
increase the invasiveness of breast cancer cells. Mechanism
studies have shown that FECR1 can recruit TET1 and act in
trans to downregulate DNMT1, causing DNA demethylation
of FLI1 and promoting cell metastasis. FECR1 may be a
potential therapeutic target for metastatic breast cancer. m6A-
modified circNSUN2 can form a ternary complex with insulin-
like growth factor 2 mRNA binding protein 2 (IGF2BP2)
and high-mobility group A2 (HMGA2) to enhance HMGA2
mRNA stability and subsequently promote liver metastasis in
CRC (79). CircFoxo3 expression is low in high-grade prostate
cancer, and overexpression of circFoxo3 in DU145 cells can
inhibit the epithelial–mesenchymal transition (EMT) and reduce
cell viability by enhancing Foxo3 expression (26). CircMTO1
(hsa_circRNA_104135) is significantly downregulated in HCC
and can affect p21 expression by targeting miR-9 and, in turn,
promote cell proliferation and invasion (80).

Cell Cycle
Circ-Foxo3 has been shown to bind with CDK2 and p21,
leading to formation of the circ-Foxo3–p21–CDK2 ternary
complex (81). CDK2 generally interacts with cyclin A/E to
promote cell cycle progression, while p21 inhibits these effects.
Formation of this ternary complex enhanced the inhibitory
effect of p21 on CDK2, which prevented cell cycle transition
from G1 to S phase and thus inhibited cell proliferation. Cheng
et al. (82) found significant upregulation of circTP63 in lung
squamous cell carcinoma (LUSC) tissues. CircTP63 competitively
binds to miR-873-3p, thereby abolishing the inhibitory effect
of miR-873-3p on its target gene Forkhead Box M1 (FOXM1).
Elevated FOXM1 expression further enhances the expression of
centromere protein (CENP)A and CENPB, ultimately promoting
cell cycle progression and cell proliferation.

Cell Death
Circ-Foxo3 was reported to be downregulated in tumor tissues
and cells (83). On the one hand, transfection of circ-Foxo3
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can induce apoptosis as a stress stimulus. On the other
hand, highly expressed circ-Foxo3 interacts with p53 and
murine double minute 2 (MDM2) and inhibits ubiquitination-
mediated degradation of Foxo3 by MDM2. Overexpression of
Foxo3 promotes apoptosis via its target Puma. Du et al. (84)
detected abnormally increased circ-Dnmt1 expression in breast
cancer tissues and cells and found that circ-Dnmt1 interacted
with p53 and AUF1, leading to their nuclear translocation,
thus mediating cell autophagy. Transfection of circ-Dnmt1
into breast cancer cells can induce autophagy to maintain
cell homeostasis and ultimately promote cell proliferation
and tumorigenesis. Furthermore, Chen et al. (85) found that
circHIPK3 expression was upregulated in STK11 mutant lung
cancer cell lines. Silencing circHIPK3 can induce autophagy
through the miR124-3p–STAT3–PRKAA/AMPKa axis. Thus,
circHIPK3 is a key upstream regulator of autophagy in
lung cancer.

Others
CircRNAs can also regulate the drug sensitivity of tumors.
By high-throughput sequencing of circRNAs of five pairs
of cisplatin-sensitive and cisplatin-resistant ovarian cancer
tissues, Zhao et al. (86) found that CDR1as was significantly
downregulated in cisplatin-resistant tissues. Mechanism studies
confirmed that CDR1as can regulate the sensitivity of ovarian
cancer to cisplatin through the miR-1270/SCAI signaling
pathway and promote ovarian cancer development. In addition,
circRNAs derived from fusion genes have been shown to play a
special role in cancers. Recent studies have demonstrated that
chromosomal translocations in cancer could not only encode
oncogenic fusion proteins but also generate circRNAs. This kind
of fusion circRNA (f-circRNA) is unique to cancer and may
play an important role in tumorigenesis. F-circRNAs were first
identified in a study on leukemia, in which F-circPR and F-
circM9 (derived from PML-RARα and MLL-AF9 fusion genes,
respectively) were found to promote cellular transformation,
cell viability, and drug resistance (87). In addition, F-circEA-
2a, derived from the EML4-ALK fusion gene in NSCLC, is
located mainly in the cytoplasm and can promote cell migration
and invasion (88). The tumor-suppressive effect of circFAT1
(e2) in GC can simultaneously arise through the cytoplasmic
circFAT1 (e2)/miR-548g/RUNX1 axis and the nuclear circFAT1
(e2)/YBN1 regulatory network (89). Thus, the mechanism of
circRNAs in vivo is very complicated, and our current knowledge
of this process is only nascent. Additional studies are listed in
Table 2.

