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ABSTRACT
In the North Patagonian fjord region, the cold-water coral (CWC) Desmophyllum
dianthus occurs in high densities, in spite of low pH and aragonite saturation. If and
how these conditions affect the energy demand of the corals is so far unknown. In
a laboratory experiment, we investigated the carbon and nitrogen (C, N) budget of
D. dianthus fromComau Fjord under three feeding scenarios: (1) live fjord zooplankton
(100–2,300 µm), (2) live fjord zooplankton plus krill (>7 mm), and (3) four-day
food deprivation. In closed incubations, C and N budgets were derived from the
difference betweenC andNuptake during feeding and subsequent C andN loss through
respiration, ammonium excretion, release of particulate organic carbon and nitrogen
(POC, PON). Additional feeding with krill significantly increased coral respiration
(35%), excretion (131%), and POC release (67%) compared to feeding on zooplankton
only. Nevertheless, the higher C and N losses were overcompensated by the threefold
higher C and N uptake, indicating a high assimilation and growth efficiency for the
krill plus zooplankton diet. In contrast, short food deprivation caused a substantial
reduction in respiration (59%), excretion (54%), release of POC (73%) and PON (87%)
compared to feeding on zooplankton, suggesting a high potential to acclimatize to
food scarcity (e.g., in winter). Notwithstanding, unfed corals ‘lost’ 2% of their tissue-C
and 1.2% of their tissue-N per day in terms of metabolism and released particulate
organic matter (likely mucus). To balance the C (N) losses, each D. dianthus polyp has
to consume around 700 (400) zooplankters per day. The capture of a single, large krill
individual, however, provides enough C and N to compensate daily C and N losses and
grow tissue reserves, suggesting that krill plays an important nutritional role for the
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fjord corals. Efficient krill and zooplankton capture, as well as dietary and metabolic
flexibility, may enableD. dianthus to thrive under adverse environmental conditions in
its fjord habitat; however, it is not known how combined anthropogenic warming,
acidification and eutrophication jeopardize the energy balance of this important
habitat-building species.

Subjects Ecology, Marine Biology, Zoology, Aquatic and Marine Chemistry, Biogeochemistry
Keywords Scleractinian corals, Deep-sea corals, Feeding, Energy budget, Zooplankton, Krill,
Comau Fjord, Respiration, Mucus, Ocean acidification

INTRODUCTION
Corals are ecosystem engineers (Jones, Lawton & Shachak, 1994), forming reefs and other
‘marine animal forests’ (Rossi et al., 2017), that are amongst the most diverse ecosystems on
Earth (Jones & Endean, 1973;Henry & Roberts, 2016). As calcifying organisms, scleractinian
corals are vulnerable to anthropogenically-caused ocean acidification (Cohen & Holcomb,
2009). Increased atmospheric carbon dioxide dissolves in seawater, where it decreases
the pH (Caldeira & Wickett, 2003) and the saturation state of aragonite, a crystal form
of calcium carbonate (Turley, Roberts & Guinotte, 2007). Since corals form aragonite
skeletons, ocean acidification affects their calcification and skeletal growth (Cohen
& Holcomb, 2009; Hennige et al., 2015; Büscher, Form & Riebesell, 2017). To maintain
calcification under these conditions, the corals may up-regulate their internal pH (Trotter
et al., 2011; Anagnostou et al., 2012; McCulloch et al., 2012), but this is an energy-costly
process requiring a corresponding energy supply (Gattuso, Allemand & Frankignoulle, 1999;
Cohen & Holcomb, 2009). Accordingly, experimental studies have suggested that enhanced
heterotrophic feeding could partially counteract the negative impact of ocean acidification
on coral calcification (Cohen & Holcomb, 2009; Georgian et al., 2016; Martínez-Dios et al.,
2020).

Cold-water corals (CWCs) form one of the most structurally-complex habitats of
the deep sea (Roberts, Wheeler & Freiwald, 2006), but occur also in shallower waters of
temperate fjords (Freiwald et al., 2004). Since aragonite saturation is lower in the deep and
cold (Chen, Feely & Gendron, 1988; Jiang et al., 2015), scleractinian CWCs are considered
particularly vulnerable to ocean acidification (Turley, Roberts & Guinotte, 2007). Most
CWC ecosystems are predicted to experience aragonite undersaturation by 2100 (Guinotte
et al., 2006; Zheng & Cao, 2014). Nevertheless, in the North Patagonian Comau Fjord (Los
Lagos Region, Chile; Fig. 1), the scleractinian CWC species Desmophyllum dianthus thrives
under low pH (7.4–8.4), near and below aragonite saturation (�aragonite: 0.9 to 1.6; (Fillinger
& Richter, 2013; Jantzen et al., 2013a)). The low pH may relate to the high organic matter
concentration from high productivity in the area (Montero et al., 2011) and terrestrial
run-off to the fjord (Försterra & Häussermann, 2003; Jantzen et al., 2013a). The naturally
low aragonite saturation state provides a rare opportunity to study the food demand of a
CWC under geochemical conditions, which most CWCs will face by the end of the century
(Försterra, Häussermann & Laudien, 2016).
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Figure 1 Map of Comau Fjord, located in North Patagonia, Los Lagos Region, Chile. Shown are Huinay
Scientific Field Station (Huinay) and the sampling sites Liliguapi and Cross Huinay.

Full-size DOI: 10.7717/peerj.12609/fig-1

Desmophyllum dianthus is a solitary, ahermatypic (not reef-building) CWC species
with a cosmopolitan distribution (Försterra & Häussermann, 2003; Cairns, Häussermann &
Försterra, 2005). In Comau Fjord, the species forms vast coral banks between 20 and
280 m water depth, particularly on steep, partly overhanging walls (Försterra &
Häussermann, 2003; Fillinger & Richter, 2013; Försterra, Häussermann & Laudien, 2016).
Their sheltered occurrence, in an upside-down position under overhangs, has been
interpreted as avoidance to sedimentation (Försterra & Häussermann, 2003). Though
ahermatypic, a diverse benthic community is (facultatively) associated with the coral
banks, including sponges, bryozoans, tube-forming polychaetes, anthozoans, and bivalves
(Försterra et al., 2005; Försterra, Häussermann & Laudien, 2016). Further, D. dianthus from
the shallow parts of Comau Fjord typically has live tissue only on the apical end of the
corallum (skeleton), while the basal end is bare and provides a settlement substrate (habitat)
for various epibiontic and endolithic organisms, e.g., foraminiferans, bio-eroding sponges,
and photoautotrophic microorganisms (Försterra et al., 2005; Hassenrück et al., 2013).

The natural conditions of low pH and relatively high turbidity in the fjord region are
exacerbated by climate change and intense salmon aquaculture (Buschmann et al., 2009;
Mayr et al., 2014; Iriarte, 2018). It is therefore important to (1) know the energetic costs
involved in coping with present and future fjord environments (low pH, high turbidity)
and (2) estimate the resilience to disturbance affecting the energy budget, growth and
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reproduction of these ecosystem engineers (Melzner et al., 2009; Findlay et al., 2011; Vidal-
Dupiol et al., 2013). The energy budget of the fjord corals, i.e., their food supply against
energetic costs, is presently unknown. The carbon and nitrogen isotopic composition of
D. dianthus from Comau Fjord indicates mostly consumption of zooplankton (Mayr et al.,
2011). With its large polyps (up to six cm in diameter, Försterra & Häussermann, 2003),
D. dianthus is able to capture not only mesozooplankton (0.2–2 mm length), such as
copepods, but also larger micronekton, such as euphausiids (krill) (Sokol, 2012;Höfer et al.,
2018). To fuel its respiratory carbon demand,D. dianthus from theMediterranean deep sea
requires the equivalent of three adult brine shrimps (Artemia salina) per day (Naumann et
al., 2011). However,A. salina does not occur in the coral habitat and feeding on natural prey
may entail a different carbon budget (Møller & Riisgård, 2007). In the North Patagonian
fjord region, the zooplankton abundance shows a pronounced seasonality, with amaximum
following the spring phytoplankton bloom and a minimum in Austral winter (Iriarte et
al., 2007; González et al., 2010). In experiments, increased availability of zooplankton food
enhanced the skeletal growth of the fjord corals (Martínez-Dios et al., 2020), but it is
unknown whether food is currently limiting coral growth in the fjord region.

