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Abstract

Background: Accurate computational identification of eukaryotic gene organization is a long-standing problem.
Despite the fundamental importance of precise annotation of genes encoded in newly sequenced genomes, the
accuracy of predicted gene structures has not been critically evaluated, mostly due to the scarcity of proper
assessment methods.

Results: We present a gene-structure-aware multiple sequence alignment method for gene prediction using amino
acid sequences translated from homologous genes from many genomes. The approach provides rich information

concerning the reliability of each predicted gene structure. We have also devised an iterative method that attempts
to improve the structures of suspiciously predicted genes based on a spliced alignment algorithm using consensus

refinement method.

Cytochrome P450, Ribosomal proteins

sequences or reliable homologs as templates. Application of our methods to cytochrome P450 and ribosomal
proteins from 47 plant genomes indicated that 50 ~ 60 % of the annotated gene structures are likely to contain
some defects. Whereas more than half of the defect-containing genes may be intrinsically broken, ie. they are
pseudogenes or gene fragments, located in unfinished sequencing areas, or corresponding to non-productive
isoforms, the defects found in a majority of the remaining gene candidates can be remedied by our iterative

Conclusions: Refinement of eukaryotic gene structures mediated by gene-structure-aware multiple protein
sequence alignment is a useful strategy to dramatically improve the overall prediction quality of a set of homologous
genes. Our method will be applicable to various families of protein-coding genes if their domain structures are
evolutionarily stable. It is also feasible to apply our method to gene families from all kingdoms of life, not just plants.
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Background

Recent progress in DNA sequencing technologies is
making it possible to determine thousands of eukaryotic
genomic sequences [1,2]. On an even larger scale, the
China National Genebank has launched the Three Million
Genomes (3 M) Project to sequence one million human
genomes, one million plant and animal genomes and one
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million micro-ecosystem genomes [3]. To gain full use of
the genomic information, the next step after sequencing is
to annotate genes encoded in each genome. Several gen-
ome annotation pipelines have been established and ac-
tively used in a number of genome projects [4-6]. One of
the most important products of genome annotation is a
set of amino acid sequences translated from predicted
protein-coding genes. Obviously, the quality of amino acid
sequences, which in turn depends on the accuracy of gene
prediction, profoundly affects the reliability of downstream
analyses, such as functional implications, 3D-structure
prediction of proteins, and evolutionary inference of the
genes and species. The recently emerging method of co-
evolutionary 3D structure prediction requires even larger
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numbers of accurate protein sequences [7-9] than the trad-
itional template-based homology modelling methods [10].

Currently, three major categories of methods are used in
computational prediction of protein-coding genes [11,12].
The ab inito methods rely on only the statistical features
of the “query” genomic sequence to be analysed; the de
novo or comparative genomic methods use the informa-
tion of sequence conservation and variation between the
query genome and one or more related “reference” gen-
ome(s); and the transcript-dependent methods use known
transcript sequences, such as full-length ¢cDNAs, ESTs,
and proteins of cognate or related genomes as templates.
The accuracy and coverage of gene prediction can be im-
proved by combining several lines of information, and
present annotation pipelines usually adopt several distinct
categories of methods depending on the available informa-
tion. Although human intervention can further improve
the quality of annotation [13,14], manual annotation by ex-
perts is impractical to apply to all the genomes whose num-
ber is growing rapidly. Thus, the vast majority of genome
annotations rely on high-throughput automated methods.
However, assessment of the quality of the products of such
procedures has not been well explored, mostly due to the
scarcity of proper assessment methods.

In this work, we present gene-structure-aware multiple
protein sequence alignment (GSA-MPSA) as a powerful
tool to evaluate and refine a set of homologous (ortholo-
gous and paralogous) gene structures. A GSA-MPSA is
constructed from translated amino-acid sequences supple-
mented with the location and phase of introns along the
coding sequence (CDS) of the parental (predicted) genes.
Our approach is based on the facts that (i) long insertions/
deletions are rare among closely related homologous pro-
tein sequences and (ii) positions of introns in a set of hom-
ologous genes are generally well conserved [15]. Thus, we
can expect high reliability of gene predictions if we observe
few gaps and a concordant distribution of intron positions
in the GSA-MPSA. Conversely, existence of long gaps or a
discordant distribution of intron positions is a strong indi-
cator of some defects including annotation errors.

