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Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens causing

severe economic losses in sericulture. However, the molecular mechanism of silkworm

resistance to BmNPV remains largely unknown. Here, the recurrent parent P50 (susceptible

strain) and the near-isogenic line BC9 (resistance strain) were used in a comparative tran-

scriptome study examining the response to infection with BmNPV. A total of 14,300 uni-

genes were obtained from two different resistant strains; of these, 869 differentially

expressed genes (DEGs) were identified after comparing the four transcriptomes. Many

DEGs associated with protein metabolism, cytoskeleton, and apoptosis may be involved in

the host response to BmNPV infection. Moreover, some immunity related genes were also

altered following BmNPV infection. Specifically, after removing genetic background and

individual immune stress response genes, 22 genes were found to be potentially involved in

repressing BmNPV infection. These genes were related to transport, virus replication, intra-

cellular innate immune, and apoptosis. Our study provided an overview of the molecular

mechanism of silkworm resistance to BmNPV infection and laid a foundation for controlling

BmNPV in the future.

Introduction
The silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) has been domesticated for produc-
tion of cocoons for more than 5000 years. Silkworm rearing and the silk industry still play an
important role in China, India and many other developing countries. B.mori is also a good
model for the study of insect genetics and immunology [1–4]. Bombyx mori nucleopolyhedro-
virus (BmNPV) is the principal silkworm pathogen and causes serious economic losses in seri-
culture every year. Among numerous silkworm strains, most are susceptible to BmNPV
infection, although a few strains exhibit resistance [5]. The heredity of silkworm resistance
against BmNPV infection is a relatively complicated process because resistance is controlled
both by major dominant genes and multiple genes of micro-effect [6].
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A series of studies have made significant progress in understanding silkworm resistance
against BmNPV infection. Xu et al. reported that Bms3a was potentially involved in resistance
to BmNPV infection [7, 8]. B.mori lipase-1, serine protease-2 and alkaline trypsin protein
extracted from the digestive juice of larvae midguts showed strong antiviral activity in vitro [9–
11]. Using comparative proteomics, arginine kinase was found to be involved in the antiviral
process of different resistant strains of silkworm [12]. In our laboratory, a total of 12 proteins
that are potentially involved in viral infection were identified using one- and two-dimensional
electrophoresis followed by virus overlay assays. These proteins could be categorized into the
following groups: endocytosis, intracellular transportation, and host responses [13]. Immune
responses were found to be synergistically regulated by the Toll, Janus kinase/signal transduc-
ers and activators of the transcription (JAK/STAT) and immune deficiency (IMD) pathways,
which could act as an important defense against exogenous pathogenic infection in conjunc-
tion with subsistent pathogen recognition receptors and response proteins [14–18]. However,
the molecular mechanisms of silkworm resistance to BmNPV infection are still not fully
elucidated.

In recent years, the high-throughput nature of next generation sequencing (NGS), using
platforms such as Illumina HiSeqTM 2500 have provided fascinating opportunities in the life sci-
ences and dramatically improved the efficiency and speed of gene discovery, especially in the
research of host cell responses to exogenous pathogenic infection [19]. For example, Hu et al.
obtained numerous differentially expressed genes (DEGs) involved in metabolism, immunity,
and inflammatory responses inMicrotus fortis following infection with Schistosoma japonicum
based on comparative transcriptome analysis [20]. Diege et al. examined different fish tissues
infected with salmon anemia virus (ISAV) using high-throughput transcriptomics and found a
strong correlation between functional modules and viral-segment transcription [16]. NGS tech-
nology was also used to explore the molecular mechanism of silkworm resistance against exoge-
nous pathogens. Kolliopoulou et al. reported that several genes related to physical barriers,
immune response, proteolytic/metabolic enzymes, heat-shock proteins, and hormonal signaling
were possibly involved in silkworm resistance against Bombyx mori cytoplasmic polyhedrosis
virus (BmCPV) infection; although these genes might be induced by the virus in order to increase
infectivity [21]. Additionally, several candidate genes, such as BmEts, BmToll10-3 andHsp20-1,
have been identified in the initial stage of BmNPV infection by analyzing the global transcrip-
tional profile of silkworm cell lines and heads following BmNPV infection [22, 23].

In order to gain a global view of the molecular changes in silkworms during BmNPV infec-
tion, we selected near-isogenic line BC9 and recurrent parent P50 for transcriptome sequenc-
ing. Through comparative analysis of the transcriptomes from these two strains, a total of 869
DEGs were obtained, which included many genes potentially related to BmNPV-resistance.
Our results may provide some reliable evidence to clarify the BmNPV-resistance molecular
mechanism in silkworm.

Materials and Methods

Virus and Silkworm
BmNPV (T3 strain) was maintained in the Key Laboratory of Sericulture, Anhui Agricultural
University, Hefei, China. The virus was obtained from the hemolymph of infected larvae and
purified by repeated and differential centrifugation according to the protocol developed by
Rahman et al. [24]. The concentration of the virus (OB/mL) was determined by
hemocytometer.

The recurrent parent P50 (susceptible strain), the donor parent A35 (resistant strain) and
the near-isogenic line BC9 were maintained in our laboratory. The near-isogenic line was
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constructed according to the protocol used by Yao et al. [6]. In brief, the recurrent parent P50
was crossed to the donor parent A35; progeny were repeatedly backcrossed with the recurrent
parent for nine generations and each progeny was screened by BmNPV.

