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Purpose: The physical properties of protons lower doses to surrounding normal tissues compared with photons, potentially reducing
acute and long-term adverse effects, including subsequent cancers. The magnitude of benefit is uncertain, however, and currently based
largely on modeling studies. Despite the paucity of directly comparative data, the number of proton centers and patients are expanding
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exponentially. Direct studies of the potential risks and benefits are needed in children, who have the highest risk of radiation-related
subsequent cancers. The Pediatric Proton and Photon Therapy Comparison Cohort aims to meet this need.
Methods and Materials: We are developing a record-linkage cohort of 10,000 proton and 10,000 photon therapy patients treated
from 2007 to 2022 in the United States and Canada for pediatric central nervous system tumors, sarcomas, Hodgkin lymphoma, or
neuroblastoma, the pediatric tumors most frequently treated with protons. Exposure assessment will be based on state-of-the-art
dosimetry facilitated by collection of electronic radiation records for all eligible patients. Subsequent cancers and mortality will be
ascertained by linkage to state and provincial cancer registries in the United States and Canada, respectively. The primary analysis will
examine subsequent cancer risk after proton therapy compared with photon therapy, adjusting for potential confounders and
accounting for competing risks.
Results: For the primary aim comparing overall subsequent cancer rates between proton and photon therapy, we estimated that with
10,000 patients in each treatment group there would be 80% power to detect a relative risk of 0.8 assuming a cumulative incidence of
subsequent cancers of 2.5% by 15 years after diagnosis. To date, 9 institutions have joined the cohort and initiated data collection;
additional centers will be added in the coming year(s).
Conclusions: Our findings will affect clinical practice for pediatric patients with cancer by providing the first large-scale systematic
comparison of the risk of subsequent cancers from proton compared with photon therapy.
Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Proton therapy has emerged as a preferred radiation
therapy modality for some cancers because the physical
properties of protons lower doses to surrounding normal
tissues and therefore should reduce the acute and late-
term adverse effects.1,2 In 2010, there were 24 proton ther-
apy centers operating around the world. By 2021 there
were 99 centers in operation and another 60+ centers
under construction or in the planning phase.3 This is
translating into rapid increases in patients treated with
proton therapy, especially children, because they have the
highest risks of late effects of radiation therapy, including
radiation induced subsequent cancers.4 A recent patterns-
of-care survey of US centers found that 15% of pediatric
patients undergoing radiation therapy were treated with
proton therapy in 2016, a doubling since 2012. Half the
patients were aged <10 years, and 25% were aged
<5 years.5 Central nervous system (CNS) tumors
accounted for 50% and sarcomas for 25% of pediatric pro-
ton therapy patients, and proton therapy was the most
common form of radiation therapy used for rhabdomyo-
sarcoma, medulloblastoma, ependymoma, and Ewing sar-
coma (>50%). Similarly steep increases were reported
using data from the National Cancer Database for pediat-
ric CNS malignancies, in which proton therapy use
increased from <1% before 2004 to 15% by 2012 and 28%
by 2017.6,7

Studies of children treated with conventional radiation
therapy have established a wide range of late effects of
radiation therapy, with the potential for high cumulative
burden of subsequent malignancies.8,9 These studies have
led to efforts to reduce the amount of normal tissue expo-
sure through treatment dose reduction, smaller target
margins, and use of new more conformal techniques like
intensity modulated radiation therapy (IMRT) and
proton therapy.10 With some, particularly older proton
therapy treatment systems, however, this comes at the
expense of increased scatter doses to the rest of the body
from neutrons,11,12 and neutrons are more carcinogenic
than photons or x-rays.13 In the absence of direct data,
dose and risk modeling studies have suggested that proton
therapy should lower second cancer risks in-field due to
the overall lower integral dose.14-16 For out-of-field risk
caused by secondary and scattered radiation, radiation
exposure depends on the delivery method, for example,
passive scattering versus scanned delivery for protons.
Modeling studies indicate that proton beam scanning
results in the lowest out-of-field dose while data for pho-
ton treatments and passive scattering proton therapy can
be comparable depending on the distance to the field.17,18

The translation of out-of-field neutron doses into risk is
hampered by large uncertainties on the carcinogenic
effectiveness of neutrons (their relative biologic effective-
ness [RBE] or weighting factor). These modeling studies
are based on dose estimates from a small sample of
patients (n < 10) and the models require many assump-
tions, including the RBE of protons and neutrons and the
effect of fractionation on different second cancer sites.19