Although many MPSA methods have been developed so
far ([16] for the latest reviews), none is designed to incorp-
orate the information about exon-intron organization of
the parental genes. Hence, we extended our iterative MPSA
method Prrn [17,18] so that conserved intron positions
should gain an additional bonus in the objective function to
be optimized. The resultant MPSA labelled with intron po-
sitions is parsed to see the distribution of indels and also
the distribution of the concordant/discordant intron sites
with the help of an outlier statistical analysis. We have also
extended our spliced alignment program Aln [19] so that it
can use a generalized profile as the template. Generalized
profiles have been used in internal routines of Prrn [20] to
detect and evaluate gaps exactly and efficiently, where
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“generalized” means that various lengths of internal gaps, as
well as ordinary residues, are treated in the form of a profile
[21]. We have implemented a tool named “Refgs.pl” (refine
gene structures) that tries to successively improve individ-
ual gene structures of the members constituting the GSA-
MPSA by running Prrn and Aln in an iterative manner. To
test the performance of Refgs.pl, we applied our method to
the cytochrome P450 and ribosomal protein genes anno-
tated in 47 plant genome datasets, most of which were ob-
tained from Phytozome Ver. 9.0 [22]. These gene (super-)
families were chosen as representatives of two distinct cat-
egories of genes, a divergent multi-gene superfamily that
codes for enzymes and a set of unique gene families that
code for individual subunits of a large protein-RNA com-
plex, respectively. The results indicate that Refgs.pl is highly
effective at detecting various kinds of defects including an-
notation errors, a majority of which can be corrected by the
iterative refinement procedure. External tests with EST
mapping and manual inspection indicated that nearly 99%
of exon-intron boundaries are correctly assigned after a
series of refinements by Refgs.pl, and the overall quality of
gene prediction is comparable with that obtained by spe-
cialists in the field.

Results

Performance of spliced alignment with a profile template

MSAs and profiles derived therefrom have been success-
fully used to improve the quality of various biological se-
quence analyses, such as remote sequence similarity
search [23], prediction of secondary structure of proteins
[24], protein fold recognition [25], and alignment itself
[26]. However, no attempt appears to have been made to
examine whether the use of a profile can improve the
quality of a spliced alignment, although an appreciable
number of spliced alignment programs have been devel-
oped so far [27] including GeneWise [28] that supports
profile-HMM-based spliced alignment. To test the ef-
fects of profiles, we used the same dataset, P491, as that
used in previous studies [29,30]. P491 consists of 491
human genes and their mouse orthologs together with a
total of more than 71,000 homologous protein sequences
used as the references (templates). In the original study, a
sequence was randomly chosen from the reference set for
each bin of sequence identity level. Here, we compare the
results of such an examination with those obtained by a
use of a profile derived from all sequences in each bin as
the template. As shown in Figure 1, use of profiles signifi-
cantly improves both sensitivity and specificity at the exon
level. Figure 1 also indicates that prediction with a close
reference, if one exists, may outperform that with a profile
consisting of remote reference sequences. These observa-
tions afford a foundation for our template selection modes
described in the next subsection.
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Figure 1 Improved accuracy of spliced alignment with profile templates. Alignment accuracy at the exon level (F-measure) with single
amino-acid templates (blue bar) is compared with those using profile templates (orange bar) of the same sequence identity level. Specificities
(circles) and sensitivities (squares) with single amino-acid templates (filled) and profile templates (open) are also shown by line graphs.
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Assessment and refinement of gene structures by Refgs.pl
To examine how reliable predicted protein sequences pro-
duced by plant genome projects are, we first constructed
GSA-MPSAs from individual clusters of P450 and riboso-
mal proteins as described in Methods. A cluster is an oper-
ational unit consisting of closely related orthologs and
paralogs. By applying outlier analyses to the indels and local
sequence variations, and also examining the distribution of
intron positions within the GSA-MPSA, we categorized
each predicted gene into “R” (reliable), “Q” (questionable),
or “P” (pseudo) types. Figure 2 shows the fractions of these
types as a function of the threshold value for the defect
point between “Q” and “P” types (MaxDefect). In this and
most other tests, the maximal cluster size (MaxCluster) is
fixed to 50, approximately the number of genomes exam-
ined. The fraction of “R”-type sequences amounts to about
80% of all sequences tested. However, the percentage of the
“R” sequences of the initial annotated genes is only about
55% as the clusters were constructed from the sequences
that passed two preliminary criteria (Methods). Moreover,
this simple evaluation method considerably overestimates
“R” type genes, as the outlier analysis fails to detect abnor-
malities when the variance of the variables is large. For ex-
ample, no indel outlier is detected in the N terminal part of
the alignment shown in the Additional file 1: Figure S1A,
although human eyes clearly perceive some abnormalities.
Long indels that are not recognized as abnormal by the
outlier analysis were actually prevailing among the GSA-
MPSAs, some of which are exemplified in the Additional
file 1: Figures S1A-F.