Here, we investigate the carbon and nitrogen (C and N) budget of the CWC D. dianthus
under present-day low-pH conditions in Comau Fjord, Chile, i.e., the difference between C
andNuptake andC andN loss (Fig. 2). CWCs release the indigestible parts of their food and
coral mucus (Wild et al., 2008) as particulate and dissolved organic matter (POM, DOM),
measurable as particulate and dissolved organic carbon and nitrogen (POC, PON; DOC,
DON). CWC metabolism involves oxygen consumption and carbon dioxide production
through respiration, as well as ammonium production via excretion (Khripounoff et al.,
2014; Maier et al., 2019). The remaining, non-released C and N is available for growth
of somatic and reproductive tissue and therefore termed ‘scope for growth’ (Warren &
Davis, 1967). Since C and N uptake and loss typically depend on meal size and quality
(Secor, 2008), we determined the C and N budget (uptake versus loss) of the fjord corals
under three different feeding scenarios, simulating the varying zooplankton availability
in the fjord region (Iriarte et al., 2007; González et al., 2010): (1) live fjord zooplankton
(100–2,300 µm), (2) live fjord zooplankton plus larger krill (>7 mm), and (3) short-term
food deprivation. From these budgets, we estimated the minimum C, N and zooplankton
demand of D. dianthus in the North Patagonian fjord region and evaluated the scope for
growth of this habitat-forming CWC species.

MATERIALS & METHODS
Coral collection and maintenance
Thirteen similar-sized D. dianthus specimens (calyx height: 3.4 ± 0.4 cm, calyx length:
1.4 ± 0.2 cm, calyx width: 2 ± 0.4 cm, Fig. 3A) were collected live from 20 m water
depth in Comau Fjord (Cross Huinay, Liliguapi, Fig. 1) in January 2012. The collection
of D. dianthus for scientific purposes was approved by the Chilean Ministry of Economy,
Development & Tourism, sub-secretariat of fisheries and farming (ref. 1742). The corals
were chiseled off the substrate by SCUBA divers and immediately placed into water-tight,
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Figure 2 Conceptual carbon (C) and nitrogen (N) budget of the cold-water coralDesmophyllum di-
anthus. The corals release parts of the taken-up C and N as organic matter (OM), i.e., particulate and dis-
solved organic carbon and nitrogen (POC, PON, DOC, DON), the remainder is assimilated (‘Assimil.’).
Parts of the assimilated C and N are lost during metabolism as carbon dioxide (CO2) and ammonium
(NH+4 ), the remainder is invested in the growth of somatic and reproductive tissue and is termed scope for
growth (SfG). The figure is modified from Soetaert & van Oevelen (2009) andWarren & Davis (1967).

Full-size DOI: 10.7717/peerj.12609/fig-2

sealed plastic containers, ensuring no contact with either the brackish surface water layer
or air during transport to the laboratory. To remove epibiontic and endolithic organisms
(Försterra & Häussermann, 2003), the bare corallum was carefully cut off with a submerged
diamond blade (3.2 mm thick), connected to an electric grinder (Jantzen et al., 2013b).
The fracture zone was sealed with cyano-acrylate gel (super flex glue gel) and glued to a
polyethylene screw (Jantzen et al., 2013b), which served to fix the corals in their natural
‘upside-down’ growth position (Fig. 3A).

For maintenance before and during the experiment, corals were kept in three
28 L-maintenance tanks (Fig. 3A, maximum seven corals per tank) with a flow-through
of 10 µm- filtered fjord water, continuously pumped from 25 m depth off Huinay (flow:
4.2 L h−1; temperature: 11.9 ◦C; salinity: 31.6; particulate organic matter concentration:
12.8 ± 4.2 µmol POC L−1; 1.4 ± 1.2 µmol PON L−1). Before the start of the experiment,
corals were fed for two hours per day with 1/4 of a haul of live, freshly-collected fjord
zooplankton (see next section). This corresponds to a zooplankton concentration of
571 ± 203 zooplankton individuals L−1 (mean ± standard deviation), equivalent to
85± 30 µmol C L−1 and 16± 6 µmol N L−1, as analyzed in four additional aliquots of 1/4
of a zooplankton haul (see section ‘Sample analysis’). During feeding, water exchange was
interrupted.

Before the start of the experiment, all corals were weighed in seawater of ambient
temperature and salinity (density 1.026 g cm−3) with an analytical balance equipped with
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Full-size DOI: 10.7717/peerj.12609/fig-3

Maier et al. (2021), PeerJ, DOI 10.7717/peerj.12609 6/31

https://peerj.com
https://doi.org/10.7717/peerj.12609/fig-3
http://dx.doi.org/10.7717/peerj.12609


an underfloor weighing basket (Sartorius CPA225DOCE). Polyp dry mass was derived
from buoyant weight according to Davies (1989), using a species-specific aragonite density
of 2.835 g cm−3 (Naumann et al., 2011). Corals were given a recovery and acclimatization
time of three weeks from collection and preparation to the start of the experiment.

Zooplankton and krill collection
Live fjord zooplankton was collected ca. 1 km off the Huinay Scientific Field Station (Fig. 1)
every afternoon, by a single vertical haul from 20 m water depth with a 100 µm-Nansen
net (diameter 0.7 m). The size range of individual zooplankters (100–2,300 µmmaximum
extension) was measured under the binocular on three subsamples. To feed the corals in
their maintenance tanks (previous section), the zooplankton haul was split with a Motoda
plankton sample splitter into equal 1/4 portions. To feed the corals with zooplankton as
part of the experimental feeding treatments (see below), the respective zooplankton haul
was split into equal 1/8 portions, which were split again with measurement cylinders into
ten equal portions (1/80 of the original haul).

Krill (euphausiids, i.e., Euphausia vallentini, adult and pre-adult stages) were collected
at night in Comau Fjord between 20 and 80 m water depth, in a 45-min horizontal trawl
at 2 knots with a ring trawl net (0.5 m diameter, 500 µmmesh size). Krill were drained on
paper tissue, measured (cephalo-thoracic length, ca. seven mm), weighed (wet mass) and
stored frozen (−13 ◦C) until utilization in the experiment (see below). Six euphausiids
were dried (40 ◦C, three days), weighed again (dry mass, 3.3± 1.5 mg) and used for C and
N analysis (see below).

Experimental design
This section focuses on the experimental design, as shown in Fig. 4, while experimental
set-up, feeding and incubations are detailed in the following sections. A detailed chronology
of the experiment is provided in Table S1.1.