circRNAs AS BIOMARKERS IN CANCER

CircRNAs have a covalently closed circular structure, which
increases their resistance to exonuclease digestion and their
accumulation in body fluids and tissues (131, 132). In addition,
circRNAs are often expressed in a tissue- and developmental
stage-specific manner. The properties of circRNAs have inspired
numerous studies on their application as promising biomarkers
in cancer.

Diagnostic Biomarkers
circRNAs in Tissues
Wei et al. (114) found that circ-CDYL and its target genes (HDGF
and HIF1AN) were highly expressed in Barcelona Clinic Liver
Cancer (BCLC) stages 0 and A of HCC. Their sensitivity and
specificity as combined biomarkers were higher than those of
alpha-fetoprotein (AFP) in the early stage of HCC. These results
indicated that a panel combining circ-CDYL with HDGF and
HIF1AN could be used as a monitoring indicator for early HCC
or high-risk populations. In addition, Zhong et al. (133) detected
highly expressed CDR1as in nasopharyngeal carcinoma (NPC)
biopsy samples. However, unfortunately, current methods for
detecting circRNAs in tissue are complex and invasive, which
greatly limit their roles in the early diagnosis and screening
of cancer.

circRNAs in Peripheral Blood
Numerous studies have confirmed that circRNAs can be stably
enriched in peripheral blood, urine, and saliva. Therefore,
circRNAs could become suitable biomarkers for liquid biopsy.
Recently, a study on the use of plasma circRNAs in the diagnosis
of hepatitis B virus (HBV)-associated HCC was published (134).
This study included 1,195 plasma samples, which were divided
into a training set and two validation sets. The researchers
found that the plasma expression levels of hsa_circ_0000976,
hsa_circ_0007750, and hsa_circ_0139897 in HCC patients were
significantly higher than those in healthy controls and patients
with chronic hepatitis B or HBV-related liver cirrhosis. They
also designed an HCC prediction model named CircPanel
through binary logistic regression analysis. CircPanel showed
higher sensitivity and specificity (both higher than 80%) than
AFP level for distinguishing HCC patients from controls.
Notably, CircPanel can also diagnose AFP-negative HCC and
AFP-negative small HCC (solitary, diameter ≤3 cm) with high
diagnostic accuracy. In another study, Lin et al. (135) found
that the plasma levels of circ-CCDC66, circ-ABCC1, and circ-
STIL were significantly decreased in CRC patients compared
with controls. The combination of these three circRNAs had
a sensitivity and specificity of 64.4% and 85.2%, respectively,
for diagnosing CRC. Notably, f-circRNAs derived from fusion
genes are generally cancer-specific and thus have high specificity
in diagnosing cancer, which is a unique advantage for tumor
biomarkers. Tan et al. (136) reported a fusion circRNA named
F-circEA derived from an EML4-ALK fusion gene that was
positively expressed in five of six NSCLC patients with EML4-
ALK translocation. F-circEA also exists specifically in the plasma
of EMLA4-ALK-positive NSCLC patients.

circRNAs in Exosomes
Exosomal circRNAs have received gradually increasing attention
in recent years. Li et al. (137) identifiedmore than 1,000 circRNAs
in human serum exosomes for the first time and suggested that
these circRNAs could distinguish between colon cancer patients
and healthy controls. Pan et al. (138) used qRT-PCR to detect
hsa-circ-0004771 in circulating exosomes from 170 patients and
45 healthy controls and confirmed that hsa-circ-0004771 could
clearly distinguish between patients with stage I/II CRC and
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TABLE 2 | A list of circRNAs related to cancer.

