
fcell-09-661472 April 13, 2021 Time: 22:12 # 1

REVIEW
published: 20 April 2021

doi: 10.3389/fcell.2021.661472

Edited by:
Lon J. Van Winkle,

Rocky Vista University, United States

Reviewed by:
Aitor Aguirre,

Michigan State University,
United States
Taisen Iguchi,

Graduate University for Advanced
Studies (Sokendai), Japan

*Correspondence:
Hugo Vankelecom

hugo.vankelecom@kuleuven.be

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 30 January 2021
Accepted: 22 March 2021

Published: 20 April 2021

Citation:
Heremans R, Jan Z,

Timmerman D and Vankelecom H
(2021) Organoids of the Female

Reproductive Tract: Innovative Tools
to Study Desired to Unwelcome

Processes.
Front. Cell Dev. Biol. 9:661472.
doi: 10.3389/fcell.2021.661472

Organoids of the Female
Reproductive Tract: Innovative Tools
to Study Desired to Unwelcome
Processes
Ruben Heremans1,2,3, Ziga Jan1,2,4, Dirk Timmerman2,3 and Hugo Vankelecom1*

1 Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department
of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium, 2 Cluster Woman and Child,
Department of Development and Regeneration, KU Leuven, Leuven, Belgium, 3 Department of Obstetrics and Gynecology,
University Hospitals, KU Leuven, Leuven, Belgium, 4 Department of Gynecology, Klinikum Klagenfurt, Klagenfurt, Austria

The pelviperineal organs of the female reproductive tract form an essential cornerstone
of human procreation. The system comprises the ectodermal external genitalia,
the Müllerian upper-vaginal, cervical, endometrial and oviductal derivatives, and the
endodermal ovaries. Each of these organs presents with a unique course of biological
development as well as of malignant degeneration. For many decades, various
preclinical in vitro models have been employed to study female reproductive organ
(patho-)biology, however, facing important shortcomings of limited expandability, loss
of representativeness and inadequate translatability to the clinic. The recent emergence
of 3D organoid models has propelled the field forward by generating powerful research
tools that in vitro replicate healthy as well as diseased human tissues and are amenable
to state-of-the-art experimental interventions. Here, we in detail review organoid
modeling of the different female reproductive organs from healthy and tumorigenic
backgrounds, and project perspectives for both scientists and clinicians.
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INTRODUCTION

The female reproductive system serves a unique purpose as it harbors the beginning of life, but,
conversely, also risks to bring about the very end of it. The embryonic etiology of these closely
related tissues are threefold (Brauer, 2009; Mutter and Robboy, 2014). The vulva and lower third
of the vagina arise from ectoderm. The tissues making up the actual female reproductive tract
(FRT), including upper two-thirds of the vagina, cervix, uterus, endometrium and fallopian tubes
(FT), are mesodermal derivatives whereas the ovaries originate from the endoderm. Each of these
tissues is epitomized by its unique patterns of development, proliferation and differentiation.
Importantly, to serve their reproductive purpose, these tissues rely on the self-renewing capacity
of their constituents (Patterson and Pru, 2013). However, it is in their efforts that allow for life
to begin, by fulfilling transportation functions, supporting implantation and serving as barriers
from internal and external stressors and pathogens, that its constituents risk cellular deregulation
due to threatening impacts such as hormonal dysregulation, infections or auto-immune diseases,
which may ultimately result in carcinogenesis (Hanahan and Weinberg, 2011; Visvader, 2011).
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In general, insight in tissue development, homeostasis and
disease has been obtained from several research models
that throughout the years have become more complex and
representative, and even personalized (Schutgens and Clevers,
2020). For many years, hypothesis testing for tissues of the
FRT has relied on two-dimensional (2D) models (such as cell
lines) that have stood alongside short-term three-dimensional
(3D) in vitro cell-culture (such as spheroids) and in vivo explant
systems [such as patient-derived xenografts (PDXs)] (Adissu
et al., 2007; Gargett et al., 2016; Figure 1). It took until 2009,
however, for the prospect of a complete transition into use of
long-term 3D in vitro cell-culturing methods to be envisioned.
The intestine was the first of many organs to have its stem cell
niche analyzed and have expansion and differentiation pathways
charted by means of a self-forming and -organizing, tissue stem
cell-derived culturing system called “organoids” (Ootani et al.,
2009; Sato et al., 2009). The insights brought about by this
novel technology, reliant on the use of a gel-based substitute
for the local extracellular matrix (ECM) and supplementation
of feeder- and serum-free stem cell niche-supporting factors,
were manifold (Kleinman et al., 1986). This system was the
first to show defined use of growth and regulatory factors
required by the stem cell niche, thereby discarding the need for
highly variable and ill-defined serum supplements (Clevers et al.,
2014). Contrary to 2D cell lines, organoids proved to remain
morphologically, genomically and transcriptomically stable over
a long period of time and serial passaging. This novel culturing
method thereby allowed for spatiotemporal tracking (i.e., how
various specific cell types occupy different positions within
tissues and how their positions alter through time) of developing
organs, requiring only the bare minimum of starting (patient)
material. Rapidly and effectively, the complex biology of the
epithelial compartment of the intestine was analyzed for the
entire spectrum spanning healthy to diseased conditions (Sato
et al., 2009, 2011; van de Wetering et al., 2015; Hibiya et al.,
2017). Although revolutionizing human research, organoids
were only replicating the tissue’s epithelium. This drawback of
lacking the organ’s stromal, vascular and immune cells and their
interplay was readily overcome by the development of various
in vitro co-culturing as well as in vivo transplant modalities
(Nozaki et al., 2016; Roper et al., 2017; Dijkstra et al., 2018).
Overall, more reliably than other experimental models, organoids
enable a wide variety of basic, translational and clinical research
prospects such as deciphering the heterogeneous make-up of
tissues via multi-omic analyses, unraveling host tissue-pathogen
interactions, and advancing precision and regenerative medicine
using cryopreserved and biobanked organoid lines (Figure 2).
Organoids are also amenable to cutting-edge experimental
technologies such as CRISPR-Cas9 gene editing, and can be
efficiently subjected to live imaging (Kim et al., 2021).

In this review, we aim to systematically list the efforts made
in the field of organoid research for the tissues that make
up the human FRT. We provide a systematic overview of the
organoid models developed and the growth media that detail
the niche requirements ranging from healthy to diseased states.
We critically appraise their validity and scrutinize reports for
investigated applications. Taken together, we aim to highlight the

specific benefits of organoid technology in the setting of desired
and unwelcome processes of the human FRT.