To determine the C and N budget of D. dianthus, we designed a two-batch repeated-
measures laboratory experiment with in total three different feeding scenarios (Fig. 4).
This experimental design was chosen to simulate the temporally variable food availability
in Comau Fjord (see Introduction). Both coral batches were initially offered live fjord
zooplankton (Fig. 4, feeding scenario ‘zooplankton’), which presumably corresponds to
the natural ‘baseline’ food situation in the field (Mayr et al., 2011). Batch I (n= 6 corals)
was subsequently offered a surplus of food, i.e., zooplankton plus krill (feeding scenario
‘zooplankton+krill’, see below), while batch II (n= 7 corals) remained unfed, mimicking
food (zooplankton) shortage, e.g., in winter (feeding scenario ‘unfed’, see below). Within
each batch, at least two C and N budgets were determined separately for each individual
coral, by repeated measurements on the same specimens (Fig. 4). To determine the C
and N budgets, we first measured the C and N uptake of each individual coral from food
during the respective feeding treatments (Fig. 4). Secondly, after each feeding treatment,
the corals were individually incubated without food for 9–11 h (Fig. 4), to measure their
C and N loss in terms of C respiration, ammonium excretion, and release of POC, PON,
DOC, DON (Fig. 2). In between the different feeding scenarios (Fig. 4), the corals were
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Figure 4 Experimental design. The C and N budget of Desmophyllum dianthus was determined in a two-
batch repeated-measures laboratory experiment. Each of the two coral batches was exposed to two subse-
quent feeding scenarios, simulating the temporally variable food availability in Comau Fjord. Each feeding
scenario started with a feeding treatment, during which we determined the C and N uptake of the corals.
In a subsequent incubation without food, the C and N loss of the corals was measured. In addition to the
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planktonic C and N fluxes (see text). The C and N budget of the corals was calculated for each feeding sce-
nario, as the difference between C and N uptake and C and N loss. For the feeding scenario ‘zooplankton
+ krill’, two incubations were carried out; accordingly two C and N budgets were calculated. In between
the feeding scenarios, corals were fed daily with zooplankton.

Full-size DOI: 10.7717/peerj.12609/fig-4

kept in their maintenance tanks and fed daily with live fjord zooplankton (see section
‘Coral collection and maintenance’), for re-acclimatization to natural ‘baseline’ feeding
conditions. Ideally, experimental corals should have been kept separate throughout the
entire experiment, to ensure full independence of the replicates, but this was not possible
for logistic reasons. Instead, each coral batch was split into subsets of one to three corals,
which were distributed over three maintenance tanks. Different coral subsets within the
batches were kept in different maintenance tanks and tank position was shuffled during
the experiment, to achieve a partial independence of coral replicates within the batches
(Table S1.1) and to minimize the odds of a differential tank effect between the batches.
Experimental feeding treatments and incubations (including measurements of C and N
fluxes) were done in separate experimental bottles (see section ‘Experimental set-up’) to
ensure independence of the results.

In the ‘zooplankton’ feeding scenario (Fig. 4, both batches), the corals were fed with
live fjord zooplankton (1,025 ± 332 zooplankters L−1) in separate experimental bottles
for 2 h (Fig. 3B; for details, see section ‘Feeding with zooplankton and krill’). Such short
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pulses of high zooplankton availability may occur when a zooplankton swarm with high
individual densities (Ambler, 2002) is advected by local currents (3–11 cm s−1, (Jantzen
et al., 2013b)). Zooplankton swarms are common in fjord boundaries (Hirche, Laudien &
Buchholz, 2016). The 9–11 h-incubations in separate experimental bottles (called ‘zoopl’)
followed 2–3 h after feeding on zooplankton (for details, see section ‘Incubations’); hence, C
andN losses were measured between 2–14 h after feeding, covering the time it takes tropical
scleractinian corals to digest zooplankton (Sebens et al., 1996; digestion times of CWCs are
unknown). In the ‘zooplankton+krill’ feeding scenario (Fig. 4), the corals were additionally
fed with one individual euphausiid, 3–4 h after receiving live fjord zooplankton. Taking
into account the larger food ration and the presumably prolonged digestion time, we here
carried out two 9–11 h-incubations, the first starting 1 h after feeding on krill (covering the
period between 1–12 h after feeding, called ‘krill.d1’), the second starting 24 h after feeding
on krill (covering the period between 24–35 h after feeding, called ‘krill.d2’). In between
the incubations ‘krill.d1’ and ‘krill.d2’, the corals remained unfed. In the ‘unfed’ scenario
(Fig. 4), corals remained unfed in their maintenance tank (10 µm-filtered seawater; all
corals in one tank) for four days. After this period, corals were incubated once for 9–11 h
(incubation called ‘unfed’).

Experimental set-up
Feedingwith zooplankton and krill, and incubations, were carried out at 11 ◦C (representing
in situ temperature) in separate experimental bottles with one coral each (Figs. 3B, 3C).
As experimental bottles, we used SCHOTT-DURAN R© bottles of 0.5 L specified volume,
which fit a total volume of 0.8 L (including the bottleneck). The bottles were filled with
10 µm-filtered fjord water, pumped from 25 m depth off Huinay. The coral was fixed in
its natural ‘upside-down’ position (Figs. 3B, 3C) in the custom-built bottle lid (Jantzen et
al., 2013b). A magnetic stirring bar at the bottle floor created a circular flow of ∼1cm s−1;
to estimate this flow, we filmed the particle movement in unfiltered seawater from above,
stopped the time that the circulating particles needed to cross sections of known length
at different orbits of the bottle, and averaged the resulting flow velocities (distance/time).
The flow was high enough to kept live zooplankton in suspension, but low enough not to
bend the coral tentacles (Sokol, 2012).

Feeding with zooplankton and krill
The feeding scenarios ‘zooplankton’ and ‘zooplankton+krill’ (Fig. 3B) were started by
adding one aliquot of live zooplankton food (1/80 of one zooplankton haul in 50 mL
filtered seawater) to each of the experimental bottles. For each zooplankton-fed coral
subset (Table S1.1), five additional aliquots of live zooplankton food were prepared
the same way and analyzed for the amount of POC and PON (n= 3) and the number
of zooplankton individuals (n= 2) added to each experimental bottle (Fig. 3B: ‘start
POC, PON, zooplankton’). In the feeding scenario ‘zooplankton+krill’, zooplankton
food aliquots were analyzed for POC and PON (n= 3), but not for zooplankton.
Start POC and PON concentrations in the feeding scenario ‘zooplankton’ were
164 ± 36 µmol C L−1 and 30 ± 7 µmol N L−1, start POC and PON concentrations in the
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feeding scenario ‘zooplankton+krill’ were 126 ± 0.3 µmol C L−1 and 24 ± 0.1 µmol N
L−1. The start zooplankton concentration was 1,025± 332 zooplankters L−1 in the feeding
scenario ‘zooplankton’ (mean± standard deviation; averaged over all replicates); the start
zooplankton concentration in the feeding scenario ‘zooplankton+krill’ was presumably
similar. Per coral subset (Table S1.1), triplicate seawater controls were prepared (Fig. 3B:
‘control’); these were experimental bottles without corals, but with zooplankton food, that
served to determine zooplankton loss from internal zooplankton predation and handling.
During feeding, polyp activity was closely monitored, to ensure that all corals had their
tentacles expanded. To end the feeding after 2 h, the corals were removed from the bottles
and returned to the maintenance tanks. Control incubations (seawater only) were ended
with 0.5–1 h delay (i.e., t = 2.5–3 h), due to logistical limitations (handling time). Due
to the low activity in the seawater-only controls, we expect no significant bias related to
the longer duration. End water samples for the amount of POC and PON (290–370 mL)
and for the number of zooplankton individuals (350–490 mL; only in feeding scenario
‘zooplankton’) were taken from each experimental bottle after thorough mixing (Fig. 3B,
‘end POC, PON, zooplankton’). POC and PON samples were collected on pre-combusted
(24 h, 500 ◦C), pre-weighed 0.7 µm- glass-fiber filters (GF/F) by vacuum filtration. Filters
were frozen (−13 ◦C) and dried to constant mass at 40 ◦C. Zooplankton samples were
concentrated over a 55 µm-mesh and fixed in 4%-borax-buffered formaldehyde. For
feeding with krill (in the feeding scenario ‘zooplankton+krill’), the corals were returned
to the separate experimental bottles 3–4 h after feeding on zooplankton and received one
thawed, pre-measured euphausiid via tweezers (Fig. 3B).