It is naturally expected that the accuracy of prediction
of individual gene structures would be increased by

improving the quality of the GSA-MPSA in which the
genes participate. We designed three template selection
modes and their combinations to improve the quality of a
GSA-MPSA by iteration (Methods). The quality of a GSA-
MPSA was examined from various aspects, such as the
number of outlier indels and local sequence variations, the
numbers of concordant and discordant (lonesome) introns
and their difference (ACDI), the standard deviation of se-
quence lengths in variable regions, and the normalized
sum-of-pairs (nSP) or normalized weighted sum-of-pairs
(nWSP) MSA score. Figures 3 and 4 show the results of
the iterative refinement for P450 and ribosomal proteins,
respectively, with respect to four representative features.
These figures clearly indicate that the iterative procedures
improve all the features, except for ACDI with the M1
mode (Methods) and the combination modes that initiate
with the M1 mode. The M1 mode tends to overestimate
exons when some member(s) in the cluster contain a for-
eign sequence(s) which acts as an erroneous template to
incorporate false exons in other members, whereas the
other two modes are robust in this respect. By contrast,
the M1 mode is more effective than the other modes to fill
in exonic regions that are missing in the original predic-
tion. Thus proper combinations of M1 and the other two
modes perform best; CR-M1-PR, PR-M1-PR, and CR-PR-
M1 are generally the best combinations as judged from
nWSP (or nSP) that incorporates various features into a
single score. Wilcoxon signed rank tests indicated that the
mutual merits of the three combinations were insignificant
(p>0.25 for P450 and p > 0.03 for ribosomal proteins).
Figure 5 shows the effects of MaxCluster on the per-
formance of iterative refinement. As most quantities
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(C) and (D) show the corresponding results for ribosomal proteins.

Figure 2 Classification of predicted genes into three reliability types. Each gene is classified into “R" (reliable, green), “Q" (questionable,
orange), or “P" (pseudo, red) type according to the cumulated defect points. The “R” type has zero defect points, and MaxDefect value delimits
the boundary between “Q" and “P" types. (A) and (B) show the results of P450s before and after CR-M1-PR iterative refinement, respectively, and
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used for evaluation mentioned above depend on a cluster
size in complicated manners, we consider only ACDI that is
not directly affected by a cluster size. For small MaxClus-
ters, CR-M1-PR refinement clearly improves ACDI of both
P450s and ribosomal proteins. However, for MaxCluster =
200 or 300, CR-M1-PR refinement worsens ACD, which
appears to largely originate from over-prediction of extra
exons/introns. The EST-based analyses described in the
next subsection also indicate over-prediction of introns
with MaxCluster = 200 or 300. Furthermore, the computa-
tional time increases near quadrically with MaxCluster
(Figure 5). Thus, we may conclude that MaxCluster should
be kept within a two-digit number, although the best choice
would vary with the number of genomes under analysis,
the relative frequencies of orthologs and paralogs, the qual-
ities of initial annotation, and other factors.

EST-based and manual assessments

Most genome annotation pipelines utilize the results of
EST mapping on the relevant genome as a component of
evidence-based prediction [31,32]. Hence, the false rates
assessed through our mapping results are expected to be
small. In fact, the sensitivity (SN) and specificity (SP) at
the intron level (both ends should be correct) exceed 96%
and 94%, respectively (Additional file 2: Table S1A, B),
when all retrieved sequences before filtering were exam-
ined. The two steps of filtering improved both SN and SP

by ~1% (Table S1C, D). Although marginal, CR-M1-PR re-
finement with MaxCluster =25 or 50 further improved
SN and SP (Table S1E, F) despite the fact that no informa-
tion about EST mapping is incorporated in the refinement
process.

In plants, the most prevalent alternative splicing events
are the retained-intron type [33,34]. Hence, some EST se-
quences may represent unspliced or aberrantly spliced iso-
forms, which leads to an overestimate of false positive
introns. To examine this possibility, we asked whether each
false positive intron position might be conserved in other
homologous gene(s). If the relevant intron is a lonesome
intron, that intron is likely to be real false positive, but
otherwise that intron can be regarded as a “homology-sup-
ported” true positive intron. Figure 6 shows the results
after this correction (Table S1 represents both results be-
fore and after the correction). The most remarkable point
observed in Figure 6 is that the fraction of “pure” false
positive introns (lonesome introns whose corresponding
regions are exonic according to the results of EST map-
ping) of P450s is dramatically reduced by the CR-M1-PR
refinement, suggesting the efficacy of our refinement pro-
cedure. No improvement was observed for ribosomal pro-
teins probably because the original false positive rate was
already quite low.

