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Abstract

Previous studies have shown that the identification and analysis of both abundant and rare k-mers or ‘‘DNA words of length
k’’ in genomic sequences using suitable statistical background models can reveal biologically significant sequence elements.
Other studies have investigated the uni/multimodal distribution of k-mer abundances or ‘‘k-mer spectra’’ in different DNA
sequences. However, the existing background models are affected to varying extents by compositional bias. Moreover, the
distribution of k-mer abundances in the context of related genomes has not been studied previously. Here, we present a
novel statistical background model for calculating k-mer enrichment in DNA sequences based on the average of the
frequencies of the two (k-1) mers for each k-mer. Comparison of our null model with the commonly used ones, including
Markov models of different orders and the single mismatch model, shows that our method is more robust to compositional
AT-rich bias and detects many additional, repeat-poor over-abundant k-mers that are biologically meaningful. Analysis of
overrepresented genomic k-mers (4#k#16) from four yeast species using this model showed that the fraction of
overrepresented DNA words falls linearly as k increases; however, a significant number of overabundant k-mers exists at
higher values of k. Finally, comparative analysis of k-mer abundance scores across four yeast species revealed a mixture of
unimodal and multimodal spectra for the various genomic sub-regions analyzed.
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Introduction

The availability of completely sequenced genomes has made

possible empirical, as opposed to the earlier theoretical, studies of

the distributions of ‘‘DNA words’’ or ‘‘k-mers of length k’’ in

genomic DNA sequences [1–5]. Apart from a few recent studies

[4,5], the vast majority of investigations in this area have

attempted to analyze over- or underrepresented k-mers in different

genomic regions. While a few of these studies have attempted to

identify and catalog the set of missing elements (dubbed

‘‘nullomers’’) in genomes [6–8] others have focused on detecting

over-represented k-mers in select genomic regions for the

identification of functional elements [9–15].

The identification of over- and underrepresented k-mers in a

DNA sequence typically involves the following steps [16]: (a)

choosing the genomic region (e.g., gene upstream regions) to be

analyzed, (b) using a suitable counting method (e.g., overlapping k-

mers may or may not be counted), (c) selecting an appropriate

statistical background or null model for predicting expected k-mer

frequencies, (d) using appropriate statistics to score the observed k-

mer frequency against the expected background frequency (e.g.

binomial probabilities, fold enrichment scores and Z-scores).

Different background models have been proposed for calculating

k-mer distributions in random sequences. While initial, theoretical

studies supported the use of a Markov model of order zero

(Bernoulli model) or one [1,2], subsequent probabilistic models,

which test empirical word counts in different whole genomes,

recommend the use of Markov models of orders close to k/2 as

optimal null models [16]. Additionally, Hampson et al. reported a

novel and efficient statistical background model based on single

mismatches. However, it has been noted that the existing

background models have varying degrees of AT-rich composi-

tional bias, i. e., the list of over-represented k-mers identified by

each model is likely to contain significantly more AT-rich elements

if the input genomic sequences are AT-rich, and vice versa.

Explorations of k-mer frequency distributions (or ‘‘k-mer

spectra’’) for genomic regions in different species have allowed

us to take new perspectives on the complexity of genomes and to

find associations between k-mer spectral modality and GC

content, as well as those between CpG suppression and modality

[3,4]. These studies have reported unimodal genomic k-mer

spectra for the vast majority of analyzed species, with the striking

exception of tetrapod animal genomes where the k-mer distribu-

tions are typically multimodal [3].

It is noteworthy that comparative analysis of k-mer enrichment

for a set of related species, which is likely to yield more insights into

the nature of these distributions, has not been reported to date.
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Here, we present a new statistical background model based on

the average frequencies of the corresponding two (k-1) mers for

each k-mer (e.g., the two corresponding 6-mers of the 7-mer

‘TAGTGTA’ are ‘TAGTGT’ and ‘AGTGTA’). We show that

calculating over-representation using this model identifies many

additional over-abundant k-mers not detected by other existing

models. Moreover, our method is less prone to AT-rich

compositional bias. Since the list of top over-represented k-mers

predicted by our model substantially overlaps with that of other

optimal models, we also suggest that our new background model,

tested here on the yeast genome, can be used to detect meaningful,

over-represented k-mers in any genome.

The idea of extending or removing nucleotides from either end

of a nucleotide sequence has been used before to identify ‘‘minimal

absent words’’ in a sequence [17]. Minimal absent words are

defined as absent words with the following property: words that

are found in then sequence by removing the left- or right-most

characters. However, in this manuscript we are not exploring

minimal absent words or absent words.

In addition, we explore the landscape of overrepresented

genomic k-mers in the budding yeast Saccharomyces cerevisiae

(S.cerevisiae) for 4#k#16 and find that the fraction of overrepre-

sented genomic k-mers decreases rapidly as the value of k increases

beyond nine. However, even at higher values of k, a small but

significant number of overrepresented k-mers exists, hinting at the

existence of even longer, perfectly conserved (intra-species)

elements relevant to regulatory function or structure.

More importantly, we use our novel background model to carry

out a comparative study of k-mer enrichment in four related yeast

species. We show that the distribution of k-mer fold enrichment

scores derived from almost all genomic regions analyzed (e.g.,

whole genome, regions 1 kb up- and downstream of open reading

frames (ORFs), compared across different combinations of species

show unimodal or multimodal distributions. This is in sharp

contrast to the unimodal genomic k-mer spectra for the S. cerevisiae

genome reported earlier [4]. We suggest that the multimodal

distributions in such comparisons may result from the existence of

different classes of functional or structural elements that are not

only conserved across species but also show similar ranges of fold

enrichment scores.