There are several randomized trials in progress for pro-
ton therapy in adults, but such trials are considered
unethical for pediatric patients because it is thought that
the dosimetric advantages of protons in children under-
mine the requirement for clinical equipoise.20 Encourag-
ingly, single-center evaluations and an analysis using the
National Cancer Database have suggested that risk of sub-
sequent malignancies after proton therapy in children
could be lower than photon therapy.21-23 However, these
studies have various limitations for studying the late
effects of proton therapy, including small sample size,
lack of a formal comparison group, and short or likely
incomplete follow-up.24
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There is now widespread agreement that large-scale
observational studies are urgently required to systemati-
cally compare acute toxicities, outcomes, and late effects
of proton therapy and modern photon therapy in chil-
dren.25 The US Pediatric Proton/Photon Consortium
Registry (PPCR) has successfully recruited 18 of the 23
eligible US pediatric proton centers to participate in
building the registry, demonstrating the willingness of the
pediatric proton therapy community to conduct
research.26,27 We have leveraged the success of this regis-
try to begin development of a large multicenter Pediatric
Proton and Photon Therapy Comparison Cohort. The
aim is to develop a record-linkage cohort of 10,000 proton
and 10,000 photon therapy patients treated from 2007 to
2022 to compare the risk of subsequent cancers after pro-
ton compared with photon therapy, including (1) the
overall risk of any subsequent cancer, (2) quantification of
dose-volume effects, and (3) the dose-response relation-
ships for specific subsequent cancers. We describe the
study design, sample size justifications, and exposure
assessment methods.
Methods and Materials
Study population

Our goal is to develop a record linkage cohort of 10,000
proton and 10,000 photon therapy pediatric patients
(defined as age <22 years) treated from 2007 to 2022 in the
United States and Canada. The cohort will build on the suc-
cess of the existing PPCR population, which includes
actively consented patients from 24 participating proton
and photon therapy centers.26,27 We will expand this popu-
lation by collecting data from medical records (passive
enrollment) for all eligible proton and photon patients at
these centers from the period before start of the PPCR
(2007-2014) and those since 2015 who were not actively
enrolled into the PPCR. Similarly, the photon comparison
group will be obtained by collecting data from medical
records for all eligible photon therapy patients at 5 to 10
major photon therapy centers (Table 1). Photon therapy
patients will be included from the same set of diagnosis
groups commonly treated with protons (CNS, sarcomas,
neuroblastoma, and Hodgkin lymphoma). We anticipate
that temporal changes in therapy beyond radiation modality
will be modest for the eligibility period of 2007 to 2022, and
data collection will include chemotherapy (including tar-
geted and immunotherapies) and surgery. We estimate
from Surveillance Epidemiology and End Results (SEER)
registry data that about 2500 children with these cancer
diagnoses are treated with initial radiation therapy annually
in the United States and Canada,28 which is an estimated
population of 36,000 children treated with initial radiation
therapy during the proposed study period from 2007 to
2022. Thus, assuming about half of these patients will have
been treated with proton therapy, we expect it will be feasi-
ble to achieve our proposed sample size.

The successful PPCR collaboration established by Mas-
sachusetts General Hospital will form the foundation for
the new cohort. Each center has a principal investigator
and research staff who are now familiar with the processes
for abstracting treatment data and uploading radiation
therapy plans into a cloud based medical imaging storage
system. The PPCR coordinating center uses the National
Institutes of Health−supported Research Electronic Data
Capture (REDCap) web-based system for the collection of
patient and treatment information and the MIM cloud
repository (MIM Software, Inc) for upload and storage of
radiation treatment and imaging files. These systems are
also being used for our expansion of data collection to
include passively enrolled proton and photon patients at
the PPCR proton therapy centers and newly recruited
photon therapy sites. All US and Canadian radiation ther-
apy centers who have treated more than 500 eligible pedi-
atric patients since 2007 are eligible to join the study and
can apply for funding to support data collection for the
study via an open contracting process. We started in 2020
with a pilot phase with 3 photon therapy centers to
develop data collection tools and study processes. We
continued in 2021 with a further 6 centers joining the
study (2 photon, 2 proton, and 2 photon/proton centers;
Table 1) and are in the process of adding 4 new centers
(University of Pennsylvania, MD Anderson Cancer Cen-
ter, Texas Children’s Cancer Center/Baylor College of
Medicine, and California Protons Cancer Therapy Cen-
ter); we plan to have subsequent contracting rounds,
dependent on funding availability, until we reach our
planned sample size.
Exposure assessment