VULVA

The vulva, that consists of labia majora, mons pubis, labia minora,
clitoris and vestibulum, acts as a gatekeeping structure and
serves as a first line of defense in order to protect the FRT
against extracorporeal stressors. Being an ectodermal derivative,
the vulva is shaped as urogenital or cloacal folds through
cellular expansion of its underlying mesodermal compartment
(Brauer, 2009). As in other tissues (Sato et al., 2011), this
epithelium serves not only as a mechanical scaffold, but also as a
source for paracrine crosstalk that shapes the specialized cellular
niche, thereby anchoring and supporting resident stem cells. To
date, no organoids have been derived from appendages of the
human perineal or vulvar region (Table 1 and Supplementary
Table 1). Insights on vulvar homeostasis and disease can,
however, be inferred from organoid studies exploring skin
because the vulva, forming the exterior ending of the FRT, is
largely covered with skin epithelium (Lei et al., 2017; Gupta
et al., 2018; Boonekamp et al., 2019; Diao et al., 2019). Lei
et al. (2017) elucidated the spatiotemporal component in mouse
epidermal development using organoids, thereby unveiling which
transcriptional pathways are consecutively activated during
each phase of skin development. Boonekamp et al. (2019)
established an organoid system for long-term expansion of
murine keratinocytes and were able to initiate and maintain
cultures from stem cells with various gene signatures. The fact
that these organoids were amenable to genetic manipulation may
draw a parallel toward prospective vulvar organoids in which
gene alterations may be studied as, for instance, occurring during
chronic inflammation (e.g., lichen sclerosus or lichen planus)
or infection (e.g., candidosis or herpes genitalis) or in driver
genes involved in blistering diseases (e.g., epidermolysis bullosa
or pemphigus vulgaris) and carcinogenesis (e.g., basocellular or
squamous vulvar cancer). Organoids may also be particularly
useful for drug screening in order to find (new) drug targets
and drugs that can mitigate the undesired vulvar diseases. On
the vulva like on skin, sweat glands serve as gatekeepers for
bacterial colonization, waste excretion and body-temperature
maintenance. These glands are therefore important elements
to explore when trying to understand vulvar (microbial)
homeostasis. Diao et al. (2019) generated an organoid culture
system for epidermal sweat glands, which may pave the way to
vulvar sweat gland-derived organoids. Gupta et al. (2018) studied
epithelial–mesenchymal interactions in composite organoids
obtained by co-culturing human dermal papilla spheroids,
hair follicle keratinocytes and stem cells in a hydrogel-based
microenvironment. Taken together, vulva-derived organoids will
be powerful tools to help understanding normal epithelium
biology and microbiome interaction, and specific vulvotropic
diseases such as genital infections and cancers (e.g., vulvar
squamous cell carcinoma), as well as to provide a potential
means for tissue regeneration after debilitating surgery (e.g.,
radical vulvectomy).
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FIGURE 1 | Research models for the female reproductive tract. Starting from healthy or diseased tissue from the site of interest within the female reproductive tract
(from distal to proximal: vulva, vagina, cervix, endometrium, fallopian tube, ovary and peritoneum/endometriosis), (patho-)physiology can be studied using various
preclinical 2D or 3D in vitro, or in vivo models.

FIGURE 2 | Applications of organoid model systems. Organoids are stable 3D in vitro representations of the tissue of origin that adequately recapitulate tissue
(patho-)biology, and are amenable to manifold basic and (pre-)clinical research applications such as multi-omic scrutiny and gene-editing, host–pathogen interaction
mapping and regenerative medicine, biobanking and high-throughput drug testing toward patient-tailored treatments.
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TABLE 1 | Main findings and applications of human female reproductive tract organoid studies.

Organoids of human
. . .

Author, year Main findings Applications

VULVA NA NA NA

VAGINA NA NA NA

CERVIX Chumduri et al., 2018, 2021 • Differential niche requirements for squamous and columnar cervical
organoids suggest cervical homeostasis is determined by stromal Wnt
signaling rather than epithelial transition.
• Squamous cancers probably originate from CK5+, adenocarcinomas

from CK7+CK8+ cells.

Characterization,
biobanking

Maru et al., 2019a Establishment of cervical clear cell carcinoma organoids Characterization,
biobanking, xenografting,
drug screening

Maru et al., 2020 Establishment of normal and metaplastic cervical organoids from the
squamocolumnar junctional zone

Characterization,
biobanking

ENDOMETRIUM

Healthy endometrium Turco et al., 2017 • Establishment of endometrial organoids of all phases of menstrual cycle
and decidual changes.
• Endometrial organoids are clonogenic and bipotent.

Characterization,
optimization, biobanking,

Boretto et al., 2017 Establishment of endometrial organoids of all phases of menstrual
cycle.
• Human endometrial organoids express LGR4 and LGR5 and WNT

ligands are endogenously expressed.
• Endometrial organoids mimic the menstrual cycle in a dish.

Characterization,
optimization, biobanking

Haider et al., 2018 • Establishment of trophoblast organoids.
• Wnt signaling promotes villous but not extravillous trophoblast

formation.

Characterization,
optimization, biobanking

Turco et al., 2018 Establishment of trophoblast organoids Characterization,
optimization, biobanking

Fitzgerald et al., 2019 • Validation of endometrial organoid model.
• Deepened understanding of gene expression upon hormonal

stimulation.
Characterization,
biobanking

Hennes et al., 2019 • Validation of endometrial organoid model.
• Mechanosensitive ion channels (e.g., PIEZO1) are expressed in

endometrial organoids.

Characterization,
mechanical stimulation,
patch clamping, calcium
imaging, drug screening,

Haider et al., 2019 • Validation of endometrial organoid model.
• Estrogen and NOTCH signaling drive ciliogenesis.

Characterization,
biobanking, drug screening

Luddi et al., 2020 • Validation of endometrial organoid model.
• Receptivity marker glycodelin A differs between healthy and

endometriosis-affected endometrium.
Characterization

Cochrane et al., 2020 • Validation of endometrial organoid model.
• Differentiation of secretory and ciliated epithelial cell populations in

endometrial organoids.

Marinić et al., 2020 Endometrial gland organoid derivation from term placentas Characterization

Adenomyosis and
endometriosis

Boretto et al., 2019 • Establishment of endometriosis organoid model.
• LGR6 is upregulated in endometriosis organoids.
• Inflammatory and cancer-associated genes/traits are found in

endometriosis organoids.

Characterization,
optimization, biobanking,
xenografting, drug
screening

Esfandiari et al., 2021 Validation of endometriosis organoid model Characterization

Endometrial
hyperplasia and cancer

Dasari et al., 2017 Verteporfin as promising therapeutic agent for endometrial cancer. Characterization, drug
screening

Girda et al., 2017 • Establishment of endometrial cancer organoid model.
• Novel STAT3 inhibitors as potent anticancer agent.

Characterization, drug
screening

Pauli et al., 2017 Combination of buparlisib with olaparib as optimal treatments in
endometrial organoid and PDX models.

Characterization,
biobanking, drug screening,
xenografting

Boretto et al., 2019 • Establishment of endometrial cancer (-predisposed) organoid models.
• Significant differences compared to healthy endometrium in PIEZO1

and transient receptor potential channels.

Characterization,
optimization, biobanking,
xenografting, drug
screening, calcium imaging,
patch clamping

(Continued)
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TABLE 1 | Continued

Organoids of human
. . .

Author, year Main findings Applications

Maru et al., 2019b Establishment of endometrial cancer organoid model. Characterization, optimization,
biobanking, drug screening

FALLOPIAN TUBES Kessler et al., 2015 • Establishment of healthy fallopian tube organoid model.
• Fallopian tube stemness is Wnt- and NOTCH-dependent.

Characterization, optimization,
biobanking

Kessler et al., 2019 Chlamydia infection can be mimicked in oviductal organoids and
increases DNA hypermethylation and stemness.

Characterization

Kopper et al., 2019 • Establishment of healthy fallopian tube organoid model from BRCA
germline mutation carriers.
• Strong Wnt dependency in fallopian tube organoids.

Characterization, optimization,
biobanking, drug screening,
gene-editing

de Witte et al., 2020 • Fallopian/ovarian cancer organoid response matches patient’s clinical
response.
• Intra- as well as inter-patient drug response heterogeneity.