Materials and Methods

The complete genomes of S.cerevisiae, S.bayanus, S.paradoxus and

S.mikatae, along with the feature tables for S.cerevisiae were

downloaded from the Saccharomyces Genome Database (SGD)

(http://www.yeastgenome.org/ March 2009). For S.bayanus,

S.paradoxus and S.mikatae, the contig files from the Washington

University assembly which also incorporates the MIT assemblies

were chosen. We also downloaded the sequence files containing

the regions 1 kb up- and downstream of all ORFs, and the ‘not-

annotated’ intergenic sequences for all four yeast species.

Counting identical k-mer occurrences
We wrote a Perl script to count the number of non-overlapping

occurrences of each observed k-mer in each of the genomes.

Counts for each k-mer from the forward, as well as the reverse,

strand were aggregated and considered for all calculations.

Calculating the enrichment score and Z-score using a
novel statistical background model

To determine the fold enrichment score of a k-mer, we first

calculated the expected number of occurrences of the k-mer using

a novel null model.

Let ‘m1’ and ‘m2’ represent the counts of the two different (k-1)

mers (or subwords of length k-1) corresponding to a given k-mer.

Let the total number of (k-1) mers (from a genomic region of

length L) be represented by ‘N’.

The frequency of each (k-1) mer, ‘f1’ and ‘f2’ are given by:

f1~m1=N and f2~m2=N

Expected number of occurrences of the k-mer (Ne1), based on f1:

Ne1~f1|c1|L

Expected number of occurrences of the k-mer (Ne2), based on f2:

Ne2~f2|c2|L

where c1 and c2 are the frequencies of the mononucleotides that,

along with the (k-1) mer, constitute the full k-mer.

Fold enrichment scores F1 and F2 are given by:

F1~No7Ne1 and F2~No7Ne2,

where ‘No’ is the observed number of occurrences of a k-mer in

the genome.

Finally, the fold enrichment score for the k-mer is calculated as

the average of the two fold enrichment scores, based on its two

corresponding (k-1) mers.

Fold enrichment score = (F1zF2)72

And the Z-score is given by:

Z-score~(No{Ne)7
ffiffiffiffiffiffi

Ne
p

where ‘Ne’ is the average expected count for the k-mer.

Comparing our statistical background model against
other existing null models

We compared lists of top 20 k-mers, ranked by fold enrichment

and by Z-score using our novel background model with those

obtained by applying the existing background models. We first

compiled the regions 500 bp upstream of all S.cerevisiae ORFs and

then applied three different methods to calculate over-represen-

tation of 8-mers: our ‘‘average (k-1) mer’’ or the Ak-1method, the

C0/C1 method described previously by Hampson et al., and

Markov models based-relative abundance scores (both Z-score and

binomial probabilities) for orders 3 to 6. (In this manuscript,

Markov models of varying orders are referred to by the following

notation: MM followed by a number corresponding to their order

and ending with either ‘Z’ or ‘B’ based on whether Z-score or

binomial statistics was used for ranking the k-mers. Thus, MM3B

refers to a Markov model of order 3 and a ranking based on

binomial probabilities). The C0/C1 method of calculating over-

representation was implemented as described earlier [16] based on

the single mismatch model. To get Z-scores and binomial

probabilities for 8-mer relative abundances in the input dataset,

based on Markov models, we used the ‘oligo-analysis’ feature of

the online RSAT tool (http://rsat.ulb.ac.be/, August 2011) with

default settings except for the following parameters: oligomer

length was set to 8, and the background model was estimated from

the input sequence and was specified for each run (varied from 3 to

6). For each order, 8-mer rankings were then ordered based on Z-

scores or on binomial probabilities [13]. The list of top 20 8-mer

sequences from our average (k-1) mer method was then compared

Comparative Analysis of Genomic DNA Word Abundance
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with that from both the C0/C1 method and the Markov model

methods.

To test whether our method can identify k-mers artificially over-

represented in a large number of sequences, we used a protocol

that was previously described [16]. Briefly, we generated 6,000

random sequences, each 500 bases long, and introduced the 8-mer

‘ATGCCGTA’, making sure that the random strings had the same

GC content as that of S.cerevisiae. We then applied our method to

calculate and rank 8-mers in this dataset by their fold enrichment

and Z-score values.

Identifying transcription factor binding motifs in lists of
k-mers

We investigated what fraction of each list of top twenty k-mers

(7,k,11) represent matches to known transcription factor

binding motifs by searching for each 8-mer in the list of known

TF binding sites contained in Yeastract. Both ‘Yeastract binding

site inside of the inserted motif’ as well as ‘Inserted motif inside

Yeastract binding site’ hits were considered [18].

Comparing lists of ranked k-mers across different yeast
species

We generated lists of k-mers for each of the above-mentioned

sequence datasets and ranked them by decreasing fold enrichment

score by applying our average (k-1) method. For each yeast species,

the rank lists of k-mers were further divided into bins of k-mers

using the following protocol: we first calculated the statistical range

of fold enrichment scores for each list. Next, we divided the k-mer

list into 8 bins of k-mers, all defined by equal intervals of the fold

enrichment score. Independently, we also applied the C0/C1

method to obtain a similar number of bins for the same datasets

(for comparison and to test whether the results are robust to

methodology differences). Comparisons were then carried out by

checking how many k-mers were identical between each

corresponding bin of k-mers across the different yeast species in

all possible combinations that included S.cerevisiae, which was used

as the reference in each such comparison. Since corresponding

bins from two or more species can contain a different number of k-

mers, we first determined the number of k-mers in the S.cerevisiae

bin. Then, we enumerated S.cerevisiae k-mers that were also found

in the corresponding bins from other species. The number of such

identical k-mers was then divided by the total number of k-mers in

the S.cerevisiae bin, and the result was expressed as a percentage.

