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a b s t r a c t

Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in
the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside
the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of
intracellular redox signalling, with known associations to health and disease. Study of their functional-
ities has intensified thanks to the development of various analytical strategies, with particular con-
tribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of
differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is
to assess the current status and to provide insights for future directions in the dynamically evolving field
of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and
analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative
information, including correction of modification levels by protein abundance changes and determina-
tion of modification site occupancy, (iii) throughput, including the amount of starting material required
for analysis. The results of this meta-analysis are the core of this review, complemented by issues related
to biological models and sample preparation in redox proteomics, including conditions for free thiol
blocking and labelling of target cysteine oxoforms.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cysteine is one of the least abundant amino acids in prokaryotic
and eukaryotic organisms and it is also amongst the most oxida-
tion-prone one [1]. Due to the strong electronegativity of the
sulphur atom present in the side chain thiolate group cysteine can
exist in many different redox forms inside the cell [1]. The majority
of cysteine oxoforms are reversible and can be reduced to thiol
(SH). These include disulphide bonds (S–S), S-glutathionylation (S-
SG), S-nitrosylation (SNO) and S-sulfenylation (SOH). Sulfinic
(SO2H) and sulphonic acid (SO3H) are the two oxoforms that are
chemically irreversible. This is with the exception of eukaryotic
2-Cys peroxiredoxins, where SO2H may be reduced by sulfir-
edoxin, in an ATP and Mg2þ-dependant reaction [2–4].

Reactivity of the thiolate extends the range of cysteine's mod-
ifications beyond redox chemistries, e.g. acylation by enzymatic
attachment of lipids [5]. The complete spectrum of cysteine post-
translational modifications (PTMs) was recently reviewed [6]. The
focus of this review is on redox-based reversible oxidations, SNO
and SOH in particular.

S-nitrosylation is the covalent addition of a nitroso group (NO)
into cysteine's thiolate, directly by reactive nitrogen species (RNS),
e.g. nitrosonium cation (NOþ) or peroxynitrite (ONOO�) or in-
directly by reactive oxygen species (ROS) via induction of NO
production [7,8]. It may also result from trans-S-nitrosylation,
transfer of a NO group from S-nitrosylated small molecules, e.g.
S-nitrosoglutathione (GSNO) or S-nitrosylated proteins onto an-
other protein-bound thiolate [7]. Although non-enzymatic, SNO is
selective and transient modification which makes it an excellent
signal transducer [9]. SNO of catalytic cysteines may be involved in
regulation of enzyme's activity, e.g. inhibition of aldehyde dehy-
drogenase upon S-nitrosylation [10,11]. Additionally, SNO may also
act as an antioxidant buffer by preventing formation of irreversible
oxidations, as described in the heart during oxidative stress caused
by ischaemia–reperfusion [9].

S-sulfenylation is the oxidation of thiolate to sulfenic acid
which in vivo occurs mainly via reaction with hydrogen peroxide
(H2O2) [12]. SOH is a non-enzymatic modification which may also
result from conversion of other cysteine oxoforms, including SNO
[7]. SOH is sub-stoichiometric and transient oxoform which, in an
oxidising environment progresses to SO2H and SO3H. Therefore
SOH has long been regarded as a marker of oxidative damage [13].
However, growing evidence suggests that SOH is also an important
regulatory PTM. For instance, SOH of the active site cysteine in
protein tyrosine phosphatases (PTP1B) reversibly inhibits their
catalytic activity [14].

Both SNO and SOH are well recognised for their role in reg-
ulation of protein activity and protein–protein interaction thereby
actively modulating intracellular signalling, as reviewed in Ref.
[15]. Redox sensitive transcription factors exist in prokaryotes and
eukaryotes and oxidative cysteine modifications are direct effec-
tors of their functions [16,17]. Their role in maintenance of in-
tracellular redox homoeostasis is equally important. Both SNO and
SOH contribute to antioxidant capacity, in a similar manner to
low-molecular weight thiols e.g. glutathione (GSH) [1]. There is
also a growing body of evidence indicating their involvement in
pathologies and disease conditions, as reviewed in Ref. [15,18].

All of the above make SNO and SOH key targets for basic and
applied research. This was recognised over a decade ago and
resulted in a dynamic development of analytical tools and their
application to redox proteomes (redoxomes). The term redoxome
was coined by Chiappetta et al. in 2010 [19]. It is defined as
complete set of cysteine oxoforms within proteins of a given
proteome. Study of the redoxome may be approached in multiple
ways depending on its complexity and the required depth of
analysis. Previously, global analysis was common. For instance,
Ellman's reagent (5,5′-dithiobis-(2-nitrobenzoic acid), DTNB) re-
acts with SH groups resulting in a coloured product which may be
measured spectrophotometrically at 412 nm. Using the extinction
coefficient for TNB2� , or a standard curve of cysteine, it is possible
to calculate the amount of thiol groups present in a sample/protein
[20]. Additionally, there exist modification specific methods, e.g.
UV photolysis to assess global SNO levels [21]. In both cases the
oxidative state of individual proteins and modification sites are
unknown. The limited sensitivity of global methods prevents dis-
tinction of subtle changes caused by typical physiological levels of
oxidative stress.

The above limitations are addressed by proteomics-based
methods. Over the years numerous strategies were developed for
both gel-based and gel-free analysis of redox proteomes. With the
later generally more suited to resolve cysteine oxoforms [22]. The
majority of those methods have been described in detail in several
excellent reviews [1,6,23].

In recent years, the development of redox proteomics has been
driven by application of a method/concept commonly referred to as
differential alkylation. It is a tool to analyse reversible modifications
of cysteine using specific reductants and alkylating reagents. Differ-
ential alkylation was introduced in 2001 as a biotin switch for ana-
lysis of SNO and has been evolving since [24]. In time, it was adapted
to other cysteine oxoforms e.g. SOH [25], S-SG [26] and all chemically
reducible cysteine modifications [27]. Regardless of the target oxo-
form and complexity, the principles remain unchanged. The initial
step is blocking of SH groups. After removal of excess blocking/al-
kylating reagent, modification-specific reductants are added fol-
lowed by blocking/alkylation of nascent thiols with a distinct
blocking/alkylating reagent. Nascent thiols refer to the SH groups
generated upon modification-specific reduction. As above, any excess
reducing/alkylating reagent is removed prior to subsequent steps.
Finally, the remainder of reversible cysteine modifications are re-
duced with a non-selective reductant and alkylated for stability. This
final alkylation step is only applicable if the modification specific
blocking/alkylation is irreversible. When reversible labels (e.g. those
utilising a disulphide bond) are used, this step should be omitted as it
prevents unambiguous assignment of modification site. The final
step is also omitted where non-selective reducing agents e.g. di-
thiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP) are used
directly after free thiol blocking. Fig. 1 summarises the concept and
main steps of differential alkylation-based redox proteomics
experiments.

This basic workflow has been modified over the years to in-
crease depth of analysis. Nowadays, differential alkylation com-
bined with tandem mass spectrometry is able to characterise en-
tire redox proteomes. This includes analysis of various cysteine
oxoforms simultaneously, with site-specific resolution [28], esti-
mation of relative abundances [29] and modification site occu-
pancies [30].