Cancer

type

CircRNA Mechanism Target Expression

in cancer

Function References

Lung

cancer

hsa_circ_0007059 MiRNA sponge miR-378/Wnt/β-catenin

miR-378/ ERK1/2

Down Inhibit cell proliferation and EMT, promote apoptosis (90)

hsa_circ_103809 MiRNA sponge miR-4302/ZNF121/MYC Up Promote cell proliferation and invasion (91)

circRNA 100146 MiRNA sponge miR-361-3p,

miR-615-5p/SF3B3

Up Inhibit cell proliferation and invasion, promote

apoptosis

(92)

circPTK2 MiRNA sponge miR-429, miR-200b-3p/

TIF1γ/TGF-β

Down Inhibit EMT and metastasis (93)

circHIPK3 MiRNA sponge miR124-3p/STAT3/PRKAA

and AMPKa

Up Promote cell proliferation, migration and invasion,

inhibit macroautophagy and autophagy

(85)

cESRP1 MiRNA sponge miR-93-5p/CDKN1A

/TGF-β

Down Increase chemotherapy sensitivity (94)

cMras MiRNA sponge miR-567/PTPRG Down Inhibit LUAD growth and metastasis (95)

Colorectal

cancer

circNSUN2 Protein scaffolds IGF2BP2/ HMGA2 Up Promote liver metastasis and cells invasion (79)

circACC1 Protein scaffolds AMPK Up Promote cell proliferation (75)

circCCDC66 MiRNA sponge miR-33b, miR-93 Up Promote cell proliferation, migration, and metastasis (96)

circHIPK3 MiRNA sponge miR-7/ FAK, IGF1R, EGFR,

YY1

Up Promote cell proliferation, migration and invasion,

inhibit cell apoptosis

(97)

circPPP1R12A Translation

template

circPPP1R12A-

73aa/Hippo-YAP

Up Promote cell proliferation, migration and invasion (25)

circLgr4 Translation

template

circLgr4-peptide

/Wnt/β-catenin

Up Promote colorectal cancer stem cells (CSCs)

self-renewal, colorectal tumorigenesis and invasion

(98)

hsa_circ_0053277 MiRNA sponge miR-2467-3p/MMP14 Up Promote cell proliferation, migration, and EMT (99)

hsa_circ_0001178 MiRNA sponge miR-382, miR-587,

miR-616/ZEB1

Up Promote cell migration and invasion (100)

Gastric

cancer

circNRIP1 MiRNA sponge miR-149-5p/AKT1-mTOR Up Promote cell proliferation, migration, invasion (76)

circPSMC3 MiRNA sponge miR-296-5p/PTEN Down Inhibit the tumorigenesis in vivo and in vitro (101)

circ-DONSON Protein scaffolds NURF/SOX4 Up Promote cell proliferation, migration and invasion,

inhibit apoptosis

(102)

circYAP1 MiRNA sponge miR-367-5p/p27 Kip1 Down Inhibit cell growth and invasion in vitro and in vivo (103)

circLARP4 MiRNA sponge miR-424/LATS1 Down Inhibit cell proliferation and invasion (104)

circFAT1(e2) MiRNA sponge miR-548g/RUNX1

YBX1

Down Promote cell proliferation, migration, and invasion (89)

circDLST MiRNA sponge miR-502-

5p/NRAS/MEK1/ERK1/2

Up Promote the tumorigenesis and metastasis (105)

circ-HuR Protein scaffolds CNBP/HuR Down Inhibit cell growth, invasion, and metastasis (106)

circOSBPL10 MiRNA sponge miR-136-5p/WNT2 Up Promote cell growth, migration, and invasion (107)

Breast

cancer

circKIF4A MiRNA sponge circKIF4A-miR-375-KIF4A Up Promote cell proliferation and migration (108)