We will collect anonymized electronic radiation ther-
apy records in the form of Digital Imaging and Commu-
nications in Medicine (DICOM) radiation therapy files
for all patients from the treatment centers. This will
include computed tomography (CT) images of the
treated area, the radiation therapy plans designed by
radiation therapists, medical physicists, or dosimetrists
at the centers, and the contours of the organs at risk seg-
mented from the CT images. Data will be transferred
from the treatment centers to a centralized data storage
system and then to the supercomputing servers at the
National Institue of Health. We will use state-of-the-art
dose calculation methods known as the National Cancer
Institute dosimetry system for radiation therapy
(NCIRT), which has been previously established.29-33

NCIRT addresses 3 challenges in dosimetry for retro-
spective epidemiologic studies of radiation therapy
patients: individualized organ-level dose is required for
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dose-response analysis; dose calculation must cover the
region close to tumor volume (in-field) as well as sur-
rounding regions (out-of-field); and dose calculation
must be rapid to deal with large numbers of patients.
The photon and proton modules of NCIRT will be used
for rapid in-field and out-of-field organ dose estimation
for photon and proton (both passive scattering and pen-
cil beam scanning beams) therapy patients, respec-
tively.29,31-33 Additional segmentation will be performed
on the CT images for organs not contoured in the
DICOM radiation therapy structure using automatic
segmentation methods.34 Limited coverage of CT images
will be extended as needed using the precontoured ana-
tomic phantom library.30,35,36 Absorbed doses to major
radiosensitive organs and tissues, including the brain,
red bone marrow, thyroid, heart, and breast will be esti-
mated. NCIRT can also provide volumetric dose distri-
bution within a given organ volume. Critical organs
such as the brain and heart will have detailed substruc-
tures.

Other cancer treatments will be collected from the elec-
tronic medical records, including all available information
on chemotherapy. Potential confounders such as insurance
status, cancer predisposing conditions (or results of genetic
testing), and socioeconomic status (proxy measure based
on median income of the residential ZIP code) will also be
abstracted from the electronic medical records. The PPCR
has established the feasibility of successfully collecting these
variables from patient medical records.
Outcome ascertainment

Once collection of data for the cohort is complete, subse-
quent cancers and cause of death will be ascertained by link-
age to the state and provincial cancer registries in the
United States and Canada, respectively. This systematic fol-
low-up mechanism is a critical component of the study
design to minimize potential bias due to loss to follow-up.
Treatment centers follow patients using active follow-up
methods, and this is approach is very costly and potentially
prone to loss to follow-up, especially many years after treat-
ment. There is also the potential for differences in complete-
ness of follow-up between proton centers and photon
centers, especially when patients have been referred to a
proton center from their primary treatment center. Due to
the use of registry linkage for subsequent cancer ascertain-
ment, our outcomes will include malignant neoplasms as
well as the subset of benign tumors with systematic registry
collection, such as meningiomas. Estimation of the organ-
specific dose-response relationships for our third aim will
require ascertainment of the location of subsequent tumors
within the organ. Since these are not routinely available, we
will work with the cancer registries to abstract the tumor
locations from either medical records (preferred) or elec-
tronic pathology reports.



Table 2 Estimated sample size required to detect a given HR for all subsequent malignancies after proton therapy com-
pared with photon therapy, with 80% power using 2-sided 5% significance tests according to cumulative incidence of sec-
ond malignant neoplasm occurring 5+ years after diagnosis

Cumulative incidence (%) of subsequent
malignancies by 15 y (photon
therapy control group)

Number of pediatric
cancer survivors per

radiation therapy group

Expected number of subsequent
malignancies based on cumulative

incidence (photons)
HR with 80%
power

1% 5000 50 0.5

8000 80 0.6

10,000 100 0.65

15,000 150 0.7

1.5% 3000 45 0.5

6000 90 0.6

10,000 150 0.7

15,000 225 0.75

2% 2500 50 0.5

4000 80 0.6

8000 160 0.7

12,000 240 0.75

2.5% 2000 50 0.5

3000 75 0.6

6000 150 0.7

10,000 250 0.77

Abbreviation: HR = hazard ratio.
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Power and sample size