One caveat of this type analysis is that the introns thus
examined do not necessarily belong to the genes under
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investigation; if a prediction erroneously contains an
extra genomic segment that is expressed as a distinct
transcriptional unit, the EST-based assessment may re-
gard such extra exons/introns as true positives. To synthet-
ically evaluate the integrity of the predicted gene structures,
we also conducted detailed analysis of the amino acid se-
quences of P450s encoded in two representative genomes,
peach [35] and maize [36]. The peach gene models were
obtained by a typical automated pipeline that combines sev-
eral gene prediction algorithms, whereas ~60% of the maize
P450 genes were manually curated by one of the present
authors. The full maize genome was annotated by the Gra-
mene pipeline [37], that takes advantage of extensive maize
full length ¢cDNAs and closely related well annotated ge-
nomes like rice. We found that GSA-MPSAs as shown in
Additional file 1: Figure S1 are helpful for manual assess-
ment as well, and could unambiguously infer true gene
structures for more than 90 ~ 97% of seemingly genuine or
nearly complete genes. Although almost all existing annota-
tions disallow frame shifts and premature termination co-
dons and hence the genes are truncated or the affected
exons are skipped, our method properly accommodates
such defects. If a gene harbours a single such defect but
otherwise looks intact, we regard the gene as near
complete, whereas if a plural number of defects are
found, the gene is regarded as a pseudogene. The most

common ambiguity is the location of a translational initi-
ation site (TIS), when two or more initiation codons are
closely arranged in the same reading frame. We regarded
a variant as either erroneous or near correct depending on
whether the N-terminal hydrophobic transmembrane do-
main, which is ubiquitous among all microsomal P450
proteins, is truncated or not. Besides this type of ambigu-
ity, only three of peach and four of maize genes remained
uncertain with respect to their exon-intron organizations.
As summarized in Figure 7 and detailed in the Additional
file 2: Table S2, the CR-M1-PR refinement augmented the
number of correctly or near-correctly predicted P450
genes in the peach genome by 72 (24% of total), and only
five genuine genes contained errors after the refinement.
By contrast, CR-M1-PR refinement introduced 15 new er-
rors that were absent in the initial annotation, while it
remedied 25 errors in the original annotation. Thus, we
may conclude that our refinement method is not perfectly
accurate but at least as effective as manual curation by
specialists in reducing the errors in gene prediction by an
automated method.

Discussion

For human and several model organisms [38-40], the cata-
logue of their protein-coding genes is nearly complete.
The situation is completely different for the vast majority
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Figure 4 Evaluation of GSA-MPSAs of ribosomal protein clusters viewed from various aspects. (A) Total number of outlier indels. (B)
Difference in the total numbers of concordant and discordant introns. (C) The sum of standard deviations of sequence lengths in the variable regions.
The total computational time spent for iterative refinement with 10 CPUs is also indicated. (D) The total sum of normalized weighted sum-of-pairs
scores of all GSA-MPSAs. The results obtained from the original annotation are indicated by blank bars. Of the 21 combinations of template modes, the
best combination for each aspect is indicated by the thick bar.

of organisms whose genomic sequences are recently re-
vealed. Although high-throughput gene annotation
pipelines are widely used, the accuracy of such products
has not been well studied. To our knowledge, MisPred
[41,42] is the sole practical tool to search for potentially
erroneous annotations. To evaluate the reliability of a pre-
diction, MisPred examines macroscopic features of the
predicted amino acid sequences. Accordingly, MisPred is
not necessarily effective to discover individual defects, es-
pecially subtle defects. Moreover, MisPred affords no way

to correct annotation errors it finds. We have shown here
that a GSA-MPSA constructed from close homologues
provides rich information about the reliability of each pre-
dicted gene structure. Thanks to the recent progress in
many genome projects undertaken in parallel, collection
of appropriate homologs is now much easier than a few
years ago. We have also shown that GSA-MPSA can facili-
tate not only evaluation but also refinement of the pre-
dicted gene structures. The improvement in the quality of
prediction is demonstrated from various viewpoints as
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Figure 5 Effects of MaxCluster on the ability for an iterative refinement to improve the number of concordant introns. The ACD/ values
before (red filled circles) and after CR-M1-PR iteration (purple filled diamonds), together with the total number of introns before (blue filled
squares) and after iteration (green filled triangles), are indicated as a function of MaxCluster. (A) P450s. (B) ribosomal proteins. The wall clock time
spent for calculation with 10 CPUs in parallel is also shown by black crosses.
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Figure 6 EST-based assessment of gene prediction. A true positive (TP) intron of a predicted gene is defined as that having the same
genomic coordinates at the both ends as an EST-supported intron. A false positive (FP) intron is defined as a predicted intron whose genomic
region is assigned to be exonic by the EST-mapping results. However, homology-supported true positive introns are counted not as FP but as TP in this
analysis. A false negative (FN) intron is defined as an EST-supported intron whose genomic region is assigned to be exonic by the prediction. Sensitivity
(blue hatched bar) is defined as 100 *TP/RI, where Rl is the total number of EST-supported introns that overlap with the genomic regions predicted to
be genic (exon or intron) by the prediction. Specificity (orange shaded bar) is defined as 100 *TP/Ql, where Ql is the total number of predicted introns
that overlap with at least one EST-supported genic area. A false positive rate (red filled square) is defined as 100 *FP/QI, and a false negative rate (blue
filled circle) is defined as 100 *FN/RI. (A) P450s. (B) ribosomal proteins.