Characterization, optimization,
biobanking, drug screening,
clinical correlation

Hoffmann et al., 2020 • Triple knock-down oviductal organoids show ovarian cancer traits.
• Medium optimized for ovarian cancer organoids promotes stemness in

modified oviductal organoids.
• Modified organoids thrive in Wnt-free environment.

Characterization, optimization,
biobanking, drug screening,
clinical correlation

Rose et al., 2020 • Fimbrial ends of the oviducts possess the highest organoid-forming
capacity.
• Aldehyde dehydrogenase-positive cells replicate with higher frequency

and form larger structures.

Characterization,

OVARIES Hill et al., 2018 • Establishment of short-term ovarian cancer organoids.
• Functional assays of homologous repair deficiency outperform isolated

assessment of mutational profiles.

Characterization, drug
screening

Kopper et al., 2019 • Establishment of (predisposed) healthy and diseased ovarian organoid
model.
• Importance of heregulin-β1 (neuregulin-1) and low WNT environment.

Characterization, optimization,
biobanking, drug screening,
xenografting

Maru et al., 2019b Establishment of ovarian cancer organoid model Characterization, optimization,
biobanking, drug screening

de Witte et al., 2020 • Fallopian/ovarian cancer organoid response matches patient’s clinical
response.
• Intra- as well as inter-patient drug response heterogeneity.

Characterization, optimization,
biobanking, drug screening,
clinical correlation

Hoffmann et al., 2020 Ovarian cancer organoids require low-Wnt environment Characterization, optimization,
biobanking, drug screening,
clinical correlation

Maenhoudt et al., 2020 • Establishment of ovarian cancer organoid model.
• Importance of heregulin-β1 (neuregulin-1).

Characterization, optimization,
biobanking, drug screening

Chen et al., 2020 Establishment of short-term organoids/spheroids model from malignant
effusion fluids

Characterization, biobanking,
drug screening

Nanki et al., 2020 Establishment of ovarian cancer organoid model Characterization, drug
screening

Zhang et al., 2020 Establishment of ovarian cancer organoid model Characterization, drug
screening

VAGINA

Like for the vulva, most of our current understanding on
vaginal development and regeneration is construed from 2D
primary cell culture and animal experiments (Bulmer, 1957;
Mutter and Robboy, 2014). Mouse studies have been essential in
conveying the importance of a transformative interplay between
the epithelium and its underlying stroma, revealing that the
stroma eventually induces cytodifferentiation of pseudostratified
columnar to squamous epithelium and shapes the morphology
of the overlying epithelium (Cunha, 1976; Robboy et al., 1982;
Iguchi et al., 1983; Tsai and Bern, 1991; Miyagawa and Iguchi,
2015). Several mouse-derived 2D cell culture and in vivo studies
later underscored the role of hormone receptor genes and hinted

on the possible contribution of the Wnt/β-catenin pathway to
vaginal proliferation and differentiation (Iguchi et al., 1983; Tsai
and Bern, 1991; Nakamura et al., 2012; Miyagawa and Iguchi,
2015; Mehta et al., 2016; Li et al., 2018). Only recently, the pivotal
function of the latter pathway in vaginal epithelium became
elegantly clear. After discovering new bona fide markers of
different subpopulations in mouse vaginal epithelium, including
potential stem cell populations, Ali et al. succeeded in establishing
an expandable, genomically stable 3D organoid culturing system
(Ali et al., 2020). After embedding single-cell suspensions in
basement membrane extract, the sole requirements appeared to
be the addition of epidermal growth factor (EGF), transforming
growth factor β receptor (TGF-βR) kinase inhibitor, and Rho-
associated protein kinase (ROCK) inhibitor (ROCKi). EGF
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and TGF-βR kinase inhibitor were important throughout the
whole culturing process and served as (stem cell) mitogens,
whereas ROCKi was used mainly during passaging and seeding
steps to prevent anoikis of the single cells. The importance
of Wnt and BMP signaling in maintenance of the stem cell
niche was accentuated by the positive correlation between
organoid-forming capacity and concentrations of supplemented
Wnt3a and R-Spondin-3 (RSPO3), both Wnt pathway activators,
and of Noggin, a BMP inhibitor. Inversely, inhibiting Wnt
O-acyltransferase Porcupine (PORCN) activity, needed for Wnt
ligand maturation and secretion, via IWP-2 halted organoid
growth and multiplication. Pulse labeling of cells expressing
Wnt target and regulator axis inhibition protein 2 (AXIN2)
in doxycycline-inducible AXIN2rtTA/tetOCre/lacZfl/+ mice led
to understand that these cells give rise to all other epithelial
cell lineages of vaginal epithelium in mice. Unfortunately, to
the best of our knowledge, no data on vaginal epithelium stem
cells are available in humans (Table 1 and Supplementary
Table 1). Considering that vaginal epithelium, together with
the vulva, represents the first line of defense against pathogenic
colonization or infection of the reproductive organs, human
vaginal organoids would allow us to gather better understanding
of how these human cells interact with micro-organisms on a
(sub-)cellular level. In addition, by co-culturing organoids with
associated stroma, a more thorough comprehension could be
obtained of the signaling cascade that causes and maintains
vaginal atrophy. If eventually applied in a system that also
encompasses the immune and vascular system, a more purposeful
narrative could be written for pathogenesis and drug discovery
in vaginal cancers. Owing to their rarity and proximity of the
vulva and cervix, vaginal cancers are either treated as cervical
or vulvar entities and not a single treatment algorithm is set
out to deal with vaginal cancers focusing on their intrinsic
characteristics. Therefore, a model that allows understanding,
expanding and biobanking these rare cancers would be invaluable
to gynecological cancer research (de Martel et al., 2017). Once
more, organoid technology may prove here to bridge the gap
between bench and bedside.

CERVIX

The uterine cervix is the final frontier between a stressor-
laden, entropic external environment and the well-organized,
homeostatic internal conditions at the locus of implantation.
Yet, more than any other compartment of the FRT, the focus
of cervical research lies not in its impact on fertility, but
in its risk of oncogenic transformation. It is still the most
prevalent gynecological cancer worldwide. It is infection-driven,
most notably with oncogenic strains of human papillomavirus
(HPV) (zur Hausen et al., 1974; de Sanjose et al., 2010; de
Martel et al., 2017; Bray et al., 2018). However, not all tissue-
resident cells are equally prone to malignant transformation.
The cervix initially comprises two distinct native epithelia
with a dynamic interface that give rise to an area consisting
of a third, transformative epithelium that displays traits of
both precursors (Figure 3). The ectocervix is marked by