FECR1 Protein scaffolds FLI1/TET1 Up Enhance invasiveness of breast cancer cells (78)

circ-Dnmt1 Protein scaffolds p53/AUF1 Up Promote the proliferative and survival capacities of

breast cancer cells by stimulating cellular autophagy

(84)

circANKS1B MiRNA sponge miR-148a-3p, miR-152-

3p/USF1/TGF-β1/Smad

Up Promote breast cancer invasion and metastasis (109)

circEPSTI1 MiRNA sponge miR-4753, 6809/BCL11A Up Promote cell proliferation, inhibit apoptosis (94)

circIRAK3 MiRNA sponge miR-3607/FOXC1 Up Promote cell migration, invasion and metastasis (110)

circAGFG1 MiRNA sponge miR-195-5p/ CCNE1 Up Promote triple-negative breast cancer (TNBC) cell

proliferation, mobility and invasion as well as

tumorigenesis and metastasis in vivo

(111)

circFBXW7 Translation

template

FBXW7-185aa/c-Myc Down Inhibit proliferation and migration abilities of TNBC

cells

(112)

HCC cSMARCA5 MiRNA sponge miR-17-3p,

miR-181b-5p/TIMP3

Down Inhibit cell proliferation and migration of HCC cells (113)

circMTO1 MiRNA sponge miR-9/p21 Down Inhibit cell proliferation and invasion (80)

circ-CDYL MiRNA sponge miR-892a/HDGF,

miR-328-3p/HIF1AN

Up Promote tumor growth (114)

(Continued)
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TABLE 2 | Continued

Cancer

type

CircRNA Mechanism Target Expression

in cancer

Function References

circβ-catenin Translation

template

β-catenin/Wnt Up Promote malignant phenotypes in vitro and in vivo (74)

circSLC3A2 MiRNA sponge miR-490-3p/PPM1F Up Promote HCC cell proliferation and invasion (115)

circHIPK3 MiRNA sponge miR-124/AQP3 Up Promote cell proliferation and migration (116)

circRHOT1 Protein scaffolds TIP60/NR2F6 Up Promote proliferation and metastasis (116)

circTRIM33-12 MiRNA sponge miR-191/TET1 Down Inhibit proliferation, migration, invasion and immune

evasion abilities of HCC cells

(117)

Ovarian

cancer

circPLEKHM3 MiRNA sponge miR-9/BRCA1/DNAJB6

/KLF4/AKT1

Down Inhibit cell growth, migration and EMT (118)

hsa_circ_0061140 MiRNA sponge miR-370/FOXM1 Up Promote cell proliferation and migration (119)

hsa_circ_0051240 MiRNA sponge miR-637/KLK4 Up Promote cell proliferation, migration and invasion (120)

circWHSC1 MiRNA sponge miR-145/ MUC1

miR-1182/hTERT

Up Promote cell proliferation, migration and invasion,

inhibit cell apoptosis

(121)

Prostate

cancer

circFoxo3 Modulators of

transcription

Foxo3 Down Inhibit prostate cancer viability and EMT (26)

circZNF609 MiRNA sponge miR-186-5p/YAP1/AMPK Up Promote growth, migration and invasion (122)

circ0005276 Modulators of

transcription

FUS/XIAP Up Promote cell proliferation, migration and EMT (123)

Pancreatic

cancer

circZMYM2 MiRNA sponge miR-335-5p/JMJD2C Up Promote cell proliferation and invasion, inhibit cell

apoptosis

(124)

hsa_circ_0000977 MiRNA sponge miR-874-3p/PLK1 Up Promote pancreatic cancer growth (125)

circ-ASH2L MiRNA sponge miR-34a/Notch 1 Up Promote tumor invasion, proliferation and

angiogenesis

(126)

Glioblastoma circNT5E MiRNA sponge miR-422a Up Promote cell proliferation, migration and invasion (127)

circMMP9 MiRNA sponge miR-124/CDK4/AURKA Up Promote cell proliferation, migration and invasion (128)

Bladder

cancer

BCRC-3 miR-182-5p/p27 Down Inhibit cell proliferation (73)

Esophageal

squamous

cell

carcinoma

ciRS-7 MiRNA sponge miR-7/HOXB13/NF-

κB/p65

Up Inhibit cell proliferation, migration and invasion (129)