Incubations
For the incubations (without food), the corals were placed into the experimental (SCHOTT)
bottles, that were filled with 10 µm-filtered fjord water and closed air bubble-free with a
lid (Fig. 3C). Per coral subset (Table S1.1), we additionally prepared triplicate seawater
controls without corals (Fig. 3C: ‘control’) to determine the possible effect of nano- and
picoplankton oxygen (O2), C and N fluxes on our results. At the start of the incubation,
the start O2 concentration was measured with an optode (HQ40d; Hach, USA; resolution:
0.1 mg O2 L−1) in a separate experimental bottle Bo (‘start O2’). Start water samples were
taken by syringe fromBo for analysis of dissolved inorganic nitrogen (DIN, i.e., ammonium,
nitrate, nitrite; 100 mL), DOC, and DON (20 mL, in triplicates). The remaining water
in Bo (300–600 mL) was used for POC and PON analysis. During the incubation, coral
polyps remained protruded with extended tentacles. At the end of the incubation, the
corals were removed and returned to their maintenance tanks. In each experimental bottle,
the end O2 concentration was first measured, before taking end water samples for DIN,
DOC, DON, POC and PON. The end O2 concentration was never below 80% of the start
O2 concentration, a conservative threshold to avoid effects of low-oxygen concentration
on coral physiology (Dodds et al., 2007). DIN samples were filtered through GF/F-filters
into glass vials and fixed with a concentrated mercury chloride solution (0.105 g L−1) to
prevent microbial activity. Samples for DOC and DON were filtered through GF/F-filters
into glass vials (filters and vials pre-combusted, 450 ◦C, 12 h), acidified to pH= 2 with 32%
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hydrochloric acid to avoid microbial activity and stored dark at 4 ◦C. Sample processing
for POC and PON was described in the previous section (‘Feeding’).

Coral tissue sampling
At the end of the experiment, the coral tissue was removed from the skeleton with an
airbrush filled with 0.7µm-filtered seawater and homogenized with an ultra turrax (Jantzen
et al., 2013c). The volume of the tissue-seawater suspension was measured. Subsamples
of the tissue-seawater suspension (one mL, n= 6 aliquots per coral) were collected on
pre-combusted (500 ◦C, 24 h), pre-weighed GF/F-filters and dried up to constant mass at
40 ◦C. Coral samples were transported to Germany under CITES permit E-00427/12.

Sample analyses
Samples of coral tissue, krill, POC and PON were weighed for dry mass and subsequently
analyzed for organic carbon (OC) and organic nitrogen (ON) content on an elemental
analyzer (EuroEA3000, EuroVector) with acetanilide calibration (measurement precision
>99%, i.e., <1% relative standard deviation for triplicate measurement of acetanilide).
To measure the OC content of coral tissue (tissue-C), subsamples on GF/F filters (n= 3
per coral) were vapor-acidified with 12 N-hydrochloric acid prior to analysis, to remove
remainders of skeletal inorganic carbon (Hedges & Stern, 1984). The ON content of coral
tissue (tissue-N) was measured on separate subsamples (n= 3) without acidification. The
total tissue-C and -N content of each coral was calculated by multiplying the OC and ON
content measured in the subsamples (one mL) with the volume of the tissue-seawater
suspension (see previous section). Samples of krill, POC and PON (from feeding and
incubations) were not acidified, as previous tests revealed negligible amounts of inorganic
carbon. POC concentration was determined as POC[µmol C

L ] =
POC content GF/F filter

filtered volume ; PON
concentration was calculated accordingly. For krill, we determined the relation between wet
mass and C content (C content [µmol C euphausiid−1] = 3.9 wet mass [mg] + 48.3; R2

=

0.86) and the relation between wet mass and N content (N content [µmol N euphausiid−1]
= 0.9 · wet mass [mg] + 11.4; R2

= 0.87). Zooplankton samples were counted in a Bogorov
chamber under a stereo microscope. Only undamaged, non-gelatinous zooplankters were
counted.

Ammonium (NH4
+), nitrate and nitrite concentration was analyzed spectrophoto-

metrically at the ICBM-Terramare Wilhelmshaven according to Grasshoff, Ehrhardt &
Kremling (1983) (measurement resolution: 0.01 µmol N L−1). DOC and total dissolved
nitrogen (TDN) concentration was quantified via high-temperature catalytic oxidation
(HTCO, Sugimura & Suzuki, 1988) on a Shimadzu TOC-VcpH analyzer, equipped with a
Total Nitrogen Measuring Unit (TNM-1), with L-arginine calibration. Analytical accuracy
and precision were determined by analyzing reference samples (D. Hansell, University of
Miami, USA) and were higher than 95%. The datasets of DOC and TDN concentrations
contained a few extreme values, possibly due to sample contamination during handling
and processing. Therefore, outliers of DOC and TDN concentration were identified as
values < Q1 –IQR · 1.5 and values > Q3 + IQR · 1.5, where Q1 was the first quartile of the
data subset, Q3 the third quartile, and IQR the interquartile range between Q1 and Q3; data
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subsets were end values of coral incubations, end values of control incubations, and start
values of coral and control incubations together. Outliers were excluded and the remaining
start and end values of each incubation (samples taken in triplicate) were averaged. DON
concentration was obtained as DON = TDN –DIN, with DIN = ammonium + nitrate +
nitrite.

Carbon and nitrogen budget
For each feeding scenario, the C and N budgets of the corals were determined as the
difference between C and N uptake, measured during the feeding treatment, and C and
N loss, measured in the subsequent incubation (Figs. 2 and 4). In the feeding scenario
‘zooplankton+krill’, two incubations followed the feeding treatment, hence two C and N
budgets were determined per coral, one covering the period 1–12 h after feeding, called
‘krill.d1’, the second covering the period 24–35 h after feeding, called ‘krill.d2’ (Fig. 4).