Results

A new statistical background model for calculating k-mer
enrichment and its comparison with existing models

Because the detection of overrepresented k-mers with common-

ly used background models are biased toward AT-richness and

repeat-rich motifs, we developed a novel statistical background

model to calculate k-mer fold enrichment scores. To accomplish

this, we carried out the following steps: (a) we first determined the

number of occurrences of the two (k-1) mers corresponding to each

k-mer, (b) we computed the expected frequencies of each k-mer by

multiplying the (k-1) mer frequencies with that of the remaining

nucleotide that makes up the k-mer, (c) the fold enrichment scores,

F1 and F2, (based on each (k-1) mer), were then calculated as the

ratio of the observed number of occurrences of a k-mer to its

expected number of occurrences, (d) the average of the two fold

enrichment scores was taken to obtain the fold enrichment score

for each k-mer and, (e) finally, the Z-score was calculated on the

fold enrichment score (see methods).

We then compared our background model with some of the

existing, commonly used ones. For comparison purposes, we

selected the two most optimal models: the C0/C1 method [16]

and Markov models of different orders [13]. We used a dataset

comprised of the regions 500 bp upstream of all S.cerevisiae ORFs.

Fold enrichment scores for 8-mers in this dataset were calculated

using (a) our method (the Ak-1 method), (b) the C0/C1 method

and, (c) Markov models of orders 3, 4, 5 and 6 (see methods). The

scored k-mers were then ranked by decreasing fold enrichment

score (for the average (k-1) mer method and the C0/C1 method)

and by decreasing Z-scores or binomial probabilities (for the

Markov model based results).

The list of top 20 8-mers identified by the Ak-1 method was

then compared against that from each of the different models

(Table 1). A more extensive comparison involving the top 500 8-

mers obtained from the various methods is also presented (Table

S1). Interestingly, the top two 8-mers identified by our method and

the C0/C1 protocol (column b) were identical and, in addition,

there were five 8-mers common to both lists. The top 20 8-mers

obtained by applying a statistical background model based on the

MM4Z method (column c) or the MM4B method (column d),

shared six 8-mers with the top 20 calculated by our method. While

we found six 8-mers common to the top 20 list from our method

and the MM3Z method (column e), only four 8-mers were shared

between our method and the MM3B method (column f).

We also noted the number of 8-mers comprised of low

complexity DNA and found that our method and the MM4

method identified the least number (one each) of such k-mers in

the top 20 lists. In order to quantitatively assess compositional bias

of the various methods, we calculated the average GC content of

the top 20 sets. Given that the input sequence dataset is AT-rich,

with an average GC content of 38.2%, our method identified the

most GC-rich strings with an average GC content of 73.1% for the

top 20 8-mers. The MM3 method identified the fewest GC-rich

sequences with an average GC content of 34.3%.

Comparative analysis of the top 20 lists for their biological

relevance was carried out. We tested to see how many of the 8-

mers in each list match known transcription factor recognition

motifs, a comprehensive collection of which can be found in

Yeastract [18] (Table S2). The list of twenty 8-mers from the Ak-1

method represents 17 TF binding motifs, whereas that from the

C0/C1 approach contains only 13 TF binding sites. Yeastract

motif matches for MM4Z, MM4B, MM3Z and MM3B were

progressively lower, i.e., 12, 10, 9 and 6, respectively. Similar

comparative analyses between the Ak-1 method and the C0/C1

approach was carried out for k = 9 and k = 10. In both cases, our

method detected more TF binding sites (13 and 10, respectively)

than the C0/C1 method (9 and 5, respectively) (Tables S3, S4).

To test whether our method can detect artificially enriched k-

mers in a set of random sequences, we carried out a simulation

previously described by Hampson et al. (see methods). Indeed, our

method identified the ‘ATGCCGTA’ 8-mer (which was inserted

into 6,000 500 bp long randomly generated sequences) as the top

k-mer when the top 10 list was built based on decreasing Z-scores.

Additionally, when we made a similar top 10 list based on

decreasing fold enrichment scores, ‘ATGCCGTA’ was ranked

ninth (Table 2).

Overrepresented sequence elements in the yeast
genome

We first sought to create a list of k-mers that are statistically

overrepresented in the S.cerevisiae genome. To do this, we applied

both our Ak-1 method and the C0/C1 single mismatch model to

evaluate over-representation of k-mers with 4#k#16 (see Meth-

Comparative Analysis of Genomic DNA Word Abundance
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Table 1. Comparison of the top 20 8-mers calculated using six different methods.

No Ak-1 method (a) C0/C1 (b) MM4 Z-score (c) MM4 Binomial (d) MM3 Z-score (e) MM3 Binomial (f)