a stratified, non-keratinizing epithelium similar to that of
the vagina. The endocervix is an evident extension of the
endometrium consisting of a single line of columnar, mucus-
secreting cells, sparsely interspersed with ciliated cells. Starting
from the original squamocolumnar junction (SCJ) and due
to the acidity of the vaginal compared to the endocervical
environment, transformative pathways are activated in bipotent
progenitor, so-called “reserve” cells, subjacent to columnar cells
to replace and replenish the exposed surface with metaplastic
squamous epithelium (Herfs et al., 2013; Malpica, 2014). Even
though carcinomas arising from both epithelia display only
minute differences in clinical risk factors and majority of
dedicated HPV types, much is still to be elucidated on how
they pathogenetically diverge (Berrington de González et al.,
2004; Bray et al., 2005; de Sanjose et al., 2010; Patterson and
Pru, 2013; Deng et al., 2018; Stewart et al., 2019). It has
been postulated that cytokeratin (CK-) 7-positive stem cells
residing at the SCJ, may represent a cell population in which
cervical carcinogenesis originates (Herfs et al., 2012, 2013).
Current understanding of cervical cancer cells has been acquired
owing to the efforts of Gey et al. (1952) who established the
renowned “HeLa” cancer cell line from an aggressive clone of
cervical adenocarcinoma, named after its patient donor Henrietta
Lacks. In general, the establishment of cervical cancer cell
lines provided important stepping stones toward more insight
into molecular and genetic cancer pathways, but these 2D
cell-line models suffer from major shortcomings. First, only
highly aggressive tumors can be readily established in cell lines
(Gartler, 1968; Sandberg and Ernberg, 2005). Second, the tumor
niche is only poorly recapitulated, using undefined supplements
such as chicken plasma, bovine embryo extract and human
placental cord serum, or more in general, serum (Gartler,
1968; Sandberg and Ernberg, 2005). Third, clonal selection
(with loss of tumor original heterogeneous composition),
genetic drift and contamination by other cell lines, all severely
compromise their use as representative cancer research models
(Gartler, 1968; Sandberg and Ernberg, 2005). Since cervical
cancer is a predominantly infection-mediated disease, scientists
turned to HPV-transfected (immortalized) keratinocytes and
direct (epi-)genetic analysis on patient samples to study its
pathogenesis, thereby unveiling roles for pathways impacting
apoptosis and cell-cycle inhibition (Dyson et al., 1989; Scheffner
et al., 1990; Tsuda et al., 2003; Cancer Genome Atlas Research
Network, 2017). The importance of three-dimensionality in
studying HPV life cycle was underpinned by the application
of a raft culture method encompassing immortalized human
foreskin keratinocytes on a dermal-equivalent support at air–
liquid interface, allowing to study short-term events in the non-
productive stages of HPV transmission, as well as impact of viral
persistence and replication in the process of tissue stratification
and differentiation (Flores et al., 1999). Co-culturing with
immune cells allowed for a still better approximation of the
genital mucosal microenvironment (Delvenne et al., 2001).
A further advanced 3D set-up, using ECM-bound virions to
infect primary foreskin keratinocytes and subsequently culturing
these ensembles as rafts, recapitulated the earliest events of HPV
infection as well as viral persistence, disease progression and
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FIGURE 3 | Epithelial histology of the cervix. Coronal section of the cervix with a detailed visualization of epithelia, from vagina to isthmus: ectocervix, original
squamocolumnar junction (SCJ), new SCJ, endocervix.

viral invasion, thereby providing invaluable insights in the first
steps of viral infection and unveiling which viral transcripts are
sequentially activated (Bienkowska-Haba et al., 2018). However,
a specific fibroblast feeder cells providing stromal signals were
used in these models which may be overcome by applying 3D
organoid technology (Table 1 and Supplementary Table 1).
Recently, Maru et al. (2020) succeeded in establishing cervical
organoids from a limited number of patient-derived biopsies
in a medium supplemented with RSPO1, Noggin, EGF, ROCKi
and the Notch ligand Jagged-1. The organoid cells expressed
validated SCJ markers more robustly than classic cell lines and
displayed both differentiated endo- and ectocervical cell types.
Chumduri et al. (2018, 2021) generated endocervical-like, long-
term expandable organoids from ecto- and endocervical patient
samples, dependent on the presence of Wnt agonists (RSPO1
and WNT3A). They showed differentiation potential toward
an ectocervical phenotype by activating the cAMP pathway
and hinted toward different originating cells (i.e., squamous
cancers from CK7+ and adenocarcinomas from CK7+CK8+
cells). Maru et al. (2019a,b) were also able to establish organoids
from a cervical clear cell carcinoma using their previously
published culture conditions for other gynecological cancers.
This organoid line, as well as endometrial and ovarian cancer
organoids, were subjected to tailored drug therapy and grown as
xenografts in the dorsal skin of immunocompromised nude mice
(Maru et al., 2019a,b). However, although orthotopic xenograft
models have previously been advocated as promising tools to
model cervical cancer (Hoffmann et al., 2010), there are main

limitations including lack of translatability because of species
differences in stromal and immune cell interactions (in the PDX
model, originating from mouse), the take rate mostly limited to
aggressive subtypes, and the highly time- and animal-consuming
aspects. Organoid technology may overcome some of these
hurdles, as an impetus to still more advanced co-culture systems
including immune cells. For instance, much remains to be
learned about the effect of the genital mucosal microenvironment
on virus-specific effector and suppressor immune responses and
their impact on lesion pathogenesis.

ENDOMETRIUM

Healthy Endometrium
The multilayered inner lining of the uterus plays a pivotal
role in human reproduction. Its make-up is tightly regulated
by the hypothalamic-pituitary-gonadal axis and, in order
to serve its primordial purposes of embryonic implantation
and nourishment, it undergoes monthly reiterative cycles
of proliferation, differentiation and menstrual shedding (Yin
and Ma, 2005). This mucosal lining lies in continuity with
that of the endocervix at the proximal side and FT at
the distal end, and consists of glands, stroma, blood vessels
and immune cells. Histologically subdivided, the endometrium
consists of the - durably present - lamina basalis deeply
and adjacent to the myometrium, and the - menstrually
shed - lamina functionalis more superficially (Figure 4). The
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FIGURE 4 | Schematic overview of the endometrium. The cyclically replenished lamina functionalis divides into the superficial stratum compactum and the deeper
stratum spongiosum. The persistent lamina basalis lies between the lamina functionalis and the uterine myometrium. Both lamina contain epithelial cells interspersed
with varying densities of stromal cells. LE, luminal epithelium, GE, glandular epithelium.

lamina functionalis, containing luminal epithelium (LE) and
glandular epithelium (GE), organizes into both a deeper lying
stratum spongiosum, marked by numerous glands and ensuing
loose stromal organization, and a superficial, less glandular
and thereby stromally dense, stratum compactum. Whether
the monthly regeneration of the endometrium is driven by
endometrial stem cells, remains unclear and actively debated.
Several epithelial and stromal stem cell candidates have been
proposed, including long-term label-retaining cells, endometrial
side population cells, perivascular CD146+, platelet-derived
growth factor receptor-β (PDGFR-β+) and sushi domain
containing-2 (SUSD2+) cells, and AXIN2+ cells, the latter
identified by lineage tracing in mice and found responsible for
tissue regeneration (Cunha, 1976; Robboy et al., 1982; Gray et al.,
2001; Patterson and Pru, 2013; Gargett et al., 2016; Tempest
et al., 2018; Syed et al., 2020). In addition, contribution of
bone marrow-derived (endometrial progenitor) cells has also
been suggested during the cyclic regeneration. Many questions
and controversies remain regarding potential (hierarchical)
relationship between the various stem cell candidates, and several
of these findings in mice have not been translated into human.
Apart from comparative ungulate, rodent or primate studies,
understanding of regeneration-involved signaling pathways
between cells, or between cells and ECM, sprouted from
direct immunohistochemical (IHC) time-point analyses in
human tissue (Snijders et al., 1992; Thiet et al., 1994; Jones
et al., 1998; Aflatoonian et al., 2007). Also here, 3D models,
cultured in basement membrane mimics, would be highly