shown in Figures 3 and 4. However, a more direct impres-  consensus-based approaches fail when the initial predic-
sion would be obtained by looking into the alignments tions are scarce, poor, or highly heterogeneous. In fact,
themselves. Additional file 1: Figure S1 presents several of the 484 clusters of P450 and 1217 clusters of ribosomal
examples of GSA-MPSAs of the same genes before and  proteins with MaxCluster = 50, the CR-M1-PR refinement
after refinement. The smaller numbers of indels and better ~ worsened the nWSP scores for 20 and 43 clusters (211
aligned intron positions after refinement compared with  and 368 sequences involved), whereas the nWSP scores
those in the original GSA-MPSAs will give an intuitive = remained unchanged for 38 and 119 clusters (164 and 580
support for the efficacy of our refinement procedure. sequences) and improved for the rest of the 426 and 1055

In essence, our refinement strategy relies on the con-  clusters (8083 and 13470 sequences), respectively. In
sensus or the “decision by majority” rule. In general, addition, 126 P450 and 459 ribosomal protein sequences

(B,
(»

Figure 7 Manual assessment of peach (A and B) and maize (C and D) P450 genes before (A and C) and after (B and D) CR-M1-PR
refinement. Near correct prediction implies that either the translational initiation site is ambiguous or the gene contains a frame shift or a
premature termination codon within a predicted exon but otherwise looks intact. Uncertain prediction implies that the true gene organization
cannot be predicted unambiguously, whereas pseudogene indicates that its gene organization is apparently singular. Filtered indicates the
fraction of the genes in the original annotation that were filtered out by the two-step filtering.
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didn’t belong to any cluster due to the lower limit in the
minimal size of clusters and had no chance to be evaluated
or refined. Roughly speaking, therefore, our refinement
procedure is effective or neutral for about 93 ~ 96% but in-
adequate for about 4 ~7% of sequences that passed the
two filtering criteria (Methods). (Note that the fraction of
inadequate cases for ribosomal proteins is inflated as the
initial filtering imposed no limitation in length.) One po-
tential way to cope with these difficult cases would be to
improve the profile method so that more distant homologs
can be used as the templates, or pre-annotated sequences
from human curated datasets could be used. In addition,
the 1000 plant transcriptome project now in progress [43]
will provide a broad sampling of plant gene diversity in-
cluding distant homologs currently lacking as templates.

By counting the defect points, we estimated that about
80 ~ 84% of the original sequences that passed the two fil-
tering criteria are regarded as “R” type (Figure 1). By the
CR-M1-PR refinement, the fraction of the “R” type genes
are increased (Figure 1), and we estimate that about 58%
of P450 and about 70% of ribosomal protein genes in the
initial annotations are likely to be genuine. However, the
CR-M1-PR refinement modified the gene structures of a
large fraction of the original predictions. As a result, only
about 40% of P450 and about 50% of ribosomal protein
genes in the original annotations remain unmodified and
are regarded as defect free after the refinement (Table 1).
As demonstrated by manual assessments, not all the
changes are improvements, but the above discussion
about nWSP scores suggests that at least 90% of the modi-
fications are likely to be real improvements.

As our method does not directly refer to the available
c¢DNA/EST information, the assessment based on the EST
mapping results can be regarded as an external test. We
consider that the sensitivity and specificity of 97 ~ 98% at
the intron level and 98 ~99% at the junction level are
quite high. One reason for this high accuracy might be be-
cause the original annotations had already incorporated
EST mapping information and some annotations had been
manually curated. It is an interesting next theme to exam-
ine how our approach performs without relying on exist-
ing annotations.