1 CCTCGAGG CCTCGAGG1 GCGATGAG2 TAATATTA TATATATA TATATATA

2 GCGATGAG GCGATGAG2 TAATATTA GCGATGAG2 GCGATGAG2 ATATATAT

3 CCCAGCGC TAGCCGCC14 CCTCGAGG1 AAAAGAAA ATATATAT GCGATGAG2

4 CCGAGTGG CTCGAGGA8 CGGTGTTA CGGTGTTA CCTCGAGG1 TTTTTTTC

5 GGAAGCTG CGGTGTTA GTTACCCG CCTCGAGG1 GTTACCCG GAAAAAAA

6 TCCTCGAG TCCTCGAG6 GGAAGCTG5 GGAAGCTG5 CTCGAGGA8 AAAAGAAA

7 CGCGTCGC TACGGTGT CTCGAGGA8 GTTACCCG CCGGGTAA CCTCGAGG1

8 CTCGAGGA GGCGGCTA CGGGTAAC CTCGAGGA8 CTCATCGC CTCGAGGA8

9 GATGAGCT CCGGGTAA CCGGGTAA CTAGTATA CGGGTAAC GTTACCCG

10 GATGACGC GGAAGCTG5 CTAGTATA TTTCTTTT TCCTCGAG6 CTCATCGC

11 ATACGGTG GTTACCCG ACTTCTAG ACTTCTAG TTACCCGG TTTCTTTT

12 GCGCGCGC ATACGGTG11 CTCATCGC CTCATCGC CGATGAGC CATATATA

13 GCGCCCGC TTACCCGG TCCTCGAG6 CCGGGTAA TTTTTTTC CCGGGTAA

14 TAGCCGCC TTTTTTTC GATTCCTA CGGGTAAC GAAAAAAA ATATGTAT

15 GCGACGCG TCCGGGTA AAAAGAAA TGATAATG GATGAGCT9 ATACATAT

16 CACGTGAC CGGGTAAC GAAGCTGA GAAGCTGA GGAAGCTG5 TCCTCGAG6

17 GGATTCCT CGATGAGC GGATTCCT17 TCCTCGAG6 ATATGTAT TATACATA

18 GCCCCCGG GAAAAAAA TACGGTGT AGGAGAAC ATTACCCG CGGGTAAC

19 GGCGCGTC CTCATCGC TTACCCGG GATTCCTA CGGTGTTA TTACCCGG

20 ACGCAAGG ATTACCCG AGGAGAAC GGATTCCT17 AAAAGAAA TATGTATA

Avg GC% 73.1 56.8 50.0 46.2 45.0 34.3

8-mers derived from the region 500 bases upstream of all yeast ORFs were ranked by their relative abundance as calculated by several background models. The top 20
8-mers ranked by decreasing fold enrichment scores from (a) our novel background model, the ‘‘Ak-1 method’’ were compared to those from the previously described
C0/C1 method (b), from Markov models of order 4 sorted by Z-scores (c), from Markov models of order 4 sorted by Binomial probabilities (d), from Markov models of
order 3 ranked by Z-scores (e) and, Markov models of order 3 ranked by binomial probabilities (f). The list of 20 8-mers derived by applying our method was chosen as
the reference against which the other lists were compared. 8-mers in each list that are identical to the ones in the reference list are marked with a superscript number
which shows its rank in the reference column (a), while repeat-rich elements are shown italicized. The nine 8-mers identified uniquely by our method are highlighted in
bold (a). The average GC content of each list is shown in the bottom row of the table.
doi:10.1371/journal.pone.0058038.t001

Table 2. Top ten 8-mers derived from the set of 6000 randomly generated 500 bp sequences, each having the 8-mer insert
‘ATGCCGTA’.

Sl. No 8-mers C0/C1 (a)
8-mers average (k-1) mer method
ranked by fold enrichment (b)

8-mers average (k-1) mer method ranked by
Z-score (c)

1 ATGCCGTA* CGGGGGGC ATGCCGTA*

2 TGCCGTAA CGGGAGAC TATATAAT

3 AATGCCGT CGATGCCG TAATATAT

4 TATGCCGT ACCCCCCC ATATATAA

5 TGCCGTAT CCCCCCCT ATTATATA

6 GCCGTATA GCCGTAGC AATATATA

7 TAATGCCG GCACCCCC TTATATAT

8 ATATGCCG CGGGTGGC ATATATTA

9 GCCGTAAT ATGCCGTA* TATATATT

10 TGCCGTAG GCACCCTC ATATTATA

Three different sets of top ten 8-mers are shown, with the artificially inserted 8-mer marked with an asterisk (*). The first set of top ten 8-mers was obtained after
applying the previously published C0/C1 method (a), whereas the other two sets were calculated using our avg (k-1) mer method and ranking the resulting 8-mers
based on either their fold enrichment scores (b) or, their Z-scores (c).
doi:10.1371/journal.pone.0058038.t002
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ods). We also identified k-mers that occurred two or more times in

the entire genome.

All theoretically possible sequence permutations were found in

the ,12 Mb yeast genome up to and including k = 8 and the

numbers for ‘theoretical maximum’ and ‘observed’ deviate

markedly thereafter (Figure 1). The number of over-represented

k-mers for each value of k was calculated by both methods using a

p-value cut-off of 0.05 after applying multiple testing correction

(Bonferroni correction). Interestingly, the number of overrepre-

sented genomic k-mers calculated by our average (k-1) method

differs markedly from that of the C0/C1 method, up to k = 14,

when an approximate convergence is reached (purple and pale

blue lines in Figure 1). This could represent a coincident crossover

point between the two lines beyond which the lines subsequently

diverge again. There is some evidence for this divergence at k = 15

and k = 16, where the lines can be seen as disparate ones. Because

it was not a primary goal of this study, we did not seek to identify

overrepresented k- mers beyond k = 16. Up to k = 16, our Ak-1

method seems to be more sensitive in that it detects more

overrepresented k-mers than the C0/C1 method.

We also determined the percentage of the number of observed

k-mers (separately for each value of k where 4#k#16) in the whole

genomes of four related yeast species (Figure S1) that can be

marked as ‘‘overrepresented’’ by our Ak-1 method. As the value of

k increases from 9 to 12, the fraction of overrepresented k-mers in

the genome falls linearly.