The aim of this review is a critical evaluation of experimental
setups, including both biological models and methods used for



Fig. 1. Schematic summary of the principles of differential alkylation for analysis of reversible cysteine oxidations. Proteins are typically dissolved in denaturing buffers
supplemented with metal ion chelators such as EDTA. A. Initially, reduced cysteine thiols (SH) are blocked for stability. Depending on the type of reagent (indicated by ),
blocking might be chemically reversible/reducible (MMTS) or irreversible (NEM, IAM). B. Subsequently, target cysteine oxoforms are reduced to SH groups. Ascorbate alone
and in tandem with Cu2þ selectively reduces S-nitrosothiols. Arsenite selectively reduces S-sulfenylations. Strong reducing reagents like DTT and TCEP reduce all reversible
modifications, which includes the oxoforms depicted here as well as non-redox modifications, e.g. acylation. C. Finally, nascent thiols are labelled for stability in reversible
manner (via disulphide bond) or irreversible manner (via alkylation). Labelling reagents are often designed to provide quantitative information about the modification site.

indicates: EDTA – ethylenediaminetetraacetic acid; MMTS – methyl methanethiosulfonate; NEM – N-ethylmaleimide; IAM – iodoacetamide; DTT – dithiothreitol; TCEP –

tris(2-carboxyethyl)phosphine).
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differential alkylation-based proteomic analysis of reversible cy-
steine oxidations, SNO and SOH in particular. We provide an
overview of how differential alkylation-based methods have
evolved over the years and the impact they have made on the
depth and precision of SNO/SOH analysis. To facilitate that, we
collected original research publications investigating SNO and SOH
published since 2010. Those were analysed considering the
following features: (i) assignment of modification type and site, (ii)
quantitation of modification abundance, including correction of
modification levels by protein abundance changes and modifica-
tion site occupancy (iii) throughput and amount of starting ma-
terial required. The results of this meta-analysis are the core of this
review. We discuss future directions in the dynamically evolving
field of redox proteomics.



Table 1
Selected proteomics/mass spectrometry-based studies (2010-to date) investigating various types of reversible cysteine modifications.

Reference Cysteine
modifica-
tion

Method Metal ion
chelators (in
lysis buffer)

Free thiol
blocking/alky-
lating reagent

Reductant Labelling
type

Inherent
quantitation

Unambiguous
modification
site assignment

Correction of
modification
levels by pro-
tein abun-
dance changes

Model system Number of mod-
ified proteins/pep-
tides/sites

Amount of start-
ing material/con-
dition [mg]

[29] SNO iodoTMT™ 1 mM EDTA,
0.1 mM
neocuproine

MMTS 5 mM ascorbate Indirect, ir-
reversible

TMT™ Yes No CysNO-treated BV-2
cells; LPS-stimulated
BV-2 cells; LPS þ SAC
stimulated BV-2 cells

134 Sites 101 sites
115 sites

0.4

[52] SNO cysTMT™ 1 mM EDTA,
0.1 mM
neocuproine

NEM 1 mM
ascorbateþ1 mM
CuSO4

Indirect,
reversible

TMT™ ™No No GSNO-treated HPAEC
cells; CysNo-treated
HPAEC cells

220 Sites; 11-25
sites

0.2; N/a

[34] SNO Phenylmercury
resin

1 mM DTPA,
0.1 mM
neocuproine

MMTS – Direct,
reversible

N/a No þ/� GSNO-treated mouse
liver homogenates

150 Peptides 3

[64] SNO cysTMT™ 1 mM EDTA,
0.1 mM
neocuproine

cysTMT 20 mM ascorbate Indirect,
reversible

TMT™ No þ/� Mouse hearts after
ischaemic insult

275 Peptides after
ischaemic insult

1

[35] SNO Thiopropyl
sepharose

1 mM EDTA,
0.1 mM
neocuproine

NEM 5 mM
ascorbateþ5 mM
CuCl

Indirect,
reversible

iTRAQ þ/� No GSNO-treated mouse
skeletal muscle
homogenates

488 Sites 0.5

[82] SNO Thiopropyl
sepharose

1 mM EDTA,
and 0.1 mM
neocuproine

NEM 20 mM ascorbate Indirect,
reversible

Label-free
using in-house
software

þ/� No GSNO-treated, per-
fused mouse heart
homogenates

42000 Sites 1

[45] SNO Organomercury
resin

1 mM DTPA,
0.1 mM
neocuproine

MMTS – Direct,
reversible

N/a No No Non-stimulated mouse
liver homogenates

328 Peptides 3 and 30

[92] SNO ICAT 1 mM EDTA,
0.1 mM
neocuproine

MMTS 10 mM ascorbate Indirect, ir-
reversible

Light and hea-
vy ICAT

Yes No SNO-Trx treated SH-
SY5Y cell lysates

N/a 0.3

[93] SNO PEO-iodoacetyl-
biotin

1 mM EDTA,
0.1 mM
neocuproine

IAM 5 mM ascorbate Indirect, ir-
reversible

N/a Yes No SNAP/L-cysteine-trea-
ted MS-1 cells

586 Sites 1.5

[94] SNO Thioredoxin trap
mutant

1 mM EDTA,
0.1 mM DTPA;

NEM – Direct,
reversible

N/a No No CysNO-treated THP1
cells; LPS/IFN-γ stimu-
lated RAW264.7 cells

�400 Proteins;
�200 Proteins

3

[95] SNO ICAT 1 mM EDTA,
0.1 mM
neocuproine

MMTS 10 mM ascorbate Indirect, ir-
reversible

Light and hea-
vy ICAT

Yes No SNO-Trx 1-treated SH-
SY5Y cell lysate

50–76 Sites 0.3

[96] SNO HPDP-biotin 1 mM EDTA,
0.1 mM
neocuproine

MMTS 50 mM ascorbate Indirect,
reversible

N/a No No GSNO-treated re-
combinant human
proteins on chip

834 Proteins N/a

[53] SNO HPDP-biotin 100 mM
neocuproine

NEM 1 mM
ascorbateþ10 mM
CuSO4

Indirect,
reversible

N/a þ/� No mouse with spared
nerve injury

161 Peptides 0.01

[46] SNO Organomercury
resin

1 mM DTPA,
0.1 mM
neocuproine

MMTS – Direct,
reversible

N/a No No 6 Different mouse
tissues

1011 Sites N/a

[28] SNO ICAT 5 mM EDTA,
0.5 mM
neocuproine

MMTS 5 mM
ascorbateþ1 mM
CuCl2

Indirect, ir-
reversible

Light and hea-
vy version of
ICAT

Yes No NaCl-treated Arabi-
dopsis cells

123 Peptides 2

[97] SNO HPDP-biotin 1 mM EDTA,
0.1 mM
neocuproine

MMTS 10 mM ascorbate Indirect,
reversible

N/a þ/� No CysNO-treated NPrEC
cells

82 Sites 1

[98] SNO HPDP-biotin 1 mM EDTA,
0.1 mM

NEM 20 mM ascorbate Indirect,
reversible

SILAC þ/� No LPS and IFN- γ-treated
RAW 264.7 cells

156 Proteins 1
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Table 1 (continued )

Reference Cysteine
modifica-
tion

Method Metal ion
chelators (in
lysis buffer)