For the primary aim of comparing the overall subse-
quent cancer rates between proton and photon therapy
we estimated that with 10,000 patients in each treatment
group there would be 80% power to detect a relative risk
of 0.7 with a cumulative incidence of subsequent cancers
of 1.5% by 15 years after diagnosis, or a relative risk of 0.8
with a cumulative incidence of 2.5% by 15 years
(Table 2).37 An analysis from the Childhood Cancer Sur-
vivor Study (CCSS) found that 5-year survivors who were
treated with radiation therapy in the 1990s had a cumula-
tive incidence of subsequent neoplasms by 15 years of
approximately 2.5%.38 For the secondary aim of estimat-
ing dose-response relationships for specific subsequent
cancers, we used SEER 18 registry data to estimate poten-
tial case numbers. We restricted the SEER population to
patients diagnosed before age 20 years with first cancers
eligible for inclusion in our cohort (CNS, sarcomas, neu-
roblastoma, and Hodgkin lymphoma) who received a
diagnosis between 2000 and 2012, treated with radiation
therapy, and followed to 2017. This provided a SEER sub-
set approximately equivalent to the expected study popu-
lation for a cohort of patients treated 2007 to 2022 with
follow-up for subsequent cancers up to 2027. We
determined the rates of subsequent solid malignancies
that occurred 5+ years after diagnosis in the SEER subset,
corresponding to the typical latency period for radiation-
related solid cancers.39 Based on these rates, we estimated
that in a population of 20,000 patients there would be
approximately 150 subsequent brain tumors, 100 sarco-
mas and 70 thyroid cancers identified during the follow-
up period. Treatment-related leukemias typically occur
with a shorter latency after treatment, so using the same
methodology we estimated about 100 subsequent leuke-
mias would be identified starting 2+ years after diagnosis.
These subsequent cancers with the highest expected case
numbers will be prioritized for nested case-control analy-
ses examining detailed dose-response relationships, and
the expected case numbers are comparable to those in
similar dose-response studies conducted in CCSS (eg,
n = 106 brain tumors, n = 115 thyroid cancers, and n = 84
sarcomas).39
Analytical plan

The primary analysis will be time to diagnosis of any
second cancer after proton therapy compared with pho-
ton therapy adjusting for potential confounders (attained
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age, age at diagnosis, primary cancer diagnosis, primary
cancer stage/risk category, other cancer treatments, insur-
ance status, known cancer predispositions, and socioeco-
nomic status) via propensity scores, and accounting for
competing risks (ie, mortality). We will separately exam-
ine risk of any second malignancy according to primary
cancer diagnoses for protons compared with photon ther-
apy and test for effect modification by age at exposure,
radiation therapy modality (passive scattering vs pencil
beam or uniform scanning for proton therapy; IMRT vs
3-dimensional conformal radiation therapy for photon
therapy) and chemotherapy. We will assess the risk of
informative censoring, and conduct sensitivity analyses if
necessary.

We will evaluate risk according to various dose-volume
metrics by treatment modality (protons vs photons) for
each primary tumor type, and according to age at diagnosis
and calendar year of treatment. We will evaluate the good-
ness-of-fit for models with different (prespecified) dose-vol-
ume metrics to assess which metrics are most strongly
related to the risk of specific subsequent malignancies. Sta-
tistical approaches for analyzing dose-volume effects are an
area of active research and this data set will provide rich
opportunities for further refining these approaches.40,41

Dose-response analyses including assessment of dose-
volume effects will be conducted for the most common sec-
ond cancers (brain tumors, sarcomas, thyroid cancer, and
leukemia), which are among the most radiosensitive sites in
children.39 We will assess whether the dose-response is
modified by therapy modality (passive scattering, pencil
beam, or photons), age at exposure, sex, or time since expo-
sure. Comparison of the dose-response by modality will
provide insights into the RBE of protons and neutrons com-
pared with photons; however, we recognize that there will
be limited power to detect small differences.
Discussion
The goal of the NCI’s Childhood Cancer Data Initia-
tive (CCDI) is to accelerate data sharing to improve pedi-
atric cancer treatment and survivorship. Our multicenter
Pediatric Proton and Photon Therapy Comparison
Cohort serves as an example of the research being facili-
tated by the CCDI, which has provided funding to sup-
port data collection. Our aim is to build a state-of-the-art
radiation therapy cohort with individual electronic radia-
tion therapy records and outcomes data from 20,000 pedi-
atric patients with cancer treated in the modern era.