Comparative analysis of the distribution of fold
enrichment scores of genomic k-mers across four related
yeast species

How many k-mers in the genomic regions of S.cerevisiae have

similar abundance scores across related species and what is the

distribution of such k-mers? To address this question, we carried

out comparative analysis between four closely related yeast species:

Saccharomyces cerevisiae (S.cerevisiae), Saccharomyces paradoxus (S.para-

doxus), Saccharomyces bayanus (S.bayanus) and Saccharomyces mikatae

(S.mikatae), all of which are members of the Saccharomyces sensu

stricto group. We first calculated fold enrichment scores (for

7#k#9) using both our Ak-1 method and the C0/C1 method for

k-mers from four genomic regions (i.e., whole genome, regions

1 kb upstream of ORFs, 1 kb downstream of ORFs and

unannotated intergenic regions) from all four yeast species. It

has been shown before that analyzing k-mers within this range of k

Figure 1. Plot of log2 transformed number of different k-mers found in S. cerevisiae genome versus k value. The red line shows the
numbers of different k-mers found in the yeast genome, the green line that of k-mers found two or more times. The purple line depicts the numbers
of k-mers found overrepresented in the genome by applying our Ak-1method, while the pale blue line shows a similar count arrived at by applying
the C0/C1 method. All values have been plotted alongside the theoretical maximum possible number of k-mer permutations (dark blue line) for each
k- value.
doi:10.1371/journal.pone.0058038.g001
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values gives meaningful results that can be extrapolated for other

values of k [16]. However, since the overrepresentation values are

sensitive to the methodology used to derive the fold enrichment

scores, comparative analysis across different values of k becomes

meaningful only in the context of the same method. Next, for each

value of k, the k-mers were ranked by decreasing fold enrichment

scores. We calculated the statistical range of k-mer fold enrichment

scores for each region from each species. We then divided this

range into eight bins, each one defined by an equal interval of the

fold enrichment score. Each bin was then populated by k-mers

whose fold enrichment scores fell within the interval of fold

enrichment scores flanking the bin (see methods). S.cerevisiae was

used as the reference against which the comparisons were carried

out. For each bin, the percentage of S.cerevisiae k-mers that have

identical sequence partners in the corresponding bins from the

other species being compared was calculated and plotted.

Plots of the distribution of k-mer fold enrichment scores from

the comparative analyses revealed several interesting trends:

Comparative analysis of k-mers derived from the whole

genome. Especially for 7-mers, the distributions of the compar-

ative analysis across species are best described by a positively

skewed distribution except for comparisons involving S.paradoxus

and S.bayanus (Figure 2 and additional Figures S2, S6, S10, S14

and S18). The distributions of the percentage of S.cerevisiae k-mers

with sequence-identical counterparts in S.bayanus and S.paradoxus

are strikingly multimodal. The nature of the distributions are

largely unaffected by the type of method used to calculate fold

enrichment scores.

Multimodal k-mer distributions hint at the existence of distinct

classes of k-mers in the genome whose fold enrichment scores are

confined to certain score intervals. They may be associated with

specific functional elements wherein the functionality affects or is

affected by the relative abundance of such ‘‘instances’’ in the

genome. Positively skewed distributions reveal that many more

over-represented k-mers share the same range of fold enrichment

values across species compared with underrepresented k-mers.

Comparative analysis of k-mers derived from regions

1 kb up- and downstream of ORFs. Comparative analysis of

7-mer fold enrichment scores for the region 1 kb upstream of all

ORFs using our Ak-1 method yielded right skewed distributions

for all comparisons except for the one involving S.paradoxus, which

was bimodal. However, the modality of these distributions was not

in concordance with the same analysis carried out using the C0/

C1 method (Figure 3 and additional Figure S3). All comparisons

for the 8-mers exhibited multimodality with both methods (Figures

Figure 2. Comparative analysis of genomic 7-mers across four related yeast species. Distributions of the percentage of 7-mers in each bin
from S.cerevisiae which have identical k-mers in the corresponding bins from other, related yeast species. The 7-mers for each species were derived
from the complete genome and the fold enrichment scores were calculated based on the Ak-1 method.
doi:10.1371/journal.pone.0058038.g002
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S7 and S11). Inconsistent results were obtained for similar analyses

of 9-mers (Figures S15 and S19).

Distributions for 7-mers derived from the region 1 kb down-

stream of all ORFs were typically multimodal, were robust to the

fold enrichment calculation method used and similar modalities

were observed for the distributions built based on 8-mers (Figure 4

and additional Figures S4, S8 and S12). No similar trends for the

distributions of the 9-mers were observed (Figures S16 and S20).

Multimodal distributions may imply that there exist distinct

classes of regulatory element-associated k-mers whose relative

abundances in the ORF up- and downstream regions are under

relatively high constraint. The list of over-represented k-mers

calculated by the C0/C1 method contains many more k-mers with

repeat-rich sequences than our method. This may be the reason

why some calculations give different results when analyzed using

the two different methods.

Comparative analysis of k-mers derived from

unannotated intergenic regions. Comparative analysis of k-

mers derived from the unannotated intergenic regions of the

genome using our Ak-1 method consistently showed a normal

distribution that was slightly skewed to the right for all three values

of k tested (Figure 5 and additional Figures S9 and S17). However,

for an identical comparative analysis of 9-mers with the C0/C1

method (Figure S21) we observed multimodal and not normal

distributions (Figures S5 and S13).

While the difference in modality observed using the two

different methods may be explained as stated above, broad

unimodal distributions could capture the longer range of fold

enrichments scores that need be maintained for sequence elements

derived from the intergenic regions. Since the C0/C1 method

captures more repetitive DNA sequences, and also because

repetitive sequences are associated with distinct genomic features

with distinct copy numbers (e.g., k-mers from duplicated genes, k-

mers from transposons), the multimodal distributions may arise

from the distinct ranges of fold enrichment values typically

associated with each of these classes.

Overrepresented k-mers preserved across yeast

species. We also checked whether some of the k-mers detected

as overrepresented in our analysis, and which represent known

TF-binding motifs, were conserved in the three other yeast species,

S.bayanus, S.paradoxus and S.mikatae. Interestingly, nine out of the

top 50 overrepresented k-mers in S.cerevisiae, compiled after

collapsing the top 10 k-mers (7,k,13), were also overrepresented

in the genomes of the other three yeast species (Table S5).