Free thiol
blocking/alky-
lating reagent

Reductant Labelling
type

Inherent
quantitation

Unambiguous
modification
site assignment

Correction of
modification
levels by pro-
tein abun-
dance changes

Model system Number of mod-
ified proteins/pep-
tides/sites

Amount of start-
ing material/con-
dition [mg]

neocuproine
[54] SNO cysTMT™ 1 mM EDTA,

0.1 mM
neocuproine

NEM 1 mM
ascorbateþ1 mM
CuSO4

Indirect,
reversible

TMT™ No No NO donor-treated car-
diac mitochondria

N/a 0.2–0.3

[99] SNO ICAT 5 mM EDTA,
0.5 mM
neocuproine

MMTS 5 mM ascorbate Indirect, ir-
reversible

Light and hea-
vy version of
ICAT

Yes No Control Arabidopsis
cells and NaCl treated

53 Sites 5 sites 2

[77] SNO d5-NEM 1 mM EDTA,
0.1 mM
neocuproine

NEM 5 mM
ascorbateþ1 mM
CuCl

Indirect, ir-
reversible

Isotopomers of
NEM

Yes No CysNO-treated SH-
SY5Y cells

8 Peptides N/a

[57] SNO Biotin maleimide – NEM 30 mM sinapinic
acid

Indirect, ir-
reversible

N/a No No CysNO and LPS-treated
RAW 264.7 cells

N/a N/a

[87] SNOþS-
SG

Gold
nanoparticles

– IAM – Direct,
reversible

N/a þ/� No GSNO-treated PDI and
DUSP12 recombinant
proteins

3 SNO and 5 S-SG
peptides
respectively

N/a

[65] SNO–4-
ARa

IodoTMT™ 1 mM EDTA,
0.1 mM
neocuproine

IAM 20 mM
ascorbate–45 mM
TCEP

Indirect, ir-
reversible

TMT™ Yes No GSNO-treated H9c2
cells under hypoxia

266 sites 0.3

[79] SNO; AR Thiopropyl
sepharose

10 mM EDTA,
0.1 mM neo-
cuproine; TCA

NEM 5 mM
ascorbateþ5 mM
CuCl; 10 mM DTT

Indirect,
reversible

iTRAQ No No GSNO-treated mouse
muscle; RAW
264.7cells

488 SNO sites 0.5; 0.1

[82] SNOþAR Thiopropyl
sepharose

1 mM EDTA,
0.1 mM
neocuproine

NEM 20 mM ascorbate;
10 mM DTT

Indirect,
reversible

N/a No No Mouse hearts sub-
jected to various per-
fusion/ischaemia
protocols

47 SNO sites 1

[78] SNOþAR NEM 1 mM EDTA,
0.1 mM
neocuproine

NEM 5 mM
ascorbateþ1 mM
CuCl; 50 mM TCEP

Indirect, ir-
reversible

Light and hea-
vy version of
NEM

Yes No CysNO-treated SH-
SY5Y

Targeted analysis of
specific proteins, 11
sites

N/a

[27] S-S/AR ICAT 10% TCA IAM 10 mM TCEP Indirect, ir-
reversible

Light and hea-
vy cleavable
ICAT

Yes Yes H2O2 treated Schizo-
saccharomyces pombe

1195 Peptides 2.1

[85] AR GELSILOX 1 mM EDTA NEM 10 mM DTT Indirect, ir-
reversible

O18 þ/� Yes Proof of principle: dia-
mine-treated EA.
Hy296 cells

254 Sites 0.5

[33] AR ICAT 10% TCA IAM 20 mM TCEP Indirect, ir-
reversible

Light and hea-
vy ICAT

Yes Yes H2O2-treated wt yeast/
Trx1 and Trr1 mutant
yeast

�500 Peptides 2

[44] AR Thiopropyl
sepharose

2 mM DTPA NEM 10 mM DTT Indirect,
reversible

Label-free No No Perfused rat heart 6559 peptides N/a

[58] SOH Biotin maleimide 1 mM EDTA,
0.1 mM
neocuproine

Maleimide 20 mM arsenite Indirect, ir-
reversible

N/a No No Kidney medula of
spontaneously hy-
pertensive rats

32 Proteins 5

[43] SOH 1,3- Cyclohex-
adione
derivatives

100 μM DTPA NEM, IAA – Direct, irre-
versible

N/a þ/� No Example labelling of
purified proteins and
cells

N/a N/a

[32] SOH DAz-2 – – – Direct, irre-
versible

Light and hea-
vy DAz-2

Yes No H2O2-treated C64S
C82S Gpx3

1 Site N/a

[69] SOH Dimedone – Iododimedone – Direct, irre-
versible

Light and hea-
vy dimedone/
iododimedone

Yes No H2O2-treated C64S
C82S Gpx3 and GAPDH

1 Site/protein N/a

[100] SOH Yap1-cCRD 20% TCA IAA – Direct,
reversible

N/a No No H2O2-treated Sacchar-
omyces cerevisiae

42 Proteins N/a
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2. Model systems for studying reversible cysteine oxidations

The choice of model system in redox proteomics is very im-
portant, because they can vary dramatically in the way they re-
semble physiological redox homoeostasis. Therefore both the
choice of biological system and oxidative stimulus are considered
in the following section.

Our meta-analysis had shown that since 2010, there were 12
studies on mammalian tissues/organs, 17 studies on cell lines,
3 studies in yeast, and 5 on purified proteins (Table 1). Importantly,
only 13 of the 35 studies collected measured endogenous levels of
SNO/SOH. Endogenous refers to physiological (basal) or patholo-
gical (stimuli-induced) levels of oxidation that do not involve di-
rect treatment with ROS/RNS donors. Use of ROS/RNS donors in
vitro is common practise in these studies. GSNO and S-ni-
trosocysteine (CysNO) are typically used to induce SNO. Hydrogen
peroxide (H2O2) is commonly used to generate SOH (Table 1). Al-
though these donors exist in vivo their concentrations used for
SNO/SOH induction in vitro are higher than physiological. To give a
specific example, intracellular levels of H2O2 vary between 1 and
700 nM in aerobic organisms [31]. The studies we have collected
use between 3.5 and 300 times this concentration [27,32,33]. Such
high concentrations seem excessive considering the excellent
membrane permeability of H2O2 [31]. This is especially true, for
studies that aim to measure cysteine oxidation in vivo [33].

The routine use of harsh oxidising conditions may be justified
when the sensitivity of detection is insufficient and in cases where
ROS/RNS donors are of limited membrane permeability [15].
However, the physiological relevance of such conditions should
also be considered.

Membrane impermeability to common oxidants may be cir-
cumvented by direct oxidation of protein lysates such as was the
case for 7 of the studies (20%) collected in Table 1, e.g. in Ref.
[34,35]. However, these models are a poor representation of in-
tracellular redox homoeostasis for several reasons. Firstly, cell lysis
abolishes organelle redox microenvironments, altering the redox
status of compartment specific cysteine oxoforms and introducing
artefactual modifications. Moreover, small molecule antioxidants
such as GSH may be lost during protein precipitation in acid e.g.
TCA which may affect cysteine's susceptibility to oxidation [36].
Denaturing conditions disregard the role of protein structure and
protein–protein interactions in the susceptibility to oxidation.
They also destabilise labile oxoforms e.g. SOH, creating artefacts as
reviewed in Ref. [37]. All the above makes such in vitro studies
inadequate for analysis of even the most severe physiological in-
sult, however they can be successfully used as models in me-
chanistic studies e.g. when new oxidants are evaluated.
3. Sample preparation for redox proteomics

Due to the high reactivity and instability of cysteine oxoforms
as well as their sub-stoichiometric abundances the conditions
used for protein extraction prior to redox proteomics are ex-
tremely important. Therefore, the following sections are dedicated
to general and modification-specific issues related to sample
preparation.