In the present study, we analysed ca. 10* P450 and ribo-
somal protein sequences. Although the Phytozome dataset
are generally well organized, the formats of gene annota-
tion of various resources are not completely uniform,
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rendering the preparation of the initial sets of amino acid
sequences supplemented with parental gene structure in-
formation rather laborious. Once the initial setting was
completed, however, the entire process including cluster-
ing, assessment, and refinement finished within an hour
on our computer system (CentOS 6.2, Xeon E5-2687 W,
3.1GHz, 8 x 2 cores, 64GB memory, 2 TB hard disk) when
MaxCluster is set to 50 or smaller (Figures 3 and 4). It
was feasible because the post-clustering processes are exe-
cutable in parallel, where we used ten cores/threads in the
present experiments. Thus, it would not be much add-
itional burden to analyse an order of magnitude larger
number of sequences in a personal computational envir-
onment, and this may be scaled further with an institu-
tional computer system.

Conclusions

We have shown that GSA-MPSA-mediated refinement of
eukaryotic gene structures is a useful automated strategy
to dramatically improve the overall prediction quality of a
set of homologous genes. Our method will be applicable
to various families of protein-coding genes if their domain
structures are evolutionarily stable. It is also feasible to
apply our method to gene families in any kingdoms of life.
The C++ source codes of Aln, Prrn, and Spaln, the engines
of our strategy, are available from our web site [44]. The
Perl scripts of Refgs.pl that organizes the refinement
process together with source codes/scripts of the associ-
ated programs are also made available from the same site
as Prrn/Aln.

Methods

Data retrieval and preparation of initial GSA-MPSA

The outline of our method is illustrated in Figure 8. The
genomic datasets we used are listed in the Additional file 2:
Table S3. Note that the P450 genes of the species marked
by an asterisk had been curated by one of the present au-
thors. Each dataset consists of several files of which we used
those containing genomic DNA sequences, predicted
amino acid sequences, gene structures in the GFF or GFT
format, functional annotation in the KOG format, and EST
sequences. EST/cDNA sequences were also downloaded
from UniGene [45], GenBank [46], and PlantGDB [47] da-
tabases if available. The genomic sequences were indexed
and formatted to be used by Aln and also by Spaln [30,48]
for fast transcript mapping. The amino acid sequences were

Table 1 Numbers of sequences at various stages of data processing

Gene Retrieved 1% filter 2" filter Outside Clusters Last stage R-type Last stage Q-type Un-modified Un-modified R-type
P450 12308 9016 8458 126 711 905 5204 4935
(%) (100) (73.3) (69.5) (1.0) (57.8) (7.3) (42.2) (40.1)
RBP 18513 17930 14418 459 12953 966 9401 919
(%) (100) (96.9) (77.9) (3.7) (70.0) (5.2) (76.4) (49.7)
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Figure 8 The outline of the preparation and analyses of data. (A) The workflow of data processing. (B) Conceptual demonstration of the
Refgs.pl strategy. The phase 1 and phase 2 introns are indicated by magenta and blue triangles, respectively.
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retrieved by a keyword search against the KOG file,
where we used either “P450” or “ribosomal protein” as
the keyword, and amino acid sequences with the corre-
sponding identifiers were extracted from the amino acid
sequence file. If a KOG file is not present, the keywords
were searched directly against the amino acid sequence
file. Each amino acid sequence is supplemented with
the information about the parental gene structure by re-
ferring to the corresponding entry in the GFF/GFT file.
Consistency between a retrieved amino acid sequence
and that translated from the genomic sequence was
cross checked. Many minor discrepancies were found
when the first and/or last codon is partial or the last

coding exon is not followed by a termination codon, in
which cases the first and/or last amino acid is modified
to accord with the corresponding triplet in the genomic
sequence. If the discrepancies were not trivial, the amino
acid sequence was mapped on the relevant genome by
Spaln, and the coordinates of the exon-intron boundaries
were corrected according to the map results. We filtered
out improper sequences by two criteria, i.e. the sequence
length must be longer than a given threshold (400 for
P450 and O for ribosomal proteins), and the number of
ambiguous nucleotides (‘N’s) in the corresponding gen-
omic sequence area must be smaller than a specific num-
ber (10 in the present study). The remaining amino acid
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sequences were compared with one another in the all-by-
all fashion by a fast alignment-free method [49] to yield a
distance matrix. The distance values were transformed
into PAM scale (accepted point mutations per 100 sites)
[50] by a polynomial regression. A UPGMA tree was con-
structed from the distance matrix, and the tree was di-
vided into subtrees (clusters) by cutting the edges at a
specific height (MaxHeight), and also by an upper limit on
the membership (MaxCluster). A fixed value of Max-
Height =120 is used throughout this study. With this
threshold value and the infinitely large MaxCluster, each
cluster roughly corresponds to a “family” of P450 proteins
[51], i.e. mutual amino acid identities within each cluster
should be about 40% or more. MaxCluster is introduced
to restrict the maximal size of each cluster. We examined
several values (25~ 300) for MaxCluster, whereas the
lower limit of a cluster size (MinCluster) is fixed to three.
This minimal cluster size eliminated 126 P450 and 459
ribosomal protein sequences from further analyses. Using
each subtree as the guide tree, we constructed a GSA-
MPSA as described in the next subsection in detail. At this
stage, we applied the second filter to remove “minor” iso-
forms when several members within a cluster are derived
from the same genomic region. The “major” isoform is de-
fined as that having the highest average similarity with the
cluster members other than the isoforms under question,
whereas the minor isoforms are all the other isoforms.
The MPSAs depleted of the minor isoforms were the
starting material of our analyses. The numbers of P450
and ribosomal protein genes before and after the two steps
of filtering are presented in Table 1.