Figure 3. Comparative analysis of 7-mers across four related yeast species. Distributions of the percentage of 7-mers in each bin from
S.cerevisiae which have identical k-mers in the corresponding bins from other, related yeast species. The 7-mers for each species were derived from
the regions 1 kb upstream of annotated ORFs and the fold enrichment scores were calculated based on the Ak-1 method.
doi:10.1371/journal.pone.0058038.g003
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Discussion

In this study, our primary goals were to put forth a novel

statistical background model to calculate k-mer enrichment and

then to apply this model to the genomes of a set of related yeast

species to gain new biological insights.

A suitable statistical background model to calculate ‘‘expected

frequencies’’ of k-mers is essential for detecting over- or

underrepresented DNA words [16]. A number of such null

models exist against which over- and underrepresentation of k-

mers can be assessed. Most notably, Markov models of different

orders (l,k, where ‘l’ represents the order of the Markov model)

have been used as background models in several studies

[10,11,19]. Hampson et al. introduced another background

model, dubbed the C0/C1 method, which uses frequencies of all

the single base mismatches of a k-mer to arrive at an estimated

count for that k-mer [16]. In that paper, the authors compared

their method against Markov models of varying orders and

concluded that the C0/C1 model and Markov models of orders in

the vicinity of k/2 (l = k/2) can serve as optimal models to identify

over- and underrepresented k-mers. However, as noted in the

paper itself, and as is the case with Markov models, it suffers from

some amount of AT-rich compositional bias.

Our novel background model, i.e., the Ak-1 method, introduced

here can serve as a useful null model against which k-mers can be

assessed for their fold enrichment. Comparison of the top 20 k-

mers arising from the average (k-1) mer method to the ones from

the C0/C1 method and the Markov models shows that there is a

significant amount of redundancy between them in their ranking

of k-mers. Thus, some of the overrepresented k-mers detected by

existing ‘optimal’ background models were also identified to be top

ranking by our method. However, our method identifies additional

over-represented k-mers not detected by any of the other methods.

For example (Table 1), there are 10 k-mers in the top 20 list from

the Ak-1 method that are not found in the top 20 lists from any of

the other models. Also, our method compares favorably alongside

the Markov model order 4, Z-score sorted protocol in reporting

the least number of repeat-rich elements among the top ranking k-

mers.

The same comparisons show that the Ak-1 method detects more

GC-rich DNA strings as compared to the other methods. While a

potential drawback in our method might be that it identifies too

many such GC-rich strings, it nevertheless completely eliminates

the AT-rich bias given that the genomic sequence from which the

k-mers were derived had an AT content of up to 61.2%. Thus, our

method may be the optimal one to use in scenarios that require the

Figure 4. Comparative analysis of genomic 7-mers across four related yeast species. Distributions of the percentage of 7-mers in each bin
from S.cerevisiae which have identical k-mers in the corresponding bins from other, related yeast species. The 7-mers for each species were derived
from the regions 1 kb downstream of annotated ORFs and the fold enrichment scores were calculated based on the Ak-1 method.
doi:10.1371/journal.pone.0058038.g004
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identification of repeat-poor, GC-rich strings that are over-

represented in AT-rich input sequences and vice versa.

Our method outperforms existing over-representation detection

methods in identifying known biologically relevant k-mers. This is

supported by the comparative analysis of top 20 8-mers derived

from the six different methods. Notably, four of the nine 8-mers

uniquely detected by the Ak-1 method represent eight TF binding

motifs, some of which are overlapping. Moreover, our method

includes more TF binding motifs in the enrichment score based

top 20 rank list as compared to other methods.

We also report for the first time the distribution of k-mer

frequencies and of the fraction of over-represented k-mers across a

biological meaningful range of values of k (4#k#16). Two

important observations should be highlighted: (a) the fraction of

genomic k-mers that are statistically overrepresented in all four

yeast species analyzed decreases almost exponentially for k values

between 9 and 12. Interestingly, a small, but significant, number of

k-mers remain (up to k = 16) over-represented irrespective of the

method used for fold enrichment score calculation. Since our

method captures fewer low complexity DNA containing strings,

we hypothesize that a majority of these may represent longer

elements that are functionally important. While some of these

larger elements may have arisen due to recent chromosomal

duplications, it seems likely that at least a subset of such elements

serve some regulatory or structural function. (b) The overrepre-

sentation calculation from our Ak-1 method identified almost all of

the observed genomic k-mers as overrepresented up to and

including k = 9. This artifact could be due to the fact that the over-

representation calculation for any given k-mer by our method is

based on the number of occurrences of its corresponding (k-1)

mers. And also because the ‘‘space’’ of novel k-mers explored for

each increment of k increases approximately by a factor of 10, up

to and including k = 9, when the theoretical and observed k-mer

counts begin to markedly deviate.

Thus, while our method can be used to rank k-mers based on

enrichment for all values of k, we note a potential shortcoming of

the same: our average (k-1) mer method may not be the optimal

one to detect over-represented k-mers until a value of k is reached

where the observed number of k-mers begins to diverge from the

theoretically calculated ones.

Both theoretical and empirical distributions of k-mer frequen-

cies or k-mer spectra in genomic sequences have been previously

studied. In these studies, the authors have plotted the number of k-

mers (for a given value of k) against the frequencies of their

occurrence in the genomic region to draw the k-mer spectra.

Csuros et al. analyzed the k-mer spectra from sixty diverse

Figure 5. Comparative analysis of genomic 7-mers across four related yeast species. Distributions of the percentage of 7-mers in each bin
from S.cerevisiae which have identical k-mers in the corresponding bins from other, related yeast species. The 7-mers for each species were derived
from the unannotated intergenic regions and the fold enrichment scores were calculated based on the Ak-1 method.
doi:10.1371/journal.pone.0058038.g005
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genomes and suggested that a Double Pareto-lognormal distribu-

tion (DPLN) best captures the multimodal spectra and also

accounts for the heavy right tail of the graph associated with over-

abundant k-mers [4]. In a subsequent independent study, Chor et

al. analyzed k-mer spectra for more than 100 genomes and

reported unimodal genomic k-mer spectra for most species. The

exceptions were the tetrapods, including all mammals, whose

genomes and most genomic sub-regions exhibited multimodal k-

mer spectra. They also underscored the suitability of low order

(l,k/2) Markov models in recapitulating the multimodal spectra

and heavy tails of such distributions, refuting the DPLN model [3].