Gallbladder

cancer

circERBB2 Protein scaffolds PA2G4/TIFIA Up Modulate ribosomal DNA transcription and cell

proliferation

(130)

circRNA, circular RNA; EMT, epithelial–mesenchymal transition; HCC, hepatocellular carcinoma; LUAD, lung adenocarcinoma.

those with benign intestinal diseases. Li et al. (139) detected
high expression of circ-PDE8A in liver-metastatic pancreatic
ductal adenocarcinoma (PDAC) tissues, and this characteristic
was confirmed to be closely related to lymphatic infiltration, T
status, and TNM stage. Circ-PDE8A is an independent risk factor
for the survival of PDAC patients. Further research confirmed
the presence of circ-PDE8A-rich exosomes secreted from tumor
cells in the plasma of PDAC patients. Similarly, circ-PDE8A in
plasma exosomesmay also be a diagnostic and prognostic marker
for PDAC.

circRNAs in Other Body Fluids
The use of circRNAs in other body fluid samples has also been
studied. For example, gastric juice examination is a highly organ-
specific test for the diagnosis of gastric diseases. Shao et al. (140)
explored the feasibility of hsa_circ_0014717 in gastric juice as
a biomarker for screening patients with GC. The expression of
hsa_circ_0014717 in gastric juice from 38 healthy people, 30
patients with gastric ulcers, 15 patients with chronic atrophic
gastritis, and 39 patients with GC was measured by qRT-PCR.

Hsa_circ_0014717 was significantly downregulated in patients
with chronic atrophic gastritis compared with healthy controls,
suggesting the potential utility of hsa_circ_0014717 in gastric
juice as a biomarker for screening high-risk populations for GC.
In addition, saliva is a body fluid used for disease research due
to its convenient and noninvasive sampling method. Bahn et al.
(141) detected and verified the presence of circRNAs in cell-free
saliva, which suggested a new direction for the application of
circRNAs as biomarkers. Moreover, Chen et al. (142) detected
highly expressed circPRMT5 in exosomes isolated from urine
samples from patients with urothelial carcinoma of the bladder
(UCB). Additional studies are listed in Table 3.

Prognostic Biomarkers
circRNAs Predict Patient Survival
CircRNAs have wide application prospects in monitoring the
treatment efficacy and assessing the prognosis of cancer.
By using RNA-seq to identify circRNAs related to HCC
progression, Qiu et al. (156) determined that circADAMTS13
was significantly downregulated in HCC tissues compared
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TABLE 3 | CircRNAs as diagnostic biomarkers in cancer.

Cancer type CircRNA Source Cohort

size

Expression

in cancer

AUC Sensitivity

%

Specificity

%

Relationship with other

biomarkers

References

HCC circZKSCAN1 Tissue 102 Down 0.834 82.2 72.4 – (143)

circ_104075 Tissue 89 Down 0.973 96.0 98.3 Perform better than DANCR,

HULC, miR-223, miR-21,

UCA1, AFP, DCP, and AFP-L3-

(144)

circSMARCA5 Plasma 489 Down 0.938 – – When combined with AFP, the

AUC increased to 0.903 and

0.858 in detecting HCC from

hepatitis and cirrhosis,

respectively

(145)

hsa_circ_0000976,

hsa_circ_0007750

and

hsa_circ_0139897

Plasma 1195 Up 0.863

0.843

0.864

– – Perform better than AFP in

diagnosing HCC and SmallHCC

(134)

Circ-CDYL Tissue 149 Up 0.73 75.36 66.67 Perform better than AFP in

diagnosing early stage of HCC

(114)

Gastric

cancer

hsa_circ_0000745 Plasma 120 Down 0.683 85.5 45.0 When combined with CEA, the

AUC increased to 0.775, while

the sensitivity and specificity

changed to 0.800 and 0.633

(146)

hsa_circ_0000520 Tissue 56 Down 0.6129 53.57 85.71 – (147)

hsa_circ_0000520 Plasma 62 Down 0.8967 82.35 84.44 Associated with CEA (147)

hsa_circ_0014717 Tissue 96 Down 0.696 59.38 81.25 Associated with CEA and

CA19-9

(140)

hsa_circ_0000096 Tissue 101 Down 0.82 – – When combined with

hsa_circ_002509, the AUC

increased to 0.91, while the

sensitivity and specificity

changed to 0.800 and 0.633

(148)