Methods for GSA-MPSA and spliced alignment

The original Prrn algorithm [17] attempts to maximize
the weighted sum-of-pairs score by doubly-nested iterative
refinement methods using the exact group-to-sequence or
group-to-group pairwise alignment algorithm (Algorithm
D in [52]) at each iterative step. To adapt Prrn to the
present task, we have made several simplifications and ex-
tensions. First, a bonus is added to the objective function
when the intron positions match with each other along
the conceptual CDSs of an aligned pair of members. A
match of intron positions means that not only the aligned
columns but also the phases must be identical. Second, a
double affine gap penalty can be used by option, while the
forward algorithm is simplified compared with that of
Prime [53], an extended version of Prrn that can handle
long gaps more adequately than Prrn. Third, instead of the
exact algorithm, an approximate algorithm (Algorithm C
in [52]) is used at each step of pairwise alignment. With
the Algorithm C, opening of gaps is evaluated exactly but
the time-consuming optimization step is replaced by a
more economical greedy method. Fourth, recalculation of
pair weights was suppressed, i.e. the outer loop is run only

Page 10 of 13

once. Finally, Prrn now supports an “update” option with
which the sequences with the same identifiers as newly
given ones are first removed from the older MSA, new
members are added one by one to the existing MSA, pair
weights are calculated, and then iterative refinement is per-
formed as usual. This option is particularly useful to keep
consistency between the GSA-MPSA and the member se-
quences revised by new prediction of gene structures.

To align a genomic sequence and an MSA/GSA-MPSA,
as well as a single amino acid sequence, we extended our
spliced alignment program Aln [19] so that it can handle a
generalized profile. Aln also adopts Algorithm C as the dy-
namic programming-based alignment engine when MSA/
GSA-MPSA is assigned as the template. Matching intron
positions are given a bonus as described above and earlier
[30]. For most of the genomes we examined, species-
specific parameter sets were available by the method de-
scribed earlier [54]. If that was not the case, the parameter
set of the evolutionarily closest species was used. Aln shares
many subroutines with Spaln in common, and is essentially
the same as Spaln with the —QO option when a single pro-
tein sequence is given as the template. However, unlike
Spaln, Aln does not currently support the anchoring-based
faster calculation mode.

Assessment of predicted gene structures with GSA-MPSA

To find unusually long insertions or deletions in the
given GSA-MPSA, we first locate conserved blocks
within the GSA-MPSA by a heuristic score-based
method [55] (Figure 8B). The lengths (numbers of resi-
dues) of the individual members within each variable re-
gion flanked by or outside such conserved blocks are
subjected to recursive outlier analyses with Dixon’s
method [56]. The significance level a is adjustable but a =
0.1 is used throughout this study. Long deletions at either
end are specifically marked to indicate that the target gen-
omic region should be extended more than usual in the
next prediction cycle. Within each variable region, average
sequence divergence between one member and the rest of
the members is calculated in turn, and the set of diver-
gence values are also subjected to the outlier analyses.
This test is incorporated primarily to detect compensating
frame shifts and also to detect alternatively spliced exons.
At each time of outlier detection in either of the tests, a
“defect point” of one is added to the corresponding mem-
ber. The defect point is also incremented by one if the
host gene has at least one “lonesome” or “discordant” in-
tron, where a lonesome intron is an intron that finds no
mate at the same position in other members (Figure 8B).
The predicted genes were further examined for frame shift
(s), premature termination codon(s), or ambiguous residue
(s). Every such abnormality contributes to the defect point
total by two. If the total defect point is zero, we assign the
label “reliable” or “R”, if greater than zero and less than a
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given threshold, MaxDefect, we assign “questionable” or
“Q”, and otherwise we assign “Pseudogene” or “P” to that
member. We used MaxDefect =2 in this study unless spe-
cifically remarked. In addition, we calculated several quan-
tities, including the total number of outliers, total number
of lonesome introns, variance in sequence lengths within
the variable regions, and normalized sum-of-pairs (nSP) or
normalized weighted sum-of-pairs (nWSP) score of the
alignments. The normalization is taken with respect to
both the number of sequence pairs in an MPSA and the
length (number of columns) of the MPSA.