The 8-mer genomic spectra reported for S.cerevisiae by Chor et al. is

typically unimodal with the mode at a relatively low k-mer copy

number, at around 200.

In order to glean more insights into the nature of k-mer spectra,

we decided to analyze comparative k-mer spectra to learn more

about the modality of the resulting distributions. Specifically, we

addressed the question ‘‘how many k-mers in the genomic regions

of S.cerevisiae exhibit similar fold enrichment scores across related

yeast species and what is the modality of the distribution arising

from the comparative analysis?’’

Interestingly, the analysis of 8-mers derived from the whole

genome of the four yeast species showed a positively skewed

normal distribution for some combinations of species. However,

for comparisons involving only S.paradoxus and S.bayanus, the

resulting distributions were multimodal. This implies that there

does not seem to be additional evolutionary selection pressure at

both the high and low ends of the fold enrichment score ranked k-

mers, at least at the genome scale level.

We were unable to observe any consistent trends across

neighboring values of k or across the fold enrichment calculation

method used for k-mers derived from either the regions 1 kb up-

and downstream of all ORFs or for the intergenic regions.

However, the multimodal distributions observed in some of these

graphs suggests the existence of distinct classes of k-mers (reflecting

diverse functional or structural elements), whose relative enrich-

ment in the genome is regulated by evolution to some extent. We

suspect that major changes in the relative abundances of these

classes of k-mers may have deleterious effects for the organism.

Conclusions

We have presented a novel statistical background model, the

Ak-1 method, that can be used for the optimal identification of

repeat-poor, GC-rich strings that are over-represented in AT-rich

input sequences and vice versa. Also, the Ak-1 method includes

more biologically relevant k-mers in the enrichment score based

top ranking lists as compared to existing methods. Our analysis of

overrepresented genomic k-mers (4#k#16) from four closely

related yeast species revealed that the fraction of overrepresented

DNA words decreases linearly as k increases, and this is most

strikingly observed as the DNA word length goes from k = 9 to

k = 12. We also found that a significant number of overabundant

k-mers exists at higher values of k (k = 16). Additionally, the

comparative analysis of k-mer fold enrichment scores revealed a

mixture of unimodal and multimodal spectra for the different

genomic sub-regions analyzed. This contrasts sharply with the

unimodal k-mer spectra observed for only the S.cerevisiae genome

[3].

We believe that similar comparative analyses of DNA word

frequencies between closely related vertebrate species will shed

several new insights into k-mer evolution in human. Currently, we

are in the process of extrapolating our analysis to include several

other groups of related species such as human and mouse. Since

our Ak-1 method can be used to identify a significant number of

over-represented sequence motifs missed by other methods, it

should prove an invaluable addition to the current catalog of

motif-identifying algorithms.

Supporting Information

Figure S1 The percentage of overrepresented genomic k-
mers (4#k#16) in each of the four related yeast species.
Fold enrichment scores and Z-scores for calculating overrepresentation

statistics were determined using the Ak-1 method. For each value of k,

the appropriate Z-score cut-off for p,0.05 was determined after

applying the Bonferroni correction for multiple testing.

(PPTX)

Figure S2 Distributions of the percentage of identical 7-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 7-mers for each species were derived from the complete

genome and the fold enrichment scores were calculated based on

the C0/C1 method.

(PPTX)

Figure S3 Distributions of the percentage of identical 7-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 7-mers for each species were derived from the regions 1 kb

upstream of annotated ORFs and the fold enrichment scores were

calculated based on the C0/C1 method.

(PPTX)

Figure S4 Distributions of the percentage of identical 7-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 7-mers for each species were derived from the regions 1 kb

downstream of annotated ORFs and the fold enrichment scores

were calculated based on the C0/C1 method.

(PPTX)

Figure S5 Distributions of the percentage of identical 7-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 7-mers for each species were derived from the unannotated

intergenic regions and the fold enrichment scores were calculated

based on the C0/C1 method.

(PPTX)

Figure S6 Distributions of the percentage of identical 8-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the complete

genome and the fold enrichment scores were calculated based on

the Ak-1 method

(PPTX)

Figure S7 Distributions of the percentage of identical 8-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the regions 1 kb

upstream of annotated ORFs and the fold enrichment scores were

calculated based on the Ak-1 method.

(PPTX)

Figure S8 Distributions of the percentage of identical 8-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the regions 1 kb
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downstream of annotated ORFs and the fold enrichment scores

were calculated based on the Ak-1 method.

(PPTX)

Figure S9 Distributions of the percentage of identical 8-
mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the unannotated

intergenic regions and the fold enrichment scores were calculated

based on the Ak-1 method.

(PPTX)

Figure S10 Distributions of the percentage of identical
8-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the complete

genome and the fold enrichment scores were calculated based on

the C0/C1 method.

(PPTX)

Figure S11 Distributions of the percentage of identical
8-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the regions 1 kb

upstream of annotated ORFs and the fold enrichment scores were

calculated based on the C0/C1 method.

(PPTX)

Figure S12 Distributions of the percentage of identical
8-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the regions 1 kb

downstream of annotated ORFs and the fold enrichment scores

were calculated based on the C0/C1 method.