All C, N, and O2 fluxes were calculated from the difference between the measurement
at the start of the feeding or incubation and the measurement at the end of the feeding or
incubation, in coral (‘coral’) and seawater-control (‘control’) trials. The (total) C uptake
of the corals from zooplankton (treatments ‘zooplankton’, ‘zooplankton+krill’, in µmol
C) was determined as

C uptake=
[POC]start ,coral−[POC]end,coral

tcoral
−
[POC]start ,control−[POC]end,control

tcontrol
·V · tcoral ,

where [POC] is the POC concentration, t is the feeding time andV is thewater volume of the
coral incubation (experimental bottle volume - coral volume). The N uptake of the corals
from zooplankton was determined similarly. In the feeding treatment ‘zooplankton+krill’,
the total C or N uptake is the sum of zooplankton-C or -N uptake and the C or N content of
the krill individual provided to the respective coral; the C and N content of the individual
euphausiid was estimated from its wet mass (see previous section). In the feeding treatment
‘unfed’, a zero C and N uptake was assumed. In all feeding treatments, the C and N uptake
was treated as daily rates (i.e., µmol C and N d−1), because the corals were fed once per
day only. In treatment ‘zooplankton’, we additionally determined the zooplankton capture
of the corals, as

Zooplankton capture=
zooplstart ,coral−zooplend,coral

tcoral
−

zooplstart ,control−zooplend,control
tcontrol

·V · tcoral ,

where zoopl is the number of zooplankton individuals.
Hourly respiration rates of the corals (in µmol O2 h−1) were derived as

Respiration(O2)=
[O2]start ,coral− [O2]end,coral

tcoral
−

[O2]start ,control− [O2]end,control
tcontrol

·V ,

where [O2] is the O2 concentration. The C respiration rate was derived from the O2

respiration rate, assuming a respiratory quotient CO2:O2 = 1; this quotient was measured
for CWCs in situ (Khripounoff et al., 2014). Rates of NH4

+ excretion and release of POC,
PON, DOC, DON (in µmol C or N h−1) were obtained as

C or N release=
[x]end,coral− [x]start ,coral

tcoral
−

[x]end,control− [x]start ,control
tcontrol

·V ,
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where [x] is the concentration of the respective substance. It should be noted that coral C
and N release may have been underestimated if coral-produced material was taken up by
bacteria during the incubations, i.e., by bacterioplankton passing the 10 µm-filter and/or
by the coral microbiome (Schöttner et al., 2009). Seawater control incubations without
corals cannot control for this bacterial uptake. Rates of respiration, ammonium excretion,
release of POC, PON, DOC and DON were extrapolated to 24 h and standardized to coral
tissue organic carbon content (tissue-C) as approximation of coral biomass. To facilitate
comparability with other studies, we additionally provide C and N fluxes standardized to
polyp dry mass (determined via buoyant weight) and skeletal dry mass (polyp dry mass
–tissue dry mass) in Table S1.2.

The daily C and N budget of the corals (Fig. 2) was derived as

SfGC =C uptake−C respiration−POC release,

and

SfGN =N uptake−NH+4 excretion−PON release,

both in µmol C (mmol tissue-C d−1). The term ‘scope for growth’ (SfG, Warren & Davis,
1967) denotes the net C or N gains of the corals, which remain from food uptake after
subtraction of all C and N losses. SfG > 0 indicates a C or N surplus, which can be invested
in biomass growth (somatic and/or reproductive), while SfG < 0 indicates a C or N deficit.
It should be noted that DOC and DON release were excluded from the C and N budgets,
due to the high variability in DOC and DON fluxes (see below). The summed C loss, i.e.,
C respiration + POC release, was considered as minimum C demand of the corals, the
summed N loss, i.e., NH4

+ excretion + PON release, as their minimum N demand.

Data analysis
Graphical and statistical analysis was performed with R (R Core Team, 2017). Values are
given as mean ± standard deviation. Firstly, we tested whether the feeding treatments
(within the different feeding scenarios, Fig. 4) had an effect on the C and N fluxes, i.e.,
on the total C and N uptake and on rates of C respiration, NH4

+ excretion, and release
of POC, PON, DOC, DON. For each flux, linear mixed effect (LME) models were fitted,
separately for coral batch I and II (Fig. 4), with the function lmer (R package lmerTest,
Kuznetsova, Brockhoff & Christensen, 2017). The LME models accounted for the repeated
measures on the individual corals of the two batches, using coral individuals as random
effect and ‘feeding treatment + incubation’ (i.e., ‘zoopl’, ‘krill.d1’, ‘krill.d2’, ‘unfed’) as fixed
effect (i.e., flux ∼ treatment + (1|coral_individual)). In batch I, C and N fluxes directly
(i.e., within the first day) after feeding on zooplankton (‘zoopl’) were compared with C
and N fluxes directly after feeding on zooplankton+krill (‘krill.d1’); and C and N fluxes
directly after feeding on zooplankton+krill (‘krill.d1’) were compared with C and N fluxes
one day later (‘krill.d2’). In batch II, C and N fluxes after feeding on zooplankton (‘zoopl’)
were compared with C and N fluxes after four days of food deprivation (‘unfed’). Detailed
results of the LME models are available as Table S1.10. Secondly, C and N budgets were
visualized by plotting the total C and N loss over the total C and N uptake (for all C and N
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budgets combined, i.e., ‘zoopl’, ‘krill.d1’, ‘krill.d2’, ‘unfed’). The lines ‘C loss = C uptake’
and ‘N loss=N uptake’, i.e., ‘SfG= 0’, were interpreted as the minimum C and N demand
of the corals to balance their C and N loss, associated with each feeding treatment.

Methodological limitations of this study
Ex situ experiments, as presented here, allow the measurement of the total C and N fluxes
of a CWC, i.e., its C and N budget. This measurement proves difficult in situ, as it typically
requires a closed-off water volume. Nevertheless, ex situ experiments only provide specific
simulations of the dynamic fjord environment (González et al., 2010; Jantzen et al., 2013a;
Iriarte, 2018). For example, the in situ feeding rate of the corals is unknown. Addition of
an ‘artificial’ experimental amount of zooplankton in the feeding treatments may have
led to higher or lower than natural feeding rates. Furthermore, it cannot be excluded
that ex situ, the corals were exposed to higher stress than in situ. Stress can enhance the
C and N loss of CWCs, e.g., through increased ex situ respiration (Khripounoff et al.,
2014) and stress-induced mucus production (Zetsche et al., 2016). However, we minimized
experimental stress, by maintaining the experimental corals in natural fjord water to assure
suitable water quality, and by minimum, careful handling. Corals did not show visible signs
of stress, such as visibly increased mucus release, retracted tentacles or mortality. Measured
DOC and DON fluxes were highly variable (see below) and were therefore excluded from
the C and N budgets, which likely caused an over- or underestimate of the coral C and
N demand. As noted above, bacteria may have taken up coral-produced POC and PON
(and DOC, DON) during the incubations, leading to a potential underestimate of these
loss terms and the coral C and N demand.

RESULTS
Uptake of carbon and nitrogen
When fed with zooplankton (treatment ‘zooplankton’), D. dianthus captured
156 ± 74 zooplankton individuals polyp−1 h−1. Given the 2 h-feeding time per day,
the total zooplankton capture was 312± 148 zooplankton individuals d−1, resulting in a C
uptake of 18.8 ± 11.5 µmol C (mmol tissue-C)−1 d−1 (Fig. 5A) and a N uptake of 4 ± 2.3
µmol N (mmol tissue-C)−1 d−1 (Fig. 5B). One euphausiid in addition to zooplankton
increased the C and N uptake of the corals (of batch I, treatment ‘zooplankton+krill’) by
a factor of four (67.9 ± 6.7 µmol C (mmol tissue-C)−1 d−1; 15.8 ± 1.8 µmol N (mmol
tissue-C)−1 d−1).