Lung cancer hsa_circ_0013958 Tissue 49 Up 0.815 75.5 79.6 – (149)

hsa_circ_0075930 Tissue 92 Up 0.756 76.2 72.1 – (150)

circRNA_102231 Tissue 57 Up 0.897 81.2 88.7 – (151)

circFARSA Plasma 100 Up 0.71 – – – (71)

Colorectal

cancer

circ-CCDC66,

circ-ABCC1and

circ-STIL

Plasma 106 Down 0.78 64.4 85.2 When combined with CEA and

CA19-9, the AUC increased to

0.855 in detecting CRC

(135)

circVAPA Plasma 103 Up 0.724 – – – (152)

circITGA7 Tissue 69 Down 0.8791 92.75 66.67 – (153)

hsa-circ-0004771 Circulating

exosome

215 Up 0.88 80.91 82.86 – (138)

Pancreatic

cancer

circ-LDLRAD3 Plasma 62 Up 0.67 57.38 70.49 When combined with CA19-9,

the AUC was increased to 0.87

and the sensitivity and

specificity were 0.8033 and

0.9355, respectively

(154)

Osteosarcoma circPVT1 Serum 90 Up 0.871 – – Perform better than ALP and

LDH

(155)

AFP, alpha-fetoprotein; circRNA, circular RNA; HCC, hepatocellular carcinoma.

with matched nontumor tissues. Moreover, its expression
was positively associated with recurrence-free survival (RFS).
Receiver operating characteristic (ROC) curve analysis was used
to evaluate the diagnostic value of circADAMTS13 in HCC
patients, and the area under ROC curve (AUC) was 0.987.
He et al. (157) determined that circGFRA1 was significantly
upregulated in triple-negative breast cancer via circRNA
microarray analysis. In addition, Kaplan–Meier survival analysis
showed that upregulation of circGFRA1 was associated with

poorer clinical survival. CircHIPK3 is significantly upregulated
in CRC tissues and cell lines and is associated with the T status
of tumors, lymph node and distant metastasis, and advanced
clinical stage (97). High expression of circHIPK3 in CRC is an
independent prognostic factor for poor overall survival (OS).
Compared with paired noncancerous tissues, GC tissues exhibit
significant downregulation of hsa_circ_0000096; moreover, the
AUC increased from 0.82 to 0.91 when hsa_circ_0000096 was
combined with hsa_circ_002509 (148). Analysis of 90 paired
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TABLE 4 | CircRNAs as prognostic biomarkers in cancer (cohort size ≥50).

Cancer type CircRNA Source Cohort

size

Expression

in cancer

Clinical significance References

Hepatocellular

carcinoma

circADAMTS13 Tissue 102 Down Negatively associated with tumor size, BCLC stage; Positively

associated with RFS

(156)

SCD-circRNA 2 Tissue 151 Up Negatively associated with RFS and OS; Positively associated with RFS (162)

circRNA_100338 Tissue 80 Up Negatively associated with OS; Positively associated with TNM stage,

vascular invasion and lung metastasis

(163)

circRNA 101368 Tissue 51 Up Negatively associated with OS; Positively associated with distant

metastasis, TNM stage, tumor size

(164)

circ-10720 Tissue 381 Up Negatively associated with survival; Positively associated with clinical

stage, pathology grade, AFP level and hepatitis B markers

(165)

circSMARCA5 Tissue 197 Down Negatively associated with TNM stage, tumor invasion and tumor size;

Positively associated with tumor differentiation

(145)

Gastric cancer circLARP4 Tissue 80 Down Negatively associated with tumor size and lymphatic metastasis;