(PPTX)

Figure S13 Distributions of the percentage of identical
8-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 8-mers for each species were derived from the unannotated

intergenic regions and the fold enrichment scores were calculated

based on the C0/C1 method.

(PPTX)

Figure S14 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the complete

genome and the fold enrichment scores were calculated based on

the Ak-1 method.

(PPTX)

Figure S15 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the regions 1 kb

upstream of annotated ORFs and the fold enrichment scores were

calculated based on the Ak-1 method.

(PPTX)

Figure S16 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the regions 1 kb

downstream of annotated ORFs and the fold enrichment scores

were calculated based on the Ak-1 method.

(PPTX)

Figure S17 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the unannotated

intergenic regions and the fold enrichment scores were calculated

based on the Ak-1 method.

(PPTX)

Figure S18 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the complete

genome and the fold enrichment scores were calculated based on

the C0/C1 method.

(PPTX)

Figure S19 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the regions 1 kb

upstream of annotated ORFs and the fold enrichment scores were

calculated based on the C0/C1 method.

(PPTX)

Figure S20 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the regions 1 kb

downstream of annotated ORFs and the fold enrichment scores

were calculated based on the C0/C1 method.

(PPTX)

Figure S21 Distributions of the percentage of identical
9-mers between each bin from S.cerevisiae and the
corresponding bins from other, related yeast species.
The 9-mers for each species were derived from the unannotated

intergenic regions and the fold enrichment scores were calculated

based on the C0/C1 method.

(PPTX)

Table S1 Comparison of the top 500 8-mers calculated
using six different methods. 8-mers derived from the region

500 bases upstream of all yeast ORFs were ranked by their relative

abundance as calculated by several background models. The top

20 8-mers ranked by decreasing fold enrichment scores from (a)

our novel background model, the ‘‘Ak-1 method’’ were compared

to those from the previously described C0/C1 method (b), from

Markov models of order 4 sorted by Z-scores (c), from Markov

models of order 4 sorted by Binomial probabilities (d), from

Markov models of order 3 ranked by Z-scores (e) and, Markov

models of order 3 ranked by binomial probabilities (f). The list of

500 8-mers derived by applying our method was chosen as the

reference against which the other lists were compared. 8-mers in

each list that are identical to the ones in the reference list are

marked with a superscript number, which shows its rank in the

reference column (a). The average GC content of each list is shown

in the bottom row of the table, followed by the percentage of k-

mers each method shares with the Ak-1 method.

(DOCX)

Table S2 Comparison of the top 20 8-mers calculated
using six different methods as to their matches with
transcription factor (TF) binding motifs in Yeastract. 8-

mers derived from the region 500 bases upstream of all yeast

ORFs were ranked by their relative abundance as calculated by

several background models. The top 20 8-mers ranked by

decreasing fold enrichment scores from (a) our novel background
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model, the ‘‘Ak-1 method’’ were compared to those from the

previously described C0/C1 method (b), from Markov models of

order 4 sorted by Z-scores (c), from Markov models of order 4

sorted by Binomial probabilities (d), from Markov models of order

3 ranked by Z-scores (e) and, Markov models of order 3 ranked by

binomial probabilities (f). The list of 20 8-mers derived by applying

our method was chosen as the reference against which the other

lists were compared. 8-mers in each list that are identical to the

ones in the reference list are marked with a superscript number

which shows its rank in the reference column (a), while repeat-rich

elements are shown in red. The nine 8-mers identified uniquely by

our method are highlighted in bold (a). The actual TF-binding

motif matching the 8-mer along with the name of the TF from

Yeastract are shown right next to each column of 8-mers. Both

‘Yeastract binding site inside of the inserted motif’ as well as

‘Inserted motif inside Yeastract binding site’ hits were considered.

(XLSX)

Table S3 Comparison of the top 20 9-mers calculated
using two different methods as to their matches with
transcription factor (TF) binding motifs in Yeastract. 9-

mers derived from the region 500 bases upstream of all yeast

ORFs were ranked by their relative abundance as calculated by

different background models. The top 20 9-mers ranked by

decreasing fold enrichment scores from (a) our novel background

model, the ‘‘Ak-1 method’’ were compared to those from the

previously described C0/C1 method (b). The list of 20 9-mers

derived by applying our method was chosen as the reference

against which the other list was compared. 9-mers in each list that

are identical to the ones in the reference list are marked with a

superscript number which shows its rank in the reference column

(a), while repeat-rich elements are shown in red. The 9-mers

identified uniquely by our method are highlighted in bold (a). The

actual TF-binding motif matching the 9-mer and the name of the

TF from Yeastract are shown next to each column of 9-mers. Both

‘Yeastract binding site inside of the inserted motif’ as well as

‘Inserted motif inside Yeastract binding site’ hits were considered.

(XLSX)

Table S4 Comparison of the top 20 10-mers calculated
using two different methods as to their matches with
transcription factor (TF) binding motifs in Yeastract. 10-

mers derived from the region 500 bases upstream of all yeast

ORFs were ranked by their relative abundance as calculated by

different background models. The top 20 10-mers ranked by

decreasing fold enrichment scores from (a) our novel background

model, the ‘‘Ak-1 method’’ were compared to those from the

previously described C0/C1 method (b). Repeat-rich elements are

shown in red. The actual TF-binding motif matching the 10-mer

and the name of the TF from Yeastract are shown next to each

column of 10-mers. Both ‘Yeastract binding site inside of the

inserted motif’ as well as ‘Inserted motif inside Yeastract binding

site’ hits were considered.

(XLSX)

Table S5 Overrepresented k-mers (b) enriched in the 500 bp

upstream regions of ORFs in the S. cerevisiae genome. The k-mer

lengths (a) their presence in the overrepresented lists of the

S.bayanus, S.paradoxus and S.mikatae genomes (c) along with their

matches to known motifs from Yeastract (d).

(DOC)
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