Cells are heterogeneous redox entities with compartment-
specific redox activities. For example, the mitochondrial electron
transport chain (ETC) produces large quantities of ROS which do
not appear to the same extent in the cytoplasm [38]. Such com-
partmentalisation is crucial for maintaining redox homoeostasis
and allows the cell to deal with redox stressors at the source. For
instance, rotenone (a membrane permeable pesticide) inhibits
electron flow from Complex I of ETC which increases ROS/RNS
production and oxidative stress in mitochondria. However, as long
as the redox capacity of mitochondria is able to withstand this
toxic insult other cellular compartments remain unaffected [39].

3.1. Cell lysis and protein extraction

The initial step of sample preparation disrupts cellular com-
partmentalisation and creates a homogenous mixture of biomo-
lecules. Considering the rotenone example, cell lysis would mix
the more highly oxidising environment of mitochondria with
compartments in steady-state e.g. nucleus and cytoplasm. ROS/
RNS from mitochondria increase levels of reactive species in the
lysate leading to artificial changes in redox status of other cellular
cysteines. Although it is not possible to remove these artefacts
completely, they may be minimised by appropriate sample
handling.

There are several points of general importance. Oxygen (O2), its
reactive species and transition metal ions together are a potent
source of hydroxyl radicals (HO�) generated via the Fenton reac-
tion [40]. Therefore it is highly recommended that buffers and
working solutions are depleted of O2 and/or contain metal ion
chelators e.g. ethylenediaminetetraacetic acid (EDTA), diethylene-
triaminepentaacetic acid (DTPA) in sufficient concentrations [41].
Neocuproine is a Cuþ chelator, used to prevent Cuþ-catalysed
displacement of NO groups from SNO proteins [42]. However,
neocuproine should be avoided when Cuþ/Cu2þ is used in tandem
with ascorbate for selective reduction of SNO (discussed further
below). According to our meta-analysis, the most common metal
ion chelators used are EDTA and neocuproine which were used
concomitantly in 20 studies (57%) (Table 1). DTPA was also used,
either alone [43,44], in combination with neocuproine [34,45,46]
or EDTA [47].

Due to the reactivity and transient nature of cysteine oxoforms,
sample processing time should be minimised. Processing time
refers to the period from sample stimulation until labelling of
target oxoforms. Continuous analysis with no intermediate storage
is preferred for maximal sensitivity. To give specific example, we
observed that shortening protein precipitation time from over-
night to 1 h improved SNO signal intensity considerably (data not
shown). This is also in line with Burgoyne and Eaton who re-
commend replacement of lengthy and loss-prone precipitations
with size exclusion chromatography for desalting [15]. Finally, the
majority of cysteine oxoforms, SNO in particular, are light sensi-
tive; therefore all steps from cell disruption until labelling of
nascent thiols should be performed under minimal light exposure
[21].

3.2. Blocking of free thiols

The following paragraphs are dedicated to technical aspects of
sample preparation prior to differential alkylation. This includes
timely and effective blocking of SH groups in order to preserve
in vivo redox status and minimise artefactual modifications. This is
typically achieved by acid precipitation or by chemical blocking/
alkylation [36]. Each method has certain advantages and limita-
tions as extensively discussed by Hansen and Winther [36]. A
combination of the two, might be the most effective, especially in
analysis of S-nitrosoproteome as SNO groups remain reactive even
under acidic conditions [36].

Typically, samples are lysed in a denaturing buffer, e.g. HENS
buffer (HEPES, EDTA, neocuproine, SDS) containing a blocking (S-
methyl methanethiosulfonate, MMTS) or alkylating reagent (N-
ethylmaleimide, NEM; iodoacetamide, IAM) [36]. Our meta-ana-
lysis revealed that NEM is the most frequently used for blocking of
SH groups (14 studies), followed by MMTS (10 studies) and IAM (6
studies). Each of those reagents poses certain advantages and
limitations and there is no consensus as to which of them to use
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[36,48]. For instance, NEM is a cell permeable alkylating reagent
which irreversibly binds to GSH thereby altering cellular redox
equilibrium [36]. Importantly, despite the controversy, no sys-
tematic study was conducted to offer direct comparison of MMTS,
NEM and IAM in terms of effectiveness, pH dependence and se-
lectivity. Perhaps, such systematic study would put an end to the
long standing dispute over SH blocking. Regardless, SH blocking/
alkylation is critical as any failure or incompleteness at this step
artificially increases target modification levels leading to false
positive results. Therefore it should be thoroughly evaluated by
western blot or MS-based analysis prior to continuation of an
experiment, for every type of sample and experimental condition
(discussed below). Finally, it is crucial to remove any excess
blocking/alkylating reagent prior to subsequent steps. This may be
achieved by protein precipitation or size exclusion chromato-
graphy as reviewed in [36].
4. Application of gel-based strategies in redox proteomics

There exist numerous gel-based strategies for cysteine oxida-
tion analysis, the majority of which are based on differential al-
kylation [1]. Some make use of fluorescently conjugated alkylating
reagents [49,50] others antibody-based detection by western blot,
as reviewed in Ref. [15]. However, in redox proteomics similar to
expression proteomics, gel-free strategies offer improvements in
terms of sensitivity, resolution, quantitation and throughput [1].
We direct the interested reader to reviews where the advantages
and limitations of gel-based approaches to redox proteomics are
described in detail [1,51].

Despite serious limitations, we believe that gel-based strategies
still have a niche in redox proteomics. Paradoxically, one of their
advantages may be their global character which makes them ex-
cellent tools for quality control e.g. to evaluate efficiency of SH
blocking. Additionally, they may be used for assessment of global
modification levels between experimental conditions, e.g. SNO
levels between control and oxidative stimuli [30]. Such evaluation
saves often expensive reagents and mass spectrometry (MS) ana-
lysis time until all experimental steps and biological models are
fully optimised.
5. Modification specific reduction and labelling of nascent
thiols

In a typical differential alkylation protocol, after initial SH
blocking target cysteine oxoforms are labelled (Fig. 1). This may be
effected by direct reaction of a modified cysteine with a labelling
reagent or indirectly. In the latter, modified cysteines are first
chemically reduced to SH and those are subsequently labelled in a
reversible (by disulphide bond) or irreversible (by alkylation)
manner. The focus of the following sections is on indirect methods
however due to an increasing number of direct methods a com-
parison of the two approaches is also provided in subsequent
section.