Positively associated with OS

(104)

hsa_circ_0001368 Tissue 68 Down Positively associated with prognosis (166)

circPVT1 Tissue 187 Up Positively associated with OS and DFS (28)

circNRIP1 Tissue 80 Up Negatively associated with OS and DFS; Positively associated with

tumor size and lymphatic invasion

(76)

circ-KIAA1244 Plasma 87 Down Negatively associated with OS; Positively associate with TNM stage

and lymphatic metastasis, and poor overall survival time

(167)

circAKT3 Tissue 149 Up Positively associate with cisplatin resistance (161)

Lung cancer ciRS-7 Tissue 132 Up Negatively associated with OS and DFS; Positively associated with

tumor size, lymph node metastasis and TNM stage

(168)

circ-PRMT5 Tissue 90 Up Negatively associated with OS and progression-free survival; Positively

associated with tumor size, lymph node metastasis and TNM stage

(169)

circPTK2 Tissue 73 Down Positively associated with metastatic NSCLC Tissues (93)

circ_0016760 Tissue 83 Up Negatively associated with OS; Positively associated with TNM stage

and lymph node metastasis

(170)

hsa_circ_0000064 Tissue 50 Up Positively associated with TNM stage and lymphatic metastasis (171)

Breast cancer hsa_circRNA_002178 Tissue 70 Up Negatively associated with survival (172)

circ_0005230 Tissue 76 Up Negatively associated with OS; Positively associated with tumor size,

TNM stage and lymph node metastasis

(173)

circKIF4A Tissue 240 Up Negatively associated with survival (108)

circGFRA1 Tissue 51 Up Negatively associated with survival (157)

Colorectal

cancer

CircCCDC66 Tissue 229 Up Negatively associated with OS (96)

circHIPK3 Tissue 178 Up Negatively associated with OS; Positively associated with metastasis

and advanced clinical stage

(97)

circVAPA Tissue 60 Up Positively associated with lympho-vascular invasion, depth of invasion,

lymph node metastasis, distant metastasis and TNM stage

(152)

Bladder cancer circMTO1 Tissue 117 Up Negatively associated with OS and DFS; Positively associated with

lymph node metastasis

(174)

cTFRC Tissue 220 Up Negatively associated with prognosis; Positively associated with tumor

grade and T stage

(175)

Pancreatic

cancer

circ-IARS Tissue 79 Up Negatively associated with survival; Positively associated with liver

metastasis, vascular invasion, and TNM stage

(176)

circ-PDE8A Plasma

exosomes

56 Up Negatively associated with survival; Positively associated with duodenal

invasion, vascular invasion, T factor and TNM stage

(139)

Ovarian cancer circPLEKHM3 Tissue 86 Down Positively associated with OS and RFS (118)

circWHSC1 Tissue 92 Up Negatively associated with differentiation (121)

Osteosarcoma hsa_circ_0081001 Tissue 82 Up Negatively associated with clinical outcome (177)

Nasopharyngeal

carcinoma

CDR1as Biopsy 64 Up Positively associated with survival (133)

Glioma circ_0034642 Tissue 68 Up Negatively associated with survival; Positively associated with tumor

size and advanced WHO grade

(178)

AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; circRNA, circular RNA; DFS, disease-free survival; OS, overall survival; RFS, recurrence-free survival.
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samples of NSCLC and adjacent normal tissues showed that
hsa_circ_0014130 was significantly upregulated in NSCLC and
was found to be related to tumor size, TNM stage, and lymphatic
metastasis (158). ROC analysis indicated that hsa_circ_0014130
might be a prognostic biomarker in NSCLC.

In addition to identifying the differential expression of
hsa_circ_002059 in GC and adjacent tissues, Li et al. (159) also
found that the expression levels of hsa_circ_002059 in 36 pairs
of matched plasma samples from preoperative and postoperative
GC patients were significantly different. Considering that
circRNAs can be secreted into the tumor microenvironment
and the circulatory system by tumor cells, it is reasonable to
speculate that circRNAs can be used as biomarkers to evaluate the
tumor-bearing status of patients. Asmentioned above, circHIPK3
can regulate the autophagy process in lung cancer through
the miR124-3p–STAT3–PRKAA/AMPKa axis (85). In addition,
researchers found that the ratio (C:L ratio) of circHIPK3 to
linear HIPK3 (linHIPK3) can reflect the level of autophagy in
cells—a higher C:L ratio indicates a lower level of autophagy and
poorer prognosis.