interesting to decipher these cellular processes and crosstalks.
Iguchi et al. (1985) were able to dissociate luminal mouse
endometrium from its fibromuscular stromal surroundings
and seed these cells on collagen gel matrices in serum-free
conditions. Cultures were short-lived, but the endometrial cells
demonstrated apicobasal polarity and were characterized by
spherical outgrowth and sheet- and/or duct-like extrusions,
reminiscent of adenogenesis in vivo. Rinehart et al. (1988)
seeded 3D endometrial glands in 50% Matrigel on Matrigel-
coated plates. However, the 3D structures spread out into 2D
monolayer colonies with columnar aspect, apicobasal polarity
and preserved intercellular connections, but were not deeply
characterized. Moreover, the medium, albeit serum-free, was
not entirely chemically defined as 10% was made up of
conditioned medium of the RL95-2 endometrial carcinoma cell
line. Efforts by other groups showed persistent requirement
of low amounts of serum, were hampered by the inability of
long-term maintenance or expansion, and did not adequately
recapitulate the endometrium as observed in vivo (Bentin-Ley
et al., 1994; Bläuer et al., 2005, 2008). Only recently, human
endometrium-derived organoids were successfully derived, using
a defined culture medium (Boretto et al., 2017; Turco et al.,
2017; Haider et al., 2019) (Table 1 and Supplementary
Table 2). Activation of Wnt/β-catenin signaling with RSPO1
(or CHIR99021, an inhibitor of β-catenin degradation) proved
indispensable. This is in line with the proposed role of Wnt in
uterus development and adenogenesis (uterine gland formation),
recently supported by in vivo lineage tracing of AXIN2+ cells,
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assigning these cells as plausible stem cell candidates in mouse
uterus (Syed et al., 2020).

Different from mouse endometrial organoids, development
and culture of human organoids did not require exogenous
WNT3A. Inhibition of BMP (Noggin) and TGF-β/Alk (A83-01)
pathways was indispensable, plausibly quenching differentiation
of the organoid-driving stem cells (Boretto et al., 2017). Cultures
furthermore benefited from the mitogens EGF and fibroblast
growth factor 10 (FGF10), the endometrium-proliferative
hormone 17β-estradiol (E2), insulin transduction activation
(insulin-transferrin-selenium, ITS), and inhibition of p38 MAPK
(SB202190 [p38i]), of reactive oxygen species (N-Acetyl-L-
Cysteine [NAC]), of ROCK (Y-27632 [ROCKi]) and of sirtuin
(nicotinamide [NAM]). By exposure to a specific hormone
treatment protocol encompassing E2 and progesterone (P4),
organoids mimicked the full menstrual cycle as well as incipient
decidualization (Table 1 and Supplementary Table 3). The
robustness of the endometrial organoid platform has been
validated by IHC, electron microscopy, array Comparative
Genomic Hybridization (aCGH) and transcriptome analysis
and, in addition, ion channel functionality and ciliogenesis was
demonstrated using these organoid systems (Fitzgerald et al.,
2019; Haider et al., 2019; Hennes et al., 2019; Cochrane et al.,
2020; Bui et al., 2020; Luddi et al., 2020; Syed et al., 2020). Two
groups achieved to derive organoids from trophoblasts, offering
the appealing possibility to study trophoblast-endometrium
crosstalk in vitro (Haider et al., 2018; Turco et al., 2018). Organoid
medium of both studies only showed minimal differences,
highlighting the importance of EGF, Wnt activation (RSPO,
CHIR99021, and prostaglandin E2 [PGE2]) and inhibition of
TGF-β signaling (A83-01) (Haider et al., 2018; Turco et al.,
2018; Table 1 and Supplementary Table 3). Interestingly, Noggin
was not required, but Haider et al. (2018) retained it to limit
differentiation. With only few medium alterations compared to
trophoblast organoid culturing, Marinić et al. (2020) were able to
derive endometrial gland organoids from term placentas which
showed proper hormone responsiveness and molecular patterns
distinct from the endometrial stromal cells, initially also present
in the term placenta samples.

Taken together, these recent realizations have provided an
interesting new port of entry in pregnancy research. The
organoid models may generate unprecedented insight in the
signal transduction cascade at both maternal and fetal side
during embryo apposition, implantation and outgrowth, may
impart in-depth understanding of the pathways leading to fetal
growth restriction and pre-eclampsia, and may lead us to a better
apprehension of genetic placental aberrations found at chorionic
villus sampling (such as confined placental mosaicisms). Also, the
organoid platform may provide insight in developmental biology
of iatrogenically arrested pregnancies nesting in cesarean scar
tissue or uterine niches, and shed light on unsolved questions in
infertility research such as non-receptive endometria or recurrent
implantation failure.

Adenomyosis and Endometriosis
Adenomyosis and endometriosis have been put forward as two
distinct entities within the same continuum. Both conditions

essentially display benign endometrial epithelium and stroma
outside the uterine cavity, but affect different patient groups and
are thought to arise through different pathogenic mechanisms.
Adenomyosis boils down to the presence of ectopic endometrial
tissue within the uterine wall that is fully confined within
hypertrophic myometrium, supposedly owing to invagination
(Frankl, 1925; Emge, 1962; Leyendecker et al., 2009). In
endometriosis, endometrial tissue and cells are believed to
translocate toward the peritoneal cavity by means of retrograde
menstrual flow, after which they generate ectopic deposits
on peritoneum and/or internal organs (Sampson, 1921, 1927;
Leyendecker et al., 2009). For both diseases, however, alternative
explanations - among which metaplasia is the most notable
-, have been considered to remedy few remaining clinical
shortcomings of the translocation theories (Gruenwald, 1942;
Vannuccini et al., 2017; García-Solares et al., 2018; Koninckx
et al., 2019). Valuable insights on mechanisms underlying
pathogenesis and progression of both diseases have been obtained
from non-human primate studies given that endometriosis
naturally occurs only in this species with histopathological
features consistent with the human disease (D’Hooghe et al.,
1991, 1992; Fazleabas, 2010; Donnez et al., 2013). Although
providing longitudinal insights in important primary endpoints
such as fertility and pain-related behavior, this research approach
suffers from multiple limitations including strong ethical
concerns, labor-intensity and costliness, and still faces species-
specific translatability restraints. Again, a myriad of mouse and
in vitro cell culture models have been used to study endometriosis
(Habiba, 2016; Greaves et al., 2017), however, encountering
clear shortcomings including the inability to reproduce patient
variability as well as phenotypic heterogeneity between different
stages and types of endometriosis, and logically also species
differences with endometriosis not natively occurring in mouse.
The establishment by our group of robustly expandable 3D
organoids from human endometriotic lesions, as well as from
the (eutopic) endometrium of the same patients, provides more
appropriate study models (Boretto et al., 2017, 2019; Table 1
and Supplementary Table 2). Organoid development efficiency
appeared somewhat lower than from healthy endometrium, likely
secondary to the harsher experimental conditions needed to
dissociate the endometriotic lesion. Medium components were
similar. Organoids were developed from different endometriosis
types (including superficial and deep peritoneal lesions) and
different severity stages. Transplantation of the endometriotic
organoids into the renal capsule of immunocompromised mice,
or more orthotopically by intraperitoneal injection, resulted
in outgrowth of representative lesions (Boretto et al., 2019).
Recently, Esfandiari et al. (2021) also developed organoids from
endometriotic biopsies and showed that methylation patterns
from the primary tissue were robustly recapitulated. Now, to
fully recapitulate the inflammatory character and immunological
dysregulation of endometriosis, epithelial organoid cultures
should be enriched with stromal cells that also play a role in
endometriosis, and further with endothelial and immune cells,
while provided with a scaffold that allows for angiogenesis,
neurogenesis and immune cell influx. Such efforts should also be
applied to adenomyosis, for which epithelial organoids have not
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yet been described. Before, a co-culture model of adenomyotic
epithelial cells, stromal cells and myocytes has been reported
(Mehasseb et al., 2010).