There are few general considerations for how indirect methods
should be performed, regardless of target oxoform. This includes
the reaction conditions. Denaturing buffers are necessary for ef-
fective reduction and alkylation of those cysteines buried within
the tertiary structure of a protein. This is preferred despite the fact
that denaturing conditions might destabilise labile cysteine oxo-
forms [15]. Another decision is whether to label at the protein or
peptide level, which is a dilemma in many modificomics studies
and is of utmost importance in studies of transient and highly
reactive modifications, such as oxidations. It is the preference of us
and others that labelling is performed at the protein level [30,35].
This reduces the time between cell disruption and labelling of
target cysteines, minimising sample preparation artefacts. Peptide
level labelling, although preferable for improved accessibility to
modified residues, is not desired due to significantly increased
sample processing time caused by proteolytic digestion. Ad-
ditionally, digestion is typically preceded by DTT/TCEP reduction
and alkylation of cysteines, a step that is not compatible with
specific SNO/SOH analysis.

After blocking of SH groups, labelling of target oxoforms is
achieved by selective reduction and alkylation. Strong reducing
agents like DTT/TCEP reduce all reversibly oxidised cysteines and
other non-redox modifications, e.g. acylation. Sodium ascorbate
and sodium arsenite are more selective, reducing SNO and SOH,
respectively. However their actual selectivity is controversial.

5.1. Selective reduction of SNO – ascorbate based

Ascorbate remains the most commonly used reductant of
S-nitrosothiols, even though its selectivity is not clearly defined.
For this reason, over the years of ascorbate usage, variations in its
concentration were used, alone or in tandem with Cu2þ see Ta-
ble 1 [52–54]. The former is more common as it was used in 12
recent studies in the concentration range 5–50 mM. Ascorbate in
combination with Cuþ/Cu2þ was applied in 8 studies and its
concentration ranged between 1 and 5 mM. However, no sys-
tematic study evaluated the concentration dependant selectivity of
SNO reduction and there remains no consensus as to which re-
duction conditions provide superior selectivity and sensitivity of
SNO detection. This is bizarre as the chemistries behind the dif-
ferent approaches are known. Ascorbate in higher concentrations
(e.g. 20 mM) reduces SNO directly, on the basis of nucleophilic
attack [55]. Lower concentrations of ascorbate (e.g. 1 mM) act as
reducing agent only in combination with Cu2þ . Here ascorbate
reduces Cu2þ to Cuþ which in turns reduces SNO [55].
Ascorbate/Cu2þ combination was shown to increase sensitivity of
SNO detection [56] but with no concomitant improvement in se-
lectivity, as discussed in Ref. [15]. Due to the differences in
chemistry, it is crucial not mix the two approaches and use high
ascorbate concentrations in tandem with Cu2þ ions. Although
ascorbate is the most common, other reductants, such as sinapinic
acid have also been used for SNO reduction [57].

5.2. Selective reduction of SOH–arsenite based

Arsenite-based reduction of SOH is less frequent and is typi-
cally replaced by direct labelling with dimedone (discussed in a
subsequent section). According to Table 1 there is only one recent
study where arsenite-based reduction was used to identify SOH
sites from kidney medula of spontaneously hypertensive rats [58].

Due to discrepancies in ascorbate/arsenite-based protocols,
reduction efficiency must be evaluated in each experiment in-
cluding appropriate controls. For instance, a control for selectivity
of ascorbate reduction (negative control) would be to irreversibly
block free thiols and UV photolysed SNO groups with one alky-
lating reagent, followed by reduction with ascorbate and alkyla-
tion with an alternative alkylating reagent, such as it was sug-
gested by Forrester et al. [59].

5.3. Non-selective reduction of all reversibly modified cysteines

Strong reducing agents such as DTT and TCEP are typically used
for reduction of all reversible cysteine modifications. This includes
reversible oxoforms (disulphides, S-glutathionylation, S-nitrosyla-
tion and S-sulfenylation) as well as non-redox modifications, e.g.
acylation. According to our analysis DTT and TCEP are used equally
frequent in the concentration range 5–50 mM. When, using DTT it



K. Wojdyla, A. Rogowska-Wrzesinska / Redox Biology 6 (2015) 240–252 247
is important to remove its excess prior to the labelling/alkylation.
Otherwise SH groups of DTT might compete with SH groups of
target proteins thereby hampering completeness of the labelling.
In case of TCEP, which is a non-thiol based reductant, reduction
and labelling/alkylation might be performed simultaneously. This
is providing that iodoacetamide or maleimide analogues are not
used for labelling/alkylation because they do react with TCEP [36].

Following reduction, labelling of nascent thiols is equally im-
portant (Fig. 1C). Whether provided by manufacturers or de-
termined empirically the key is to establish optimal labelling
conditions. This includes reagent concentration, pH, reaction time,
temperature and other details, e.g. simultaneous versus sequential
reduction and alkylation. Selected aspects of this crucial process
are discussed further in subsequent sections (see Sections 6 and
7). Quenching of the labelling reaction is also important. As we
have recently shown it is necessary to neutralise and remove un-
bound excess tag in order to minimise false positive results [30].
We highly recommend, that all features discussed are empirically
validated in pilot experiments [30].

Overall, perhaps the most pragmatic view on modification-
specific reduction is that inconsistency in reduction conditions and
its controversial selectivity would not be an issue if differential
alkylation-based studies were used exclusively as screening ap-
proaches. Subsequently these data could be verified with ortho-
gonal strategies including use of anti-SNO-antibody [60] or
OxMRM [61]. These however are still rarely implemented.
6. Reversible versus irreversible methods for labelling of nas-
cent thiols

As mentioned previously, modification-specific reduction is
typically followed by labelling of nascent thiols for stability. De-
pending on the chemistry of the labelling reagent this may result
in either a chemically reversible/reducible or irreversible mod-
ification of the reduced thiol. Our meta-analysis shows that irre-
versible labelling is slightly more common as it has been applied
to 14 recent studies, as opposed to the 12 studies where reversible
labelling was used. Reversible binding is typically effected by thiol-
disulphide exchange between nascent thiol and disulphide within
the labelling reagent. An example of this is thiopropyl sepharose
resin which provides a fast and convenient method combining
both labelling and selective enrichment of target SH groups prior
to MS-based analysis [62]. Coupling to the resin and enrichment
might be performed at protein or peptide level and according to Su
et al. both approaches provide equally high enrichment effi-
ciencies of over 95% [35]. This allowed the authors to identify 197
SNO proteins, corresponding to 488 SNO sites from GSNO-treated
mouse muscle homogenates [35]. The above example illustrates
that strategies utilising reversible label may prove informative,
when carefully optimised. Generally, however, they do possess
several limitations. The lack of unambiguous modification site
assignment is critical, especially when multiple cysteines occupy
the same peptide. Additionally, the generated disulphide bond
prohibits use of reducing agents, e.g. DTT/TCEP prior to proteolytic
digestion which might diminish digestion efficiency and ulti-
mately result in lower numbers of identified peptides.

Much more effective are alkylating reagents (e.g. variants of
iodoacetamide) that irreversibly label nascent SH groups. This
provides a unique mass increase for the modified peptide which is
unambiguously identified upon mass measurement (MS spec-
trum). Following that, the site of the modified cysteine is assigned,
based on the peptide fragmentation pattern (MSMS spectrum).
The prerequisite for a tag of this nature being that it remains intact
upon fragmentation during tandem mass spectrometry.