In addition to the GSA-MPSA-based assessment men-
tioned above, we also tried two other approaches. One is an
automated method based on available EST/cDNA se-
quences; the EST/cDNA sequences were mapped on the
cognate genomic sequence by Spaln [48] with the —LS op-
tion for local similarity search, and exon/intron boundaries
thus inferred were compared with those of predicted genes.
The other approach is manual inspection of various data, e.
g intactness of important linear motifs conserved among
nearly all P450 protein sequences [57,58]. Because of the in-
trinsically subjective nature and the high human cost, we
experimentally applied this approach to only P450 genes in
two representative genomes (peach and maize).

Iterative refinement of gene structures by Refgs.pl
Refgs.pl is a Perl script that achieves a cycle of assessments
by Prrn and alignments by Aln until predicted gene struc-
tures no longer change, no “Q” gene remains, or up to a
pre-specified number of times. We designed three modes
which differ from one another by the choice of the tem-
plates. The “minus one” (M1) mode withdraws one se-
quence from the existing GSA-MPSA, and the structure of
the corresponding gene is re-examined using the profile
constructed from all the rest of the members. The GSA-
MPSA is updated with the amino acid sequence translated
from the revised gene, and the process is repeated in turn
for every member. The “closest reliable” (CR) and the “reli-
able profile” (PR) modes update only the genes that are
assigned “Q”; the former selects the template that is most
similar to the gene in question from the “R” category,
whereas the latter uses the profile derived from all the se-
quences in the “R” category as the template. We also exam-
ined all possible combinations of the three modes up to
three series so that no consecutive modes should be identi-
cal, ie. M1, CR, PR, M1-CR, ..., PR-CR, M1-CR-M], ...,
PR-CR-PR.

Additional files

Additional file 1: Figure S1. Examples of GSA-MPSA before and after
iterative refinement. Intron positions are indicated by triangles: phase 0
(orange), phase 1 (magenta), and phase 2 (blue). A, C, and E show the

results from P450 clusters 1, 4, and 8, respectively, and B, D, and F show
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the results from ribosomal protein clusters 1, 4, and 1098, respectively, with
MaxCluster = 50. For each cluster, CR-M1-PR refinement was performed.

Additional file 2: Table S1. EST-based assessment of gene prediction.
NoEST: number of ESTs that overlap with the genic regions of P450 (A, C, E)
or ribosomal protein (B, D, F) genes before (A, B) or after (C, D) two-step
filtering, and after CR-M1-PR refinement (E, F). NoIntR: total number of
introns supported by the ESTs that overlap with the predicted genic regions.
NolntQ: total number of introns in the predicted genes that overlap
with at least one of EST mapped areas. IntTP: number of predicted
introns that have the same genomic coordinates at the both ends as at
least one EST-supported intron. IntFP: number of predicted introns
whose genomic regions are assigned as exonic by the EST mapping.
IntFN: number of EST-supported introns whose genomic regions are
assigned as exonic by prediction. JuncTP: number of predicted
exon-intron junctions that have the same genomic coordinates as at least
one EST-supported intron. IntHS_TP: number of homology-supported true
positive introns. For raw data, IntSn = 100xIntTP/NoIntR, IntSp = 100xIntTP/
NolIntQ, JncSn = 50xJncTP/NolntR, JncSp = 50xJncTP/NoIntQ, FPR =
100xIntFP/NoIntQ, and FNR = 100xIntFN/NolIntR. After correction for
homology-supported introns, IntTP, JncTP, and IntFP are replaced by (INtTP +
INtHS_TP), UnCTP + 2xIntHS_TP), and (IntFP-IntHS_TP), respectively. Table S2:
Manual assessment of peach (A) and maize P450 (B) P450 genes. Seemingly
correct and nearly correct predictions are indicated by the letter “C" and "c’,
respectively. Near correct prediction implies that either the translational
initiation site is ambiguous or the gene contains a frame shift or a
premature termination codon within a predicted exon but otherwise
looks intact. The letters “E”, "U", "P”, and “F" respectively indicate
erroneous prediction, uncertain prediction, apparent pseudogene, and
gene fragment, respectively. Table S3: List of resources of sequences
and annotations. An asterisk indicates that P450 genes of that species
were once manually curated by one of the authors.
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