Endometrial Hyperplasia and Cancer
Endometrial cancer (EC) is the second most common tumor of
the FRT and its incidence is rising incessantly in industrialized
countries, subjecting women to cancer- and therapy-related
risks (Bray et al., 2018; Zhang et al., 2019b). EC is a
heterogenic constellation of diseases for which etiopathogenesis
has historically been dichotomized into two groups based
on clinico-histological characteristics (Bokhman, 1983). Type
I tumors were postulated to be estrogen-mediated, well-to-
moderately differentiated endometrioid lesions on a background
of juxtaposed hyperplasia in younger women. Type II EC
referred to poorly differentiated tumors of endometrioid or
non-endometrioid histology arising in a milieu of endometrial
atrophy and were claimed to be estrogen-independent. There
is also an important role for hereditary syndromes such as
Lynch syndrome, that can result in endometrial cancers of both
categories as well as a multitude of extra-uterine malignancies
(Lynch et al., 2015). Sequencing efforts by The Cancer Genome
Atlas (TCGA) Research Network later fine-tuned the knowledge
of EC-related mutations and allowed for a more precise (i.e.,
resulting in superior distinction of low- versus high-risk EC)
molecular classification that is outside the scope of this review
(Cancer Genome Atlas Research Network, 2013).

To date, the identity of the primordially affected cells
in humans is still unknown. Syed et al. (2020) advanced
AXIN2+ (stem) cells in mice to be EC-initiating cells upon
oncogenic transformation. Before, most insights were drawn
from patient EC-derived cell lines such as Ishikawa and ECC-1
(well-differentiated), RL95-2, HEC1A and HEC1B (moderately
differentiated), and KLE and AN3CA (metastatic, poorly
differentiated) (Van Nyen et al., 2018). Genomic profiling
showed their comparative and temporal stability with respect
to copy number aberrations and EC-associated point mutations,
but intra-tumor heterogeneity was lost in cell lines. Mouse
xenograft models, starting from these cell lines or primary
tumors (105–107) showed fair engraftment rates of about 60%
although aggressive subtypes are more efficient in growing out
(Wang et al., 2010; Cabrera et al., 2012; Korch et al., 2012).
The xenografts showed 90% genetic similarity with the tumor
(Depreeuw et al., 2015), displaying only low numbers of newly
acquired SCNAs, but genetic drift was still observed (Ben-David
et al., 2017). Further limitations of EC PDX are the inability
to replicate full intra-tumor heterogeneity, to mimic the tumor
micro-environment as mouse stroma gradually replaces the
human stroma present in the transplanted tumor, the absence
of immunomodulatory responses and difficulties to correctly
simulate patient drug-responses (Depreeuw et al., 2015). With
respect to representativeness, another step in this direction was
taken by implementing 3D culturing techniques, as exemplified
by spheroid cultures which were instrumental to uncover altered
metabolism, polarity and drug susceptibility (Chitcholtan et al.,
2012, 2013). Spheroid constructs have been applied to study
carcinogenesis, either in isolation or as element in a co-culture

or explant model (Hashimoto et al., 2017; Goad et al., 2018; Al-
Juboori et al., 2019). To provide a more accurate rendering of
EC, research groups embarked on establishing organoids from
EC tumor samples (Dasari et al., 2017; Girda et al., 2017; Pauli
et al., 2017; Turco et al., 2017; Boretto et al., 2019; Table 1 and
Supplementary Table 2). Organoid development was achieved,
reliant on the typical factors such as RSPO1, Noggin, EGF, FGF2,
FGF10, A83-01, NAC, and NAM, further promoted by addition
of insulin-like growth factor 1 (IGF1), hepatocyte growth factor
(HGF) and lipids. Importantly, it was necessary to lower p38i
concentration to favor organoid growth from tumor cells above
growth from healthy cells, also often present in the original
biopsy. Interleukin-6 (IL6) and (non-)essential amino acids were
also tested, but proved less important (Boretto et al., 2019).
In addition to IHC and gene-expression characterization of the
tumor organoids for endometrium/EC markers like estrogen
receptor-α (ERα), progesterone receptor (PR), CK AE1/AE3,
CK7, CK20, mucin 1 (MUC1), SRY-Box transcription factor
17 (SOX17), cluster of differentiation 10 (CD10), CD44 and/or
aldehyde dehydrogenase 1 (ALDH1), two studies also defined
and validated genomics and transcriptomics of the EC-derived
organoids (Pauli et al., 2017; Boretto et al., 2019). Based
on recapitulated mutations in AT-rich interaction domain 1A
(ARID1A), β-Catenin (CTNNB1), F-box and WD repeat domain
containing protein 7 (FBXW7), human epidermal growth factor
receptor 2 (HER2), Polymerase-ε exonuclease domain (POLE)
and phosphatase and tensin homolog (PTEN), organoids were
tested for sensitivity to classic chemotherapeutics (5-fluorouracil,
carboplatin, paclitaxel and doxorubicin), phosphoinositide 3-
kinase (PI3K) inhibitors (apitolisib, buparlisib), inhibitors of
mammalian target of rapamycin (mTOR) (everolimus), and
histone deacetylase (HDAC) inhibitors (vorinostat, belinostat).
Our group showed the organoids’ ability to reproduce the
phenotype of the spectrum of endometrial states, i.e., from
healthy, over simple and complex hyperplasia with and without
atypia, to cancerous endometrium, and to recapitulate mutations
of Lynch syndrome patients (Boretto et al., 2019). Now that the
necessary backbone is provided, next-generation organoid-based
models can be developed including co-culture systems, which will
lend themselves to extensive, or rather focused, drug testing and
cutting-edge gene-editing exploration.

FALLOPIAN TUBES

The FT (or oviducts), functioning as relay between uterus
and ovaries, consist of four zones with distinct histological
architecture, i.e., the fimbriated and funneled infundibulum,
the tortuous ampulla, the muscular isthmus and the circular
and myometrialized interstitial/intramural portions (Figure 5A).
In order to provide an appropriate environment for gamete
conditioning, fertilization and ovum nutrition, and to allow
proper transit of the zygote, secretory, ciliary and muscular
functions of the different parts are aligned (Jarboe, 2014).