Isotope-Coded Affinity Tag (ICAT) reagents were amongst the
pioneering irreversible labels, adapted to the redox field from
quantitative proteomics [63]. In the recently commercialised cy-
steine reactive Tandem Mass Tag (TMT™) isobaric labels we ob-
serve the tendency to move from reversible to irreversible tags
where the disulphide-based cysTMT™ [52,54,64] was quickly re-
placed with iodoacetyl-based iodoTMT™ [29,30,65]. Considering
their advantages and increasing availability, we believe that irre-
versible tags will dominate redox proteomics studies in the future.
7. Indirect versus direct methods of identifying target cysteine
oxoforms

Differential alkylation-based proteomics methods, such as the
many variations of the biotin switch, rely on replacement of
modified groups with a stable, identifiable molecule. These
methods are therefore indirect and they require appropriate con-
trols and orthogonal validation in order that the results can be
fully relied upon. In contrast, direct methods, aim to preserve
oxidative modifications in their native form which eliminates
many of the issues with differential alkylation raised above.

Enrichment utilising phenylmercury resin is an example of a
direct method for SNO detection [34,45,46]. It is based on the af-
finity between sulphur and the mercury cation (Hg2þ) where
upon binding of SNO-containing proteins/peptides NO is hydro-
lysed, stabilising the bond between mercury and the nascent thiol
[66]. Despite the direct binding, the actual site assignment is in-
direct whereby performic acid is used to release bound thiols by
their oxidation to SO3H [45,67]. Although reported complete, such
untargeted oxidation, may still result in ambiguities when multi-
ple reversible cysteine modifications or endogenous sulphonic
acids are present on the same peptide. Additionally, quantitative
analysis is limited [34], which in part might be due to the com-
plicated sample processing scheme. Therefore, the advancement of
this direct strategy is still far behind differential alkylation-based
proteomics workflows.

In contrast to this, direct labelling utilising 5,5-dimethyl-1,3-
cyclohexanedione (dimedone)-based probes is the most reliable
chemistry for detection of intracellular SOH levels [32,43,68,69],
see also Table 1. These reagents label SOH irreversibly without
prior reduction. The newest, cell permeable derivatives of dime-
done allow trapping of SOH groups in vivo, which significantly
reduces artefact rates [32,70,71]. Introduced in 2011, isotopically
labelled dimedone and iododimedone analogues allow direct
quantitation of SOH sites, including quantitation of relative SOH
occupancy [69]. Despite these clear advantages, the limitation of
dimedone-based probes is low throughput. Since their introduc-
tion in 2009, dimedone analogues Daz-1 and DAz-2 have been
applied to samples of moderate complexity, e.g. model proteins
[72,73]. In fact, none of the recent dimedone-based studies, re-
ported as many SOH proteins as have been reported from differ-
ential alkylation-based studies, see Table 1. In one of them Tyther
et al. identified 32 SOH-modified proteins from kidney medulla of
spontaneously hypertensive rats [58] (Table 1).

The key advantage of differential alkylation-based methods for
analysis of cysteine oxidation is that the same affinity tag can be
incorporated into different oxoforms. This allows for simultaneous
analysis of multiple cysteine oxidations [30]. Using this principle
we developed the SNO/SOH TMT strategy and quantified 475 SOH
and 479 SNO sites (from 311 proteins) in Escherichia coli under low
and mild oxidative stress [30]. In our most recent study we
quantified 710 SOH and 986 SNO sites from 569 proteins in human
hepatocarcinoma-derived C3A spheroids under acetaminophen
(APAP) treatment [74]. Such simultaneous analysis allows in-
vestigation of possible cross-talk/interplay between oxidative
PTMs which will be discussed in greater detail in the following
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section.
It is likely that the decreased ambiguity of direct methods

combined with the flexibility of indirect, differential alkylation-
based approaches will be used in concert in the future to achieve a
more complete and accurate coverage of redox proteomes.
8. Determination of modification site and type

The Human proteome contains over 21,0000 cysteines which
vary in their susceptibility to oxidation. This is also true even
within a single protein where a multitude of factors contribute to
spatio-temporal redox transitions of individual cysteines. These
are neighbouring amino acids, local pH and the higher order
structure of the protein, just to name few [1,22]. Therefore, site
resolution of the redox proteome is necessary.

There are several requirements to resolve modification sites.
Firstly, sites should be irreversibly labelled with a unique tag. Such
a tag provides a characteristic mass increase for the target cy-
steine-containing peptide upon MS analysis. The formula and final
mass of the tag is critical because too small tags might not be
easily distinguishable upon MS whereas too large tags might
hamper ionisation of modified peptides or simply fall outside the
typical m/z range of peptide analysis. Additionally, tags should
remain intact upon both ionisation and fragmentation. Otherwise,
it may complicate MSMS spectrum thereby impeding peptide se-
quencing and assignment of modification site, as it is known for
the biotin-based tags [75].

The meta-analysis reveals that 13 recent studies provide un-
ambiguous assignment of modification site. In a further 8 studies
resolution of modification site may be possible if the target pep-
tide contains only one cysteine residue. Altogether these data in-
dicate clear trend toward quantitative analysis of cysteine
modifications.

Iodoacetyl Tandem Mass Tags (iodoTMT™) are an example of a
cysteine-reactive tag that facilitates resolution of modification site.
This is due to its covalent binding to nascent SH groups which
result in addition of 324.2 Da (iodoTMT™zero) or 329.2 Da (io-
doTMT™-6plex) to a peptide containing a reduced cysteine re-
sidue [65]. The chemical formula of the iodoTMT tag can be easily
implemented into standard proteomic database searches, allowing
for automated modification site assignment. Once incorporated,
the tag is inert and remains intact during ionisation and MS ana-
lysis. It does, however, dissociate upon fragmentation, providing a
signature reporter ion in low m/z region of MSMS spectrum which
is used for relative quantitation (discussed in more detail below).
Furthermore, the reporter region is recognised by anti-TMT™ an-
tibody which may be used for selective enrichment of iodoTMT™-
containing peptides from complex peptide mixtures.

Amongst its limitations is a non-specific labelling of primary
amines when suboptimal conditions for iodoalkylation are used
[76]. This, however, is a common issue of tags containing iodoa-
cetyl groups.
9. Qualitative versus quantitative analysis

Quantitation is nowadays a mandatory component of pro-
teomics analysis. It is also becoming a commonplace in studies of
redox proteomes, as 21 recent studies were conducted in quanti-
tative manner (Table 1). Quantitative information is essential to
characterise dynamic and transient redox proteomes. Amongst all
putative sites, a distinction can be made between those which are
“susceptible” or “sensitive” to the state of the redox environment.
Susceptible sites are those whose redox environment make them
highly oxidised under physiological conditions in the cell.
Sensitive sites are those, which occupy a redox environment in
which they are typically not oxidised but can become modified
under conditions of oxidative stress. We observed this in a study of
the E. coli redox proteome under low and mild oxidative stress.
From 540 SNO/SOH sites identified in total only for 6 sites SNO/
SOH levels changed significantly between the two conditions [30].
Information about the relative abundance of modified sites is
crucial to distinguish between susceptible and sensitive sites.