Respiration and ammonium excretion
Increasing meal size enhanced the respiration and ammonium excretion rate ofD. dianthus
(Figs. 5C, 5D), but relatively less compared to the increased C and N uptake. Within the
first day after feeding on zooplankton, D. dianthus respired on average 27.5 ± 5.8 µmol
O2 (mmol tissue-C)−1 d−1 and excreted 3.2 ± 1.3 µmol NH4

+ (mmol tissue-C)−1 d−1.
When the corals received krill in addition to zooplankton, they showed an on average 35%
higher respiration rate than when they were fed with zooplankton only (Fig. 5C: ‘krill.d1’
versus ‘zoopl’, blue colors). At the same time, their ammonium excretion rate doubled
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Figure 5 Carbon (C) and nitrogen (N) fluxes ofDesmophyllum dianthus, exposed to different feeding
treatments. Feeding treatments were ‘zoopl’: fed with zooplankton; ‘krill.d1’: fed with zooplankton+krill,
within the first day after feeding; ‘krill.d2’: fed with zooplankton+krill, 24 h after feeding; ‘unfed’: 4d-
unfed. Blue colours: corals of batch I; red colours: corals of batch II. (A, B) C and N uptake during the
feeding treatments; for ‘unfed’ and ‘krill.d2’, we assume no C and N uptake because corals were not fed
for respectively four days and 24 h; zero values represent six (open blue circles) and seven coral replicates
(open red circles). (continued on next page. . . )

Full-size DOI: 10.7717/peerj.12609/fig-5
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Figure 5 (. . .continued)
(C–H) C and N loss measured in incubations after feeding: (C) respiration, (D) ammonium excretion, (E,
F) release of particulate organic carbon and nitrogen (POC, PON), (G, H) release of dissolved organic car-
bon and nitrogen (DOC, DON). Bracket with *: linear mixed effect model found a significant difference
between the indicated fluxes (see Table S1.10 for details); ns: no significant difference.

(Fig. 5D). One day after feeding on zooplankton plus krill, the corals showed a lower rate
of respiration and ammonium excretion again (Figs. 5C, 5D: ‘krill.d2’, corals were not fed
between the incubations ‘krill.d1’ and ‘krill.d2’). Four days of food-deprivation reduced
the respiration rate of the corals by 29% and their ammonium excretion rate by 54%,
relative to their metabolic activity after feeding on zooplankton (Figs. 5C, 5D: ‘unfed’
versus ‘zoopl’, red colors).

Organic matter release
Desmophyllum dianthus showed a clear release of POC and PON in all feeding scenarios
(Figs. 5E, 5F). Directly after feeding on zooplankton, corals released 8.2 ± 6 µmol POC
(mmol tissue-C)−1 d−1 and 1.7 ± 0.7 µmol PON (mmol tissue-C)−1 d−1 (Figs. 5E, 5F:
‘zooplankton’). Feeding on krill in addition to zooplankton increased the POC release by
67% and the PON release by 39% compared to feeding on zooplankton only (Figs. 5E,
5F: ‘krill.d1’ versus ‘zoopl’, blue colors). One day after feeding on zooplankton plus krill
(‘krill.d2’), POC and PON release rates were low (1.8± 1.0 µmol POC (mmol tissue-C)−1

d−1, 0.6± 0.3 µmol PON (mmol tissue-C)−1 d−1). Four days of food-deprivation reduced
POC and PON release by 73% and 87% relative to the POC and PON release after feeding
on zooplankton (Figs. 5E, 5F: ‘unfed’ versus ‘zoopl’, red colors).

DOC and DON fluxes ranged around zero with a high variability (Figs. 5G, 5H). Feeding
treatments had no detectable effect. In the seawater control incubations, DOC and DON
fluxes also showed a high variability with positive and negative values (Table S1.8).

Carbon and nitrogen budget
Corals fed with zooplankton plus krill showed a positive scope for growth (SfG) for C and
N within the first day after feeding (‘krill.d1’, Figs. 6A, 6B), meaning that their C and N
uptake outweighed the combined losses via respiration, excretion, POC and PON release.
Feeding on zooplankton alone did, in most cases, not provide D. dianthus with enough C
and N for a positive SfG (‘zoopl’, Figs. 6A, 6B). The minimum C demand of D. dianthus
in the experiment increased with increasing meal size (Fig. 6A, Table 1), from 20 µmol C
(mmol tissue-C)−1 d−1 in unfed corals to 44 µmol C (mmol tissue-C)−1 d−1 in corals fed
with zooplankton plus krill (‘krill.d1’), corresponding to 52.7 to 108.4 µmol C polyp−1

d−1. Accordingly, the minimumN demand ofD. dianthus (Fig. 6B, Table 1) increased from
1.7 µmol N (mmol tissue-C)−1 d−1 in unfed corals to 9.4 µmol N (mmol tissue-C)−1 d−1

in corals fed with zooplankton plus krill (krill.d1), corresponding to 3.6 to 23.8 µmol N
polyp−1 d−1. This means that unfed corals lose 2% of their tissue-C per day to respiration
and POC release and 1.2% of their tissue-N per day to ammonium excretion and PON
release (Table 1). On a zooplankton diet, each polyp requires 687 zooplankters per day to
balance the associated C loss (Table 1, ‘zoopl’; 0.13 µmol C zooplankter−1, Table S1.4) and
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Figure 6 Carbon (C) and nitrogen (N) budget ofDesmophyllum dianthus exposed to different feed-
ing treatments, as C or N loss versus C or N uptake. (A) C budget, (B) N budget. Dotted line: scope for
growth (SfG)= 0, i.e., C or N loss= C or N uptake. To the left of dotted line, marked in grey: SfG< 0,
i.e., C or N deficit, to the right of dotted line: SfG> 0, i.e., C or N surplus. Blue colours: corals of batch I;
red colours: corals of batch II. Different symbols represent the different feeding treatments, as indicated
in the legend, i.e., ‘zoopl’: fed with zooplankton, ‘krill.d1’: fed with zooplankton+krill, within the first day
after feeding, ‘krill.d2’: fed with zooplankton+krill, 24 h after feeding, ’unfed’: 4d-unfed. C loss includes
C respiration and release of particulate organic carbon; N loss encompasses ammonium excretion and re-
lease of particulate organic nitrogen.

Full-size DOI: 10.7717/peerj.12609/fig-6

Table 1 MinimumC and N demand ofDesmophyllum dianthus, under different feeding treatments. Feeding treatments were ‘zoopl’: corals fed
with zooplankton; ‘krill.d1’: corals fed with zooplankton+krill, within the first day after feeding; ‘krill.d2’: corals fed with zooplankton+krill, 24 h af-
ter feeding; ‘unfed’: corals 4-day unfed. The minimum C demand of the corals was derived from their C loss in terms of respiration and release of
particulate organic carbon (POC); their minimum N demand was calculated from their N loss in terms of ammonium excretion and release of par-
ticulate organic nitrogen (PON). Release of dissolved organic carbon and nitrogen (DOC, DON) are excluded here. C and N demand are given in
different units, as indicated.