Nested case-control studies within childhood cancer sur-
vivorship studies in the United Kingdom, France, United
States, and the Netherlands have quantified second cancer
risks from high-dose photon therapy.39,42-44 These cohorts
include children treated from 1940 to 2000, which miss the
introduction of proton therapy for children in the 21st cen-
tury and, for photon therapy, the widespread transition to
IMRT. The US cancer registries are another important
source of information on second cancer risks after radiation
therapy, but they do not currently collect data on radiation
therapy modality. In contrast, the National Cancer Database
does collect radiation therapy modality data but does not
collect patient identifiers and relies on outcome information
from the treatment centers, which as discussed earlier is
unreliable for long-term follow-up and does not systemati-
cally capture the tumor site or date of diagnosis of subse-
quent cancers.45 Several single center studies have provided
estimates of the subsequent cancer risk or other side effects
after proton therapy, such as brain stem necrosis,46 but with-
out a formal internal comparison population of photon ther-
apy patients, the relative risks remain highly uncertain.23,24

Integral to understanding the potential benefits of proton
therapy is the question of how the volume of irradiated tis-
sue affects the risk of subsequent malignancy. To date, few
studies have been able to assess this because they have not
had information to reconstruct the dose-volume distribu-
tions efficiently or accurately; this is particularly challenging
with paper-based records and traditional dosimetry
approaches. Treatment fields have been used as proxy
measures in a few studies. For example, a study in CCSS
found that Wilms tumor and Ewing sarcoma patients who
received less than 20 Gy of whole lung irradiation dose had
a higher risk of second breast cancers than Hodgkin lym-
phoma patients treated with partial chest irradiation of 40
Gy.47 Journy et al also led a novel analysis of esophageal
cancer after radiation therapy for breast cancer and found
that the volume of tissue exposed to 30 Gy or higher was
the best predictor of risk.41 Recent studies of radiation-
related cardiac risk in CCSS have also demonstrated the
value of incorporating dosimetry with dose-volume estima-
tions.48 We propose to collect electronic radiation therapy
plans and radiation planning CT scans for the entire cohort
and to use state-of-the-art methods to rapidly and efficiently
develop complex dose maps. This will enable us to address
this important gap in understanding of dose-volume effects
and subsequent malignancy risk.

Most human data on the adverse effects of ionizing
radiation are for photons.11 The RBE for neutrons and
protons, relative to photons, is primarily based on animal
and cellular studies, and there are uncertainties about the
potential variation in sensitivity of different tissues.49 Sev-
eral recent case series reported increased rates of brain
necrosis in children treated with protons, highlighting the
uncertainty about the behavior of protons in human tis-
sues.46,50-52 One explanation for this possible serious side
effect is the variable and uncertain RBE for protons,
which is understood based on cellular studies to range
from 1.1 to 1.2, but varies in a complex manner with
energy, distance, and possibly tissue.53 The RBE for neu-
trons, which is energy-dependent and in the range of 5 to
20 or even higher, also comes primarily from cellular
studies and varies in complex ways that are not fully
understood, especially in humans.12,54
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Our study design has several strengths, but also some
limitations. Strengths of the retrospective passive record
linkage approach include efficient and systematic long-
term follow-up, which minimizes the risk of bias from dif-
ferential outcome ascertainment between the proton and
photon therapy centers. Electronic treatment plans with
individualized phantoms also minimize measurement
error compared with paper-based records and traditional
dosimetry approaches. Although registry linkage for sub-
sequent cancer ascertainment is an important strength of
the study design there are also limitations including the
risk of nondifferential outcome misclassification (such as
recurrence misclassified as a subsequent tumor) and mea-
surement error in the subsequent tumor location. Both of
these issues could bias risk estimates toward the null.
Finally, insufficient details for chemotherapy could result
in some residual confounding. We will conduct quantita-
tive bias analyses to evaluate all these potential limita-
tions, systematically.55
Conclusion
Our study will have the potential to affect clinical prac-
tice for pediatric patients with cancer by providing the
first large-scale systematic comparison of the subsequent
cancer risk from proton compared with photon therapy.
We will also gain new insights into radiation carcinogene-
sis from the assessment of dose-volume effects and quan-
tification of the cancer risks from protons and neutrons,
which have not been widely studied in humans.
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