In a typical quantitative experiment, abundance of a modified
peptide is measured under control and stress conditions and these
values are used to estimate relative fold change of the modifica-
tion. Such relative quantitation may be delivered in numerous
ways. It may be inherent to the differential alkylation, where
quantitative information is typically derived from the cysteine
alkylating reagent e.g. isotopomers of NEM and iodoTMT™
[29,65,77,78]. This was the case for 15 studies collected in Table 1.
It may also be separate from the identification of the modification
site, for example using dimethyl or iTRAQ-based quantitation
[35,79]. This approach was implemented in the 6 recent studies
(Table 1). Each of these quantitative strategies poses advantages
and limitations which were discussed in detail previously [6,37].

D-Switch was among the first quantitative approaches [77]. It
utilises isotopically labelled NEM to quantify target cysteines. In
this method, the pool of SH containing proteins is labelled with
isotopically “light” version of NEM whereas SNO proteins after
selective reduction are labelled with an isotopically “heavy” ver-
sion of NEM. Unfortunately, application of non-isobaric isotopic
labels doubles sample complexity for MS analysis, which decreases
the overall identification/quantitation rate. In the original study 11
SNO-containing peptides corresponding to 8 proteins were quan-
tified from CysNO-treated human neuroblastoma cells [77]. Fur-
thermore, the multiplexing capability is limited to only two
channels.

Both analysis throughput and quantitation depth improved
with introduction of cysteine reactive isobaric labels. A pioneering
study, by Murray et al., reports 25 SNO sites from human pul-
monary artery endothelial (HPAEC) cells after an in-culture sti-
mulation with 200 mM CysNO using the now unavailable reversible
cysTMT™ tags [52]. Development continued with the introduction
of irreversible iodoacetyl Tandem Mass Tags (iodoTMT™). Pan
et al. applied those for sequential quantitation of SNO and all re-
versible cysteine modifications. In this way, 266 redox sensitive
sites were quantified in GSNO-treated H9c2 cells under hypoxia
[65].

In one of the most recent studies utilising iodoTMT™, not only
hundreds of modification sites were quantified under near phy-
siological levels of oxidative stress, but also, for the first time, si-
multaneous analysis of SNO and SOH was undertaken [30].

Advances in label-free quantitation make it an attractive al-
ternative to chemical labelling-based strategies, due to the re-
duced costs, simplified protocols and a theoretically unlimited
level of multiplexing. Here quantitative information is extracted
from the chromatographic peak area instead of from the relative
abundance of differentially labelled species. The technical details
of label-free quantitation have been described in numerous re-
views e.g. in Ref. [80,81].

Interestingly, label-free quantitation is still rare in redox pro-
teomics. According to meta-analysis, it was used in only 2 out of
20 recent quantitative studies (Table 1). Kohr et al. applied peak
area based quantitation to measure SNO levels in GSNO-treated
mouse heart homogenates [82]. For the quantitative ratio to be
calculated, the same peptide has to be identified post enrichment
in both samples. This might be challenging, considering the poor
reproducibility of affinity-based enrichment strategies and the
stochastic nature of data-dependant acquisition (DDA). Further-
more, isobaric labelling-based approaches have the advantage that
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samples are pooled prior to analysis which aids in the detection of
low abundance species. These may be below the limit of detection
in a label-free approach. Considering all the above, we believe that
isobaric labelling will remain a key tool in quantitative redox
proteomics.
Fig. 2. Correction of modification levels by protein abundance changes is necessary
to determine the true direction of regulation. Presented are SNO/SOH modification
sites from Escherichia coli proteins. Those 6 sites were found differentially regulated
between low and mild oxidative stress according to 2 sigma significance analysis
performed after correction of modification levels by protein abundance changes
(dark grey bars) [30]. The light grey bars represent regulation of those sites, ex-
cluding the correction for change in protein abundance. fraA-flavoprotein subunit
of fumarate reductase FrdA, adhE-aldehyde-alcohol dehydrogenase; narH-re-
spiratory nitrate reductase 1 beta chain.
10. Correction of modification levels by protein abundance
changes

For the PTM to be unambiguously quantified modification
abundances should be corrected by respective changes in protein
abundances [1]. However, such correction was implemented with
moderate success into modificomics workflows [83] and it is a rare
practise in redox proteomics.

The approaches with the potential for such analysis were OxI-
CAT (ICAT – Isotope Coded Affinity Tag) and OxMRM (MRM –

Multiple Reaction Monitoring) [61,84]. This is thanks to the unique
design of the two strategies, which quantify both reduced (SH) and
all reversibly oxidised cysteine oxoforms [61,84]. However neither
of the methods actually applied quantitative information with
intent to correct oxidation abundances by changes in protein
abundances. Instead, they focus on the proportion of oxidised and
non-oxidised cysteines.

Over the years of method development the focus was on more
immediate goals, e.g. alternatives to error-prone modification
specific reduction, implementation of quantitative workflows as
well as increasing the overall sensitivity and throughput of the
methods. This trend is evident from our meta-analysis as there are
only 5 recent studies that attempted to correct modification levels
by changes in protein abundance [27,33,34,64,85]. In most cases, it
required additional experiments to estimate protein abundance
changes [27,33,85].

Iodoacetyl Tandem Mass Tags (iodoTMT™) allow for simulta-
neous analysis of up to 6 samples/experimental conditions. Alter-
natively, they allow analysis of distinct cysteine subsets between
fewer experimental conditions [30,65]. We showed that labelling
all DTT/TCEP reversible cysteine modifications with iodoTMT™
allows for sufficient estimation of protein abundance changes [30].
This correction should be more accurate, than using a separate
experiment in parallel, as it guarantees identification of the fully
reduced form and quantitation is derived from the same scan as
the modified species. However, it is important to mention that this
approach does not include the contribution of irreversible oxida-
tions (SO2H and SO3H) to the pool of cysteine modifications.
Therefore, it is more accurate in the models of moderate oxidative
stress.

To further emphasise the importance of correcting modification
levels by protein abundance changes we have performed analysis
of the results from our E. coli study [30]. Fig. 2 shows the average
fold change of SNO/SOH peptides differentially modified between
low and mild oxidative stress, with and without correction for
protein abundance alterations. It is clear that with no correction
only one site would qualify as differentially regulated.
11. New face of quantitation–modification site occupancy

In addition to the relative abundance change, quantitative in-
formation may be used to calculate modification site occupancy.
Modification site occupancy is the fraction of a residue occupied
by the target modification. Occupancy analysis requires that the
total abundance of the site accessible for modification is known.
Ideally, this should be the sum of all reversible and irreversible
modifications of the given cysteine under given conditions. This
however is difficult to achieve practically, as tools for analysis of
SO2H and SO3H are lacking [61].
Therefore, those irreversible modifications are often excluded

from the pool, justified by the fact that their contribution is neg-
ligible in most conditions. For instance, Kohr et al. expressed SNO
occupancy in vitro as proportion of SNO to the sum of SH and SNO
abundance [64]. This, however, neglects the contribution of other
abundant cysteine oxoforms, e.g. disulphides [64]. Regardless, this
pioneering study initiated a new trend in quantitative data ana-
lysis and has been actively followed since [30,34,86].