Feeding
treatment

Min. C demand (= C loss; excluding DOC release) Min. N demand (= N loss; excluding DON release)

(µmol C
polyp−1

d−1)

(µmol C
mmol-tissue-C−1

d−1)

(% of
tissue-C)

(µmol N
polyp−1

d−1)

(µmol N
mmol-tissue-C−1

d−1)

(% of
tissue-N)

zoopl 89.3± 31.4 35.6± 10.3 3.6± 1.0 11.9± 3.4 4.9± 1.5 3.3± 0.9
krill.d1 108.4± 27.2 44.0± 5.0 4.4± 0.5 23.8± 8.9 9.4± 1.0 6.4± 1.0
krill.d2 61.6± 16.8 24.9± 2.9 2.5± 0.3 13.5± 7.5 5.2± 2.3 3.6± 1.9
unfed 52.7± 23.6 20.0± 4.9 2.0± 0.5 3.6± 4.1 1.7± 1.3 1.2± 0.9

398 zooplankters per day to balance the associated N loss (0.03 µmol N zooplankter−1,
Table S1.4). On the other hand, less than one euphausiid per polyp per day is enough
to balance the total C and N loss associated with a zooplankton plus krill diet (Table 1,
‘krill.d1’; 129 µmol C euphausiid−1, 31 µmol N euphausiid−1, Table S1.2). Please note that
DOC and DON release were not considered in the shown C and N budgets, since DOC and
DON fluxes were highly variable and ranged around zero (see above). Therefore, it cannot
be ruled out that the C and N demand of D. dianthus is higher (or lower) than indicated
here.
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DISCUSSION
In this study, we report C and N budgets of the CWC D. dianthus, an important matrix
species of CWC banks in the fjords of the Los Lagos Region, under three different
experimental feeding regimes (fed with live fjord zooplankton, fed with zooplankton
plus krill, four-day food-deprived). We first discuss the metabolic flexibility (metabolic
rate, organic matter release) of the corals in response to varying food availability. Then, we
evaluate how the corals could sustain their C and N demand under the low-pH conditions
in the fjord and speculate how their C and N balance might change in the future.

Metabolic rate
The CWC D. dianthus shows a high metabolic flexibility in response to varying food
availability, indicated by increased respiration and ammonium excretion with increasing
meal size (from four-day unfed, over zooplankton, to zooplankton plus krill, Figs. 5C, 5D).
The 1.5-fold higher respiration rate within the first day after ingesting a large food ration
(zooplankton plus krill, incubation ‘krill.d1’) as compared to one day later (incubation
‘krill.d2; corals not fed between the two incubations) likely reflects the ‘specific dynamic
action of food’ (SDA, Rubner, 1902). The SDA describes the increased metabolic rate
of animals after feeding, owing to the energetic expenses of food capture and digestion
(McCue, 2006; Secor, 2008). The SDA typically increases with meal size, but also varies
with meal type (Secor, 2008; present study). Accordingly, krill in addition to zooplankton
supplied the corals with four times more C and N compared to zooplankton only, but
only increased the respiration by a factor of 1.4, probably due to higher energetic costs to
capture and process many live, small zooplankters compared to one large, dead euphausiid.
Energy costs to process live krill might be higher than for dead krill; however, we assume
that the difference is minor, because in feeding trials with live krill, we observed that the
corals immobilized their prey within a fraction of a second.

Desmophyllum dianthus responds to short-term food deprivation with a reduction of
metabolic rates, likely to conserve energy (Naumann et al., 2011, present study). Corals
from Comau Fjord lowered their respiration by 40% after four days of food deprivation
(present study), conspecifics from the Mediterranean deep-sea by 20% after one week and
by 50% after three weeks of food deprivation (Naumann et al., 2011). This fast, strong
reduction of metabolic activity stands in contrast to the closely related CWC Lophelia
pertusa, which reduced oxygen consumption only after several months of food deprivation
(Larsson, Lundälv & van Oevelen, 2013; Maier et al., 2019). Overall, in the present study,
the respiration rate of D. dianthus was around 2.5 times lower (14 ± 5 µmol O2 (g skeletal
dry mass)−1 d−1) compared to the respiration rate of Mediterranean D. dianthus (35 ± 8
µmol O2 (g skeletal dry mass)−1 d−1; (Naumann et al., 2011)), in spite of a comparable
feeding history (Artemia salina, krill, >24 h after feeding) and temperature (12 ◦C).

The metabolic flexibility of D. dianthus could allow colonization of different habitats,
from shallow areas of fjords with a high variability of food, temperature, salinity and pH,
to the environmentally more stable, deep CWC habitats (Freiwald et al., 2004). Global
warming increases the metabolic rate of CWCs (Dodds et al., 2007; Gori et al., 2016;
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Dorey et al., 2020), which could cause severe energetical constraints for this and other
CWC species.

Organic matter release
Cold- and warm-water corals release organic matter (POM, DOM), as feces egested
from their gastrovascular cavity (Yonge, 1930) and as coral mucus (Brown & Bythell, 2005;
Naumann et al., 2011). The high POC and PON release by D. dianthus within the first day
after feeding (Figs. 5E, 5F) suggests that fecal material accounts for most of its POM release.
The CWC species engulfs its prey whole; hence, sloppy feeding sensu Banse (1992), i.e., the
loss of organic matter in front of the mouth, can be ruled out. Krill are assimilated at a
higher efficiency compared to zooplankton (CN assimilation:CN uptake), due to the lower
fecal loss in relation to the high C and N uptake (Fig. 5).

Four-day-unfed corals continue to release smaller amounts of POM, likely as mucoid
material. Coral mucus consists of glycoproteins (Bythell & Wild, 2011) and serves as
protection against sediment smothering, biofouling and as feeding aid (Brown & Bythell,
2005). Wild et al. (2008) reported that mucus of the CWC L. pertusa rapidly dissolved in
seawater, hence, the DOC release of this CWC species was >30 times higher than its POC
release. This high DOC:POC ratio was not confirmed for D. dianthus (present study);
instead, rates of DOC release/uptake were highly variable (Fig. 5G).

Four-day unfed D. dianthus from Comau Fjord released on average four times more
total organic carbon (7.1 µmol TOC (g skeletal dry mass)−1 d−1; POC plus DOC) than
its Mediterranean conspecifics (1.9 µmol TOC (g skeletal dry mass)−1 d−1, (Naumann
et al., 2011)). Higher mucus production in the shallow areas of the fjords may serve as
protection against higher particle loads (Larsson et al., 2013; Zetsche et al., 2016). In the
Comau Fjord, the chlorophyll-a concentration (up to >50 mg m−3, Garcia-Herrera et al.,
2021), and hence turbidity, is orders of magnitude higher than in the deep parts of the
oligotrophic Mediterranean (<2 mg m−3; Lo Iacono et al., 2019).

Due to relatively high mucus and fecal loss, the TOC release already contributes
30–60% to the total C loss of the fjord corals (respiration plus organic matter release).
Anthropogenically increased sedimentation, e.g., from the extensive salmon farming in the
Chilean fjords (Häussermann et al., 2013; Försterra, Häussermann & Laudien, 2016), could
further increase mucus production and related energy expenditure.

On the steep, partly overhanging fjord walls, D. dianthus often co-occurs with other
suspension feeders, such as the bivalve Acesta patagonica and the sponge Mycale thielei
(Försterra et al., 2005). Like D. dianthus, these genera produce large amounts of detrital
and/or fecal material (Maier et al., 2020b). The organic matter ‘waste’ of the suspension
feeding community may serve as food for detritivores living underneath the vertical or
overhanging walls, ensuring a close material recycling, as suggested for L. pertusa reefs (Rix
et al., 2016;Maier et al., 2020b).