circRNAs Predict Not Only Tumor
Metastasis but Also Drug Resistance
Recent studies have also reported that circRNAs can predict
tumor metastasis and drug resistance. Xu et al. (160) analyzed the
circRNA expression profile of three pairs of CRC patients with
or without liver metastasis. Further verification demonstrated
that circRNA_0001178 and circRNA_0000826 were significantly
upregulated in metastatic CRC (CRC-m) tissues. The AUCs were
0.945 for circRNA_0001178 and 0.816 for circRNA_0000826, and
both two circRNAs could differentiate livermetastases fromCRC.
CircASAP1 is highly expressed in the tissues of HCC patients
with pulmonary metastases after curative resection (77), and
its expression is positively correlated with the levels of CSF-
1, MAPK1, and CD68+ tumor-associated macrophage. Patients
with high circASAP1 expression tend to have relatively low OS
and high recurrence rates. Therefore, circASAP1 can be used as a
prognostic indicator for HCC.

In addition, cisplatin is one of the main chemotherapeutic
drugs used to treat GC. Huang et al. (161) analyzed the
correlation between the clinical efficacy of cisplatin and circRNA
expression in 105 cisplatin-treated patients, and they found
that the expression of circAKT3 in cisplatin-resistant patients
was higher than that in cisplatin-sensitive patients. CircAKT3
is an effective predictive biomarker for cisplatin resistance in
GC patients (AUC = 0.91). Confirmation of the relationships
between circRNA expression and drug sensitivity would provide
guidance for reasonable clinical medication and thus improve
patient prognosis. Additional studies are listed in Table 4.

CONCLUSIONS AND PERSPECTIVES

As the understanding of circRNAs has increased, their perception
by the scientific community has changed dramatically. CircRNAs
are not “splicing noise” but rather a class of structurally stable
RNA molecules with multiple biological functions. circRNAs

are generally derived from back-splicing of pre-mRNA and are
widely expressed across biological systems.

The relationship between circRNAs and cancer has recently
become an area of research interest. Numerous circRNAs are
dysregulated and play regulatory roles in the development of
cancer. Several examples of research on the roles of circRNAs in
cancer are given above. In summary, circRNAs, through various
signaling pathways, can participate in and affect processes
related to cell proliferation, migration and invasion, apoptosis,
autophagy, and drug resistance, as well as others. This capacity
has inspired researchers to consider the therapeutic possibilities
of targeting circRNAs and their associated pathways. In addition,
researchers have also tried to synthesize artificial circRNAs
for disease treatment. For example, an artificial circRNA with
eight miRNA-122 binding sites was used to competitively bind
to miRNA-122, which is required for the hepatitis C virus
(HCV) life cycle, thereby inhibiting the propagation of HCV,
with an efficiency comparable to that of the anti-miR drug
miravirsen (179). This study proposed the idea that engineered
circRNAs could be used for disease-specific treatments, similar
to targeted drugs; however, this idea is far from clinical
translation. Due to their stable structure, conservative sequence,
and specific expression pattern, circRNAs have the potential
to be used as biomarkers for cancer. circRNAs have wide
clinical application prospects—from diagnostic assessments
to predicting patient prognosis and treatment response.
However, most related studies have been single-center and
retrospective works.

The study of circRNAs is just beginning, and the mechanism
of circRNA biogenesis is not well understood. Even though
a few circRNAs have been functionally characterized, our
understanding of circRNAs remains incomplete. In addition to
the identified functions as miRNA sponges, protein scaffolds,
translation templates, and transcriptional regulators, other
mechanisms are awaiting discovery, and the cooperation and the
relative importance of these mechanisms cannot be evaluated at
present. In addition, the transport and degradation mechanisms
of circRNAs are poorly understood. Therefore, much work
remains to be done. The discovery of circRNAs has undoubtedly
enriched the content of RNA regulatory networks and has
offered new approaches for the development of clinically
translatable diagnostic/prognostic biomarkers and therapeutic
targets for cancer.
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