The recently developed SNO/SOH TMT approach allows de-
termination of both SNO and SOH occupancy of any given site
which is calculated in proportion to total reversible cysteine
modifications. Such simultaneous analysis allowed us to observe
that co-occurring SNO and SOH have distinct occupancies [30].
Additionally, we observed that sites with the highest modification
occupancy under treatment/stress conditions are seldom differ-
entially modified [30]. Finally, we also observed in both bacterial
and mammalian redox proteomes that the average SOH occupancy
is typically lower than the average SNO occupancy [30,74]. This,
however, might be solely a technical issue, related to difficulties in
SOH detection [12]. In fact, our observations are contrary to the
findings of Wang et al. who reported S-oxidation to be more
abundant than S-nitrosylation in CysNO-treated neuroblastoma
cells [78]. Thanks to the above studies, the relevance of in-depth
quantitation of modification sites is becoming realised. We sup-
port the view of Murray and Van Eyk, that with available tools
occupancy analysis should be performed routinely in all studies of
redox modifications [86]. This would allow construction of re-
positories of basal modification levels which could be used as a
reference when pathological modification levels are measured. We
believe that with future expansion of site occupancy analysis we
will soon be able to determine the key regulatory features of redox
PTMs, e.g. what proportions of modification are indicative of sig-
nalling, protection or oxidative damage.
12. Analysis of possible cross-talk between cysteine oxoforms

Previously, when each individual modification was analysed
independently, often with conceptually distinct methods, cross-
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talk between cysteine oxoforms was not visible [71]. Technological
advances of recent years, cysteine-reactive isobaric labels in par-
ticular, allow for investigation of potential interplay between cy-
steine oxoforms.

It was again the work of Kohr et al. who were the first to
analyse both SNO and a pool of all reversible cysteine modifica-
tions in the same experiment [82]. The analysis is parallel – SNO
proteins are enriched by S-nitrosylation-Resin Assisted Capture
(SNO-RAC) whereas DTT/TCEP reducible oxoforms (Ox) are en-
riched by Ox-RAC. MS analysis is performed separately and the
two subsets are combined afterwards [82]. This elegantly designed
approach, might however suffer from the stochastic nature of
data-dependant acquisition which may not always provide a pair
of SNO and oxidatively modified peptides.

Nevertheless, the study was critical to set the direction for
concurrent analysis of cysteine oxoforms. Indeed, more studies
followed, which attempted to analyse the interplay of SNO and
other reversible oxoforms in either a simultaneous [82], parallel
[78,79] or sequential manner [65]. In all of these examples,
quantitation is effected by isobaric labelling which facilitates re-
lative abundance comparison between target cysteine subsets. In
particular, the approach by Pan et al. was cleverly designed. They
took advantage of iodoTMT™-6plex multiplexing capability which
allowed quantitative profiling of both SNO and the remainder of
reversible cysteine modifications between 3 experimental condi-
tions. Sequential iodoTMT™-6plex labelling not only reduces the
amount of biological material required but also increases
throughput of the analysis [65]. Combined analysis of distinct cy-
steine oxoforms provided insights into the SNO-guided protection
of cardiomyocytes against oxidative stress upon hypoxia [65].

We intended to take such analysis further with our SNO/SOH
TMT strategy which allows simultaneous analysis of 3 distinct
cysteine subsets: all reversible, SNO and SOH modifications [30].
Apart from the study by Faccenda et al., this is the first approach
allowing quantitative analysis of different cysteine oxoforms si-
multaneously [87]. Due to the fact, that both SNO and SOH are
quantified from the same MSMS spectrum the co-occurrence is
more apparent and more easily verified [30]. For instance, we
observed in both bacterial and mammalian models, that majority
of SNO and SOH sites co-occur [30,74].

As reviewed by Evangelista et al. cross-talk between SNO and
SOH seems likely [7]. However, there is certainly room for ex-
pansion in this area, now that quantitative methodologies allow
such simultaneous analysis. We believe that combinatorial analy-
sis should be amongst future directions in redox proteomics and
that it will shed light on the as yet, largely unexplored role of
redox processes in physiology and pathology.
13. Remaining challenges

Despite tremendous improvements of recent years, there re-
main several challenges in redox proteomics. Amongst the most
critical is the amount of starting material required for analysis. Our
meta-analysis revealed that the vast majority of studies require
milligrams of starting material (15 out of 26). A further 10 were
based on higher micrograms (100–500 mg) of cell/tissue samples
(Table 1). In fact there was only one study that used 10 mg of
murine protein extracts to analyse SNO levels in spinal cord after
sciatic nerve injury [53]. High amounts of starting material are
necessary due to sub-stoichiometric and transient nature of cy-
steine oxoforms, loss-prone differential alkylation-based strategies
and limited selectivity of enrichment.

Therefore, we should maximise our efforts to refine labelling
and enrichment protocols in a way that will allow analysis of
human tissue samples and body fluids in the future. We believe
that the key to this will be sequential analysis and orthogonal
fractionation/purification strategies that will maximise efficiency
and throughput of analysis and will bring us closer to clinical scale
research. This is similar to the technological progression in the
analysis of other PTMs such as phosphorylation [88].

Additional challenges include analysis of reversible cysteine
modifications from target subcellular locations. Effective organelle
enrichment is often a lengthy process which is contrary to what is
required for preservation of oxidative PTMs. This might be over-
come if more membrane permeable probes like DAz-1, DAz-2 are
developed, allowing for stabilisation of target modification prior to
organelle specific enrichment [71,89].
14. Future directions

Having the proper tools in form of e.g. SNO/SOH TMT workflow
the interplay between cysteine oxoforms should be investigated in
various biological systems. This may include calculation of the
likelihood of interdependence between distinct cysteine oxoforms,
as it is applied for analysis of histone modifications [90].

The integration of quantitative workflows that would allow the
study of the interplay between redox and non-redox PTMs such as
phosphorylation and acetylation would also be of importance.
There already exists evidence to support a tight regulatory con-
nection between these two seemingly different classes of PTMs.
For instance it was mentioned by Pan et al. that in the heart, cy-
steine oxoforms might be the triggers and modulators of signalling
cascades exerting cardioprotection [65].

Interplay between SNO and other non-redox PTMs, e.g. pal-
mitoylation and ubiquitination was discussed in an excellent re-
view by Evangelista et al. [7]. We fully support the view and be-
lieve that global, systemic analysis of redox and non-redox PTMs
will broaden our understanding of the intracellular signalling
complexity in health and disease [7].

Amongst the future goals in redox proteomics we see absolute
quantitation as discussed in Ref. [91]. The first attempts at “absolute”
quantitation were performed using oxICAT and OxMRM approaches
[61,84]. Unfortunately, only the proportion of oxidised to all re-
versible cysteine oxoforms can be determined, without taking into
account contribution of irreversible modifications. Additionally, dif-
ficulties in the production of synthetic standards currently prohibit
determination of the actual amounts of modified residues.
15. Conclusions

Redox proteomics is a dynamically evolving field and differ-
ential alkylation-based strategies are contributing greatly to its
development. These are ubiquitous in the analysis of virtually any
reversible cysteine modification, identifying not only modified
proteins, but also individual modification sites. The majority of
differential alkylation-based proteomics strategies are quantita-
tive, providing information about relative abundance change, al-
though, the tendency is now also toward analysis of modification
site occupancy which adds a new dimension to quantitative stu-
dies. We believe that the key for further improvements is the
unification of biological models and sample preparation schemes.
This combined with in-depth analysis provided by differential al-
kylation-based proteomics might be sufficient for analysis of en-
dogenous redoxomes in the future.
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