Carbon and nitrogen budget
The CWC D. dianthus in Comau Fjord is characterized by a high C and N demand. To
account for their costs of respiration, ammonium excretion and POM (mucus) release,
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unfed corals have to expend 2% of their tissue-C and 1.2% of their tissue-N per day.
With growing meal size, feeding-related costs and losses increase the total C and N loss
to 4.4% of the tissue-C and 6.4% of the tissue-N. To grow somatic and reproductive
tissue, the corals need additional resources. Conspecifics from the Mediterranean show
an even higher C demand, due to their higher respiration rate (Naumann et al., 2011). In
comparison, L. pertusa from a Norwegian fjord has a ca. 10-times lower C demand, due to
the lower respiration under the colder (8 ◦C), less-acidic conditions, and due to the lower
POC release (Maier et al., 2019). Higher temperatures increase the respiration of CWCs
and hence their energy demand (Dodds et al., 2007; Gori et al., 2016; Dorey et al., 2020).
Similarly, a low pH stimulates the production of respiratory-chain enzymes in D. dianthus,
likewise indicating an increased metabolic activity and energy demand (Carreiro-Silva et
al., 2014). Nevertheless, the comparatively high skeletal growth rate of D. dianthus from
Comau Fjord, in spite of (relatively) high temperatures and low pH (Jantzen et al., 2013a;
Jantzen et al., 2013b), could indicate that the fjord corals are not food-limited.

To balance C (or N) losses, a medium-sized D. dianthus polyp in Comau Fjord has to
capture almost 700 (or 400) zooplankton individuals (>100 µm) per day. As a voracious
zooplankton predator,D. dianthus is capable to exploit high concentrations of zooplankton
(Höfer et al., 2018), which may occur in swarms at densities of >1,000 zooplankters L−1

(Ambler, 2002). Zooplankton aggregation was observed at pycnoclines (Tiselius, Nielsen &
Nielsen, 1994), near oceanographic fronts, and in the vicinity of abrupt topography like
seamounts or coral reefs (Genin et al., 1994). These aggregations form because zooplankton
actively maintains its depth by swimming against vertical currents (Genin et al., 2005).
A surprising finding in our experiments was that simulated zooplankton swarms of
>1,000 individuals L−1, leading to the capture of >300 zooplankters, were insufficient to
balance the daily C and N losses of the fjord corals.

This suggests that krill, or other larger prey, play a crucial role for the nutrition of
D. dianthus in Comau Fjord. The capture of one euphausiid alone boosts the C and N
budget of the corals (Fig. 6), firstly due to its ca. 1,000 times higher C and N content
compared to small zooplankton. Secondly, krill is processed more efficiently compared
to zooplankton: On a krill plus zooplankton diet, corals showed a higher assimilation
efficiency (lower feeding-related POC and PON release in relation to C and N uptake, see
above) and growth efficiency (lower metabolic costs, i.e., respiration, ammonium excretion
in relation to C and N uptake, see above). We observed dense krill swarms directly next
to the corals during dives by remotely-operated vehicle between 160 and 200 m depth
(Fig. 7) and during SCUBA dives at 20 m depth. Likewise, the recurrence of blue whales
in Comau Fjord (Försterra & Häussermann, 2012) indicates krill aggregations, which are
known to attract the large mammals in the region (Buchan & Quiñones, 2016). In feeding
experiments,D. dianthus captured live krill at a similar rate (18%h−1) as small zooplankton
(Höfer et al., 2018); in situ, krill capture remains to be quantified.

A maximized energy intake is crucial considering the pronounced seasonality in North
Patagonia (Pickard, 1971). The C and N budget of D. dianthus was assessed in austral
summer, when high abundances of zooplankton and krill follow the spring phytoplankton
bloom (Iriarte et al., 2007; González et al., 2010) and create feast conditions. The CWCs
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Figure 7 Dense swarms of krill and chaetognaths in Comau Fjord, directly aboveDesmophyllum di-
anthus. Photo recorded by remotely-operated vehicle (C Richter) at 160 m depth. The arrow indicates
one krill individual.

Full-size DOI: 10.7717/peerj.12609/fig-7

might invest the excess resources in tissue reserves such as lipids (Maier et al., 2019) to
overcome the less-productive winter (Iriarte et al., 2007; González et al., 2010). In early
spring (September), however, Patagonian D. dianthus also starts to produce gametes,
which is an energy-costly process (Feehan, Waller & Häussermann, 2019). Reduced skeletal
growth in summer could therefore indicate an energetic trade-off between investment in
reproductive tissue and growth (Hassenrück et al., 2013), as suggested for L. pertusa from a
Norwegian fjord (Maier et al., 2020a). In winter, when zooplankton and krill abundance is
reduced, the corals may benefit from their metabolic flexibility. The fast downregulation
of metabolic rate and POM release constrains C and N losses. Further, after prolonged
(3-week) zooplankton exclusion,D. dianthuswas observed to take up alternative resources,
such as DOM and/or non-zooplankton POM (Naumann et al., 2011). A potential diet shift
to more degraded material in winter was also described for the CWC L. pertusa (Maier
et al., 2020a). Metabolic and dietary flexibility enable the fjord corals to survive without
particulate food for several months, as we recently observed.

By the end of the century, most CWC ecosystems are predicted to face ocean acidification
with anthropogenically lowered pH levels comparable to those occurring naturally in
Comau Fjord at present (Guinotte et al., 2006; Jantzen et al., 2013a; Jantzen et al., 2013b;
Jantzen et al., 2013c; Fillinger & Richter, 2013). Our study indicates that a high energy
supply is crucial for D. dianthus to grow in its low-pH fjord habitat. Similarly, CWCs
showed a higher (growth) resilience to experimentally acidified conditions when their
energy supply was high (Georgian et al., 2016; Martínez-Dios et al., 2020). On top of food
quantity (e.g., the amount of C andN), a high food quality increases assimilation and growth
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efficiency of CWCs (present study) and hence their reserves to actively counteract adverse
conditions (Carreiro-Silva et al., 2014). Nevertheless, there are currently no indications that
zooplankton and krill supply to CWC may increase to offset a changing C and N budget
in the future. In contrast, on a global scale, climate change is decreasing the productivity
at the ocean surface, the efficiency of the biological pump and accordingly the food supply
to deeper, benthic ecosystems (Bopp et al., 2001; Bopp et al., 2005; Gregg et al., 2003). A
decreased energy supply, in combination with an increased energy demand, could have a
large, negative impact on the fitness of the local population of D. dianthus we studied in
particular, and global CWCs in general.

CONCLUSIONS
The CWC D. dianthus from the fjords of the Los Lagos Region in North Patagonia requires
a substantial supply of pelagic food to balance its daily C and N loss through respiration,
ammonium excretion and POM release. Experimental feeding on zooplankton alone was
not enough to balance their C and N loss, despite the high zooplankton food concentration.
For a balanced C (or N) budget, the solitary coral needs to capture a minimum of 700
(or 400) zooplankton individuals per polyp and day, or one larger prey item such as one
euphausiid. Under experimental food deprivation, the corals swiftly reduced all C and N
loss terms, likely to conserve energy. We argue that the exploitation of zooplankton swarms
and/or the consumption of krill, combined with a high metabolic flexibility, are important
in sustaining the energetic requirements of D. dianthus in Comau Fjord under naturally
low pH. The bulk of the population, however, thrives in deeper waters under even lower
pH, near or below aragonite saturation (Fillinger & Richter, 2013; Jantzen et al., 2013a),
which may further increase their energy demand (Gattuso, Allemand & Frankignoulle,
1999; Cohen & Holcomb, 2009); this may be evaluated in the future by carrying out similar
measurements as presented here in situ, along the pH depth gradient. Climate change,
ocean acidification and the intense salmon aquaculture in the Patagonian fjord region
likely impact the energetic balance ofD. dianthus. The species appears particularly sensitive
to a combination of stressors, such as high temperatures and acidification (Gori et al.,
2016) or hypoxia and elevated levels of sulfide/methane (Försterra et al., 2014). A disrupted
energy balance may have severe consequences for the growth, reproduction and hence the
distribution of this and other habitat-forming cold-water coral species.
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