Since the first in vitro culturing of oviductal cells (McComb
et al., 1986), several tactics have been applied to overcome
their rapid senescence, loss of polarization, fibroblast overgrowth
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FIGURE 5 | Schematic overview of fallopian tube and ovary. (A) The fallopian tube consists of four zones with distinct histological architecture, from distal to
proximal: infundibulum with its fimbriae (*), ampulla, isthmus and interstitial/intramural portion. (B) The ovary is divided into a cortical region in which the
oocytes/follicles develop and the medulla that contains the larger blood vessels. ***Refers to “Fimbriae”.

and deciliation/dedifferentiation (Henriksen et al., 1990; Ando
et al., 2000; Levanon et al., 2010; Karst et al., 2011). Karst et al.
(2011) immortalized 2D-grown oviductal cells, and showed their
tumorigenicity upon injection in immunocompromised mice.
Using a transwell approach, the same group also cultured non-
immortalized fimbrial FT epithelial cells at air/liquid interface,
thereby replicating typical structural, proteomic and secretomic
features, and providing insight into DNA damage repair kinetics
(Levanon et al., 2010). To surmount the yet limited propagation
of this system, and the failure to simulate the oviducts’
tubular folded architecture, further advanced 3D constructs
were generated by placing minced mouse or baboon oviducts
in alginate matrix, exposed to a precisely defined cocktail of
hormones and growth factors (King et al., 2011). The immersed
cells expressed the FT markers oviductin (OVGP1), paired box 8
(PAX8), E-cadherin, CK8 and acetylated tubulin (in cilia), and
phenocopied the normal cell proliferation rate of the healthy
donor. The main drawback was the limited culturing capacity
(only for 7 days). The identification of label-retaining, putative
stem cells in the distal oviduct of mice formed the impetus
toward 3D organoid modeling using Matrigel (Wang et al.,
2012). Grown under serum-free conditions, requiring only FGF2
and EGF, the organoid cells remained in an undifferentiated,
slow-proliferative state for at least 10 weeks. Adding serum
nudged cells to differentiate into various Müllerian derivatives, as
exemplified by different expression patterns of ERα, PR, CD44,
and progestagen associated endometrial protein (PAEP), and by
the formation of hollow tubal structures through budding-out of
the differentiating organoids. Kessler et al. (2015) were the first to
develop organoids from human epithelial (epithelial cell adhesion
molecule (EpCAM+) FT cells (Table 1 and Supplementary
Table 4). Wnt potentiation was indispensable for organoid
propagation, and the Wnt-boosting LGR6 emerged as potential
FT stem cell marker. Interestingly, LGR6 expression was also
found upregulated in endometriotic organoids when compared
to healthy endometrium organoids (Boretto et al., 2019). Optimal
expansion of FT organoids required WNT3A, RSPO1, EGF,

FGF10, TGF-βr kinase inhibitor (SB431542) and Noggin. Both
secretory and ciliated cells were present, giving credence to
the possible existence of a common bipotent stem cell. Notch
inhibition by use of a γ-secretase inhibitor propelled ciliogenesis
(Kessler et al., 2015), as later also found in endometrial organoids
(Haider et al., 2019). It was also demonstrated that the fimbrial
ends of the oviducts possess the highest organoid-forming
capacity, both in mouse (Xie et al., 2018) and human (Rose
et al., 2020), and that human fimbrial ALDH+ cells replicate
with higher frequency and form larger structures (Rose et al.,
2020). Co-culturing of FT epithelial cells with FT stromal cells
and endothelial (HUVEC) cells formed more complex organoid
structures (Chang et al., 2020). FT epithelial cells could also be
derived from induced pluripotent stem cells (iPSC) in which
first an intermediate mesoderm state was induced, subsequently
differentiated toward a FT phenotype via suppletion of WNT4
(or WNT3A), follistatin, E2 and P4 (Yucer et al., 2017).

The FT organoids were applied to explore the origin of
ovarian cancer (OC) and to model infections with specific
pathogens. Kopper et al. (2019) defined the optimal culture
conditions to obtain organoids from both healthy FT and
ovarian surface epithelium (OSE), alongside organoids from a
broad spectrum of OC subtypes including high-risk patients
with germline mutations in breast cancer types 1 and 2
susceptibility genes (BRCA1/2), thus allowing to study how
their (unaffected) FT-derived organoids relates to OC. Organoid
formation from FT, OSE, and OC required equal amounts of
RSPO1, Noggin, NAC, NAM, A83-01, and ROCKi. Organoid
derivation from healthy FT as compared to healthy OSE asked
for less Wnt, but similar EGF levels. Maintenance of OSE
organoids additionally needed forskolin, hydrocortisone, E2 and
the tyrosine kinase activator heregulin-β1 in amounts equivalent
to OC organoids. Kopper et al. (2019) were able to further
optimize OC organoid formation efficiency by reducting of
EGF and adding FGF10. Moreover, it was observed that only a
subset of OC benefited from Wnt supplementation, moreover
added at lower concentrations than for organoid derivation
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from FT and OSE. Hoffmann et al. (2020) knocked down p53,
PTEN and retinoblastoma (RB) tumor suppressor genes in FT
organoids resulting in genomic instability, reduced apicobasal
polarity, and larger and polymorphic nuclei compared to healthy
controls. The modified organoids showed similarity to organoids
derived from high-grade serous OC (HGSOC). In addition
to sharing prominent morphological characteristics (such as
nuclear atypia, increased DNA damage and altered epithelial
organization) and transcriptomic traits (such as congruent
upregulation of proto-oncogenes and downregulation of Wnt
signaling), the medium optimized for HGSOC-derived organoids
also promoted stemness in the modified FT organoids. Head-
to-head comparisons between genetically rewired mouse FT
and ovarian organoids supported that HGSOC can be derived
from both cell populations, which may underlie HGSOC
clinical heterogeneity, evidenced by differences in transcriptome,
tumor kinetics and drug responses (Zhang et al., 2019a;
Lõhmussaar et al., 2020). It has been proposed before that
fimbrial ends of the FT form an equally important site of
ovarian tumorigenesis (Dubeau, 1999; Karnezis et al., 2017).
Thus, the FT organoids platform will allow researchers to
delve deeper into the minimal (epi-)genetic requirements for
oviductal tumorigenesis, using, amongst others, modern gene-
editing techniques.

Acute and chronic salpingeal infections may cause progressive
pelvic inflammatory disease and subsequent ectopic pregnancies
and/or subfertility. With the emergence of multidrug-resistant
sexually transmitted diseases, it is of paramount importance to
have preclinical models to study host-microbe interplay, query
treatments for infections, and develop regenerative therapies in
case of surgical resections (Harris et al., 2018). Infection with
Chlamydia trachomatis has recently been modeled in human FT
organoids as well as in mouse endometrial organoids (Kessler
et al., 2019; Bishop et al., 2020). Acute infection triggered a
sustained response of inflammation and homeostatic repair.
Infected cells containing bacterial inclusions extruded into
the organoid lumen, after which adjacent cells compensatorily
repleted their inlet. Owing to organoid longevity, also chronic
chlamydiosis, known for its subclinical presentation, could be
studied. Chronic infection of the organoids could model trace
effects of infection, convalescence and reinfection, resulting in
significantly increased organoid-forming capacity and increased
EpCAM expression, even after successful treatment and curation
of the chronic infection. A shift toward a less differentiated,
secretory phenotype and epigenetic rewiring akin to aging are
features reminiscent of OC.

OVARIES

The ovaries, consisting of a central medulla, peripheral cortex
and overlying serosa, serve two main purposes: steroidogenesis
and iterative oocyte maturation with subsequent transmission
into the FT. The cortical region houses the developing
oocytes/follicles (White et al., 2012; Figure 5B). It has been
speculated many times that oogonial stem cells (“cortical
reserve”) may exist, but this hypothesis remains controversial

and heavily debated. Cells expressing extracellular DEAD-
box polypeptide 4 (ecDDX4) have been advanced as stem
cell candidates, but recent single-cell omics identified these
ecDDX4+ cells as perivascular cells (Fan et al., 2019; Wagner
et al., 2020). To date, the Zuckerman axiom that a fixed number
of oocytes is present and available throughout a woman’s lifetime
still stands (Zuckerman, 1951). Regarding the cortex-bordering
OSE, organoid studies, as described above, may eventually lead
to the identification of the OSE stem cells, which may also lie
at the origin of epithelial ovarian cancer (EOC). With more
than half of affected women succumbing to this disease, EOC
is considered the most lethal gynecological cancer. This high
death-to-incidence ratio is attributable to the fact that the
majority of cases are diagnosed in advanced stages of disease,
and due to rapid recurrences (Prat and FIGO Committee on
Gynecologic Oncology, 2014; Lheureux et al., 2019). EOC is
more than a single entity and comprises serous, mucinous,
endometrioid and clear cell histological signatures. Exact origin
and downstream pathobiology remain debated. As previously
mentioned, both FT epithelium and OSE have been proposed and
validated as originating tissues for EOC (Dubeau, 1999; Jarboe,
2014; Coscia et al., 2016; Karnezis et al., 2017; Zhang et al.,
2019a; Hoffmann et al., 2020; Lõhmussaar et al., 2020). One-
fifth of the patients are genetically predisposed (Walsh et al.,
2011; Toss et al., 2015), and advancements in genetic testing,
biomarker discovery and preclinical models are enabling the
application of personalized therapies. Cell lines of EOC, used as
preclinical models, suffer from genetic drift, cross-contamination
and misidentification (Sandberg and Ernberg, 2005; Korch et al.,
2012; Domcke et al., 2013). In particular, SK-OV-3 and A2780,
the two most utilized cell lines to emulate HGSOC, lack its
typical TP53 mutation and distinctive somatic copy number
alterations (SCNA). Instead, they harbor mutations typical for
other histotypes (e.g., ARID1A and PTEN) (148). Given this
incongruity as well as poor translatability with regards to clinical
response, these cell lines are not highly apt as preclinical model
of HGSOC (Matsuo et al., 2010). Xenografts grown from the
cell lines face the same dire fate (Bobbs et al., 2015). Transgenic
mouse models, although allowing to query early events in
ovarian tumorigenesis, insufficiently recapitulate the full genomic
landscape of HGSOC (Bobbs et al., 2015). Patient-derived
xenografts in immunodeficient mice reproduce relevant HGSOC
complications such as tumor invasion, expansion and metastasis,
and retain histologic and genomic characteristics (at least at
early passage), but lack the immune component (Dobbin et al.,
2014; Weroha et al., 2014; Bobbs et al., 2015). In order to better
reproduce tumor complexity, in vitro 3D spheroid models have
been developed. Differentially expressed genes, altered tumor
kinetics and more translatable drug responses have been noted
using spheroids as compared to 2D cell lines (Zietarska et al.,
2007; Raghavan et al., 2015). Immune and stromal components
were added to scrutinize cancer stem cell pathways and cellular
interactions (Raghavan et al., 2019). Spheroids were also used to
study progression from normal OSE to preinvasive phenotypes
(e.g., by tracking depolarization, disorganized stratification,
overexpression of cancer markers and ultimately degradation
of the subjacent basement membrane) (Kwong et al., 2009).
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Studying these first steps from normal to invasive phenotype
required OSE cells to be cultured in Matrigel-coated wells while
suspended in a serum-containing medium supplemented with
2% Matrigel and continuously exposed to tumor necrosis factor
α (TNF-α). The importance of TNF-α supports the association
of tumorigenesis with chronic inflammation. The spheroids
arose by aggregation, not by self-organization, and could not
be maintained beyond 40 days. Nevertheless, the short-term 3D
spheroid cultures were more representative than 2D setups when
assessing OC drug sensitivities (Jabs et al., 2017).

Significant progress in OC modeling was generated by
the development of organoids from OC as mentioned above.
Organoid lines were established from a wide variety of OC,
ranging from borderline tumors to invasive OC of various
grades, stages and histologies (Kopper et al., 2019; Table 1
and Supplementary Table 4). A preceding study showed
that organoid establishment was feasible without forskolin,
hydrocortisone, E2, heregulin-β1 and ROCKi but required FGF2,
PGE2 and p38i, although organoid maintenance was only short-
term and the study focused mainly on HGSOC (Hill et al., 2018).
Subsequent studies emphasized the importance of heregulin-
β1 (neuregulin-1) and low WNT environment for long-term
EOC organoid expansion (Hoffmann et al., 2020; Maenhoudt
et al., 2020). The OC-derived organoids mirrored the (epi-
)genomic and transcriptomic landscape of their native tissue and
exemplified tumor heterogeneity at different sites of metastatic
disease (Kopper et al., 2019). Organoid gene transcript clustering
provided arguments for the hypothesis that borderline tumor
may transition into OC. Organoids were amenable to gene-
editing, xenografting and drug-sensitivity profiling (Hill et al.,
2018; Kopper et al., 2019; Maru et al., 2019b; Phan et al., 2019;
Chen et al., 2020; Hoffmann et al., 2020; Lõhmussaar et al., 2020;
Maenhoudt et al., 2020). Hill et al. (2018) functionally studied
HGSOC-specific homologous recombination deficiency (HRD)
and replication fork instability, and observed that functional
assays (i.e., drug-testing) systematically outperformed the data
obtained from mutational profiles alone, moreover in keeping
with the parallel clinical reality. Further developments were
achieved to circumvent the possible interference of the gel-
based scaffold with drug diffusion (using resuspended organoids)
and to apply the organoid platform in high-throughput settings
(Maru et al., 2019b; Phan et al., 2019). Drug sensitivity
was linked to well-recapitulated individual (epi-)genomic and
transcriptomic profiles (Phan et al., 2019; Chen et al., 2020;
de Witte et al., 2020; Nanki et al., 2020; Zhang et al., 2020).
To a further extent, the organoids reliably simulated intra-
and inter-patient drug response heterogeneity and were able
to predict useful therapeutic agents in the majority of cases,
longitudinally compared to patient-wide clinical outcomes albeit
retrospectively (de Witte et al., 2020). These findings put us
at the brink of a new era in which the predictive value of
OC-derived organoids will be prospectively tested in clinical
trials. The prospect of more complex organoid models also
encompassing immune, stromal and/or vascular cells, raises
the hope to in the future test clinically relevant drugs that
tackle neo-angiogenesis and tumor immunology. Indeed, short-
term 3D spheroid co-cultures of HGSOC cells with immune

cells have shown sensitivity to immune checkpoint inhibitors
(Wan et al., 2020).

CONCLUDING REMARKS

Over the past decades, we have witnessed an important paradigm
shift in preclinical modeling of healthy and diseased tissues.
With respect to the organs of the female reproductive system
concentrated in and near the pelvis, organoids have gradually
assumed a pivotal position in research. Considering their efficient
establishment and propagation, their amenability to state-of-
the-art techniques (such as gene-editing and single-cell omics),
their in vivo transplantability and their positive translational
power, this promising technology has spurred an invaluable
amount of in vitro and in vivo realizations. Organoids provide
an unprecedented opportunity to practice personalized medicine.
The most important hurdle that lies ahead is to further enrich
the established organoid culturing systems, by adding stromal,
vascular and immune components to still better mimic real-
life conditions. Rightfully wielding this momentum by means of
parallel clinical trials (Vlachogiannis et al., 2018; Ooft et al., 2019)
will now be of paramount importance to further close the gap
between bench and bedside.
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