The first three instar larvae were reared on a fresh artificial diet at 26±1°C, 75±5% relative
humidity, and a 12 hours day/night cycle. The rearing temperature for the last two instars was
reduced to 24±1°C; other conditions were unchanged. On the first day of fifth instar, all larvae
were starved for 24 hours and then fed with 5 μL BmNPV suspended in sterile water (1.0×105

OB/mL) per larva orally; the control group was treated with sterile water. BmNPV occlusion
bodies (OB) began fast proliferation at approximately 24 hours post inoculation (hpi) [25];
thus, this time was considered optimal for sample collection. Silkworm larvae were dissected
and the midgut tissues were removed and then washed in PBS (137 mMNaCl, 2.7 mM KCl,
4.3 mM Na2HPO4, and 1.4 mM KH2PO4, pH 7.4) prepared with diethy pyrocarbonate (DEPC)
(Sangon, China) treated H2O. Thirty larvae midguts were mixed together to minimize individ-
ual genetic differences. Samples were flash-frozen in liquid nitrogen and pulverized, and 100
mg of sample were added directly into a RNAase free microcentrifuge tube containing 1.0 mL
TRIzol Reagent (Invitrogen, USA) and stored at -80°C for later use.

Silkworm strain resistance level bioassays
The level of silkworm resistance to BmNPV was tested following the protocol developed by
Cheng et al. [26]. The fourth instar larvae were inoculated with BmNPV at different concentra-
tions; inoculations were conducted in triplicate. The level of silkworm resistance was calculated
using IBM SPSS Statistics 20 (IBM, USA).

RNA extraction
The silkworm midguts dissolved in TRIzol Reagent were homogenized. Total RNA of midguts
were extracted according to the manufacturer’s protocol. Concentrations were quantified using
a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA). The purity of all RNA sam-
ples were assessed at an absorbance ratio of A260/280 and A260/230, and the integrity of the RNA
was confirmed by 1% agarose gel electrophoresis.

Library construction, Illumina sequencing and read assembly
Fragment interruption, cDNA synthesis, addition of adapters, PCR amplification and RNA--
Seq were performed by Beijing BioMarker Technologies (Beijing, China). The standard Illu-
mina methods and protocols were adopted to prepare and sequence the cDNA libraries.
NEBNext Poly(A) mRNAMagnetic Isolation Module (NEB, USA) was used to enrich mRNA,
and then the cDNA library was constructed using the NEBNext mRNA Library Prep Master
Mix Set for Illumina (NEB, USA) and NEBNext Multiplex Oligos for Illumina (NEB, USA).
The size of the library insert fragments was determined by 1.8% agarose gel electrophoresis,
and the fragments were quantified using a Library Quantification Kit/Illumina GA Universal
(Kapa, USA). Suitable fragments were selected as templates and sequenced on an Illumina
HiSeqTM 2500 using paired-end technology. Three biological replicates were used to minimize
sample differences.

In order to obtain clean and high-quality reads for sequence assembly, the raw reads were
filtered by removing adaptor sequences, low-quality sequences (reads with ambiguous bases
‘N’) and reads with 10%> Q< 20% bases [27, 28]. The Trinity assemble program was used to
assemble the clean reads into contigs, which covered more full-length transcripts through a
broad range of expression levels [29]. The resultant contigs were added to transcripts based on
paired-end information. The longest transcript from alternative splicing transcripts was
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selected as the unigene. These unigenes were combined to produce the final assembly and used
for annotation.

Functional annotation
To annotate unigenes, different sequences were searched by BLASTx against the NCBI non-
redundant protein (nr) database and other databases, including Swiss-Prot protein database,
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Cluster of Orthologous
Groups (COG) database. Gene Ontology (GO) annotations, including molecular functions,
biological processes, and cellular components, were obtained using the Blast2GO program
(https://www.blast2go.com/) [30, 31]. All searches were performed with an E-value< 10−5.
Fragments per kilobase of transcript per million fragments mapped (FPKM) was calculated to
represent the expression abundance of the unigenes [32]. FPKMmay reflect the molar concen-
tration of a transcript by normalizing for RNA length and for the total read number.

Differentially expressed genes (DEGs) analysis
After normalizing genes expression levels, DEGs were obtained by pair-wise comparison of the
four transcriptome libraries using IDEG6 software [33]. An FPKM fold change of� 1.2
or� 0.83 between two libraries was defined as the reference standard, with the Benjamini–
Hochberg false discovery rate (FDR< 0.01) used to adjust the p-values.

Real-time quantitative PCR analysis
In order to validate the results from our transcriptome sequencing analysis, the relative expres-
sion levels of 15 randomly selected genes were confirmed by reverse transcription quantitative
PCR (RT-qPCR). Additionally, 9 genes with well reported previously were selected to further
validate the genes of interest that might be involved in BmNPV resistance. All the Primers are
listed in Table 1. RT-qPCR reactions were prepared with the SYBR Premix Ex TaqTM Kit
(TaKaRa), following the manufacturer’s instruction. Reactions were carried out in Bio-Rad
CFX96TM Real-Time System (Bio-Rad, USA). The thermal cycling profile consisted of an ini-
tial denaturation at 95°C for 30 s, 40 cycles at 95°C for 5 s, and 60°C for 30 s. All samples were
performed in triplicate. Relative expression levels were calculated using the 2-44Ct method fol-
lowing the protocol of Livak et al. [34]. In this study, B.mori ribosomal protein s3 (BmRPS3)
gene was used as a reference gene. Statistical analysis was conducted using the SPSS software
(IBM, www.ibm.com).

Results

BmNPV infectivity in different silkworm strains
The LC50 value was used to evaluate the resistant level of silkworm to BmNPV infection. The
LC50 value of A35 was approximately 26-fold greater than that of BC9 and over 500-fold
greater than that of P50. The value of BC9 was 23-fold greater than that of P50 (Table 2).

Overview of the silkworm transcriptome
Transcriptome sequencing is an efficient technology for comparing gene expression levels in
different samples, and in our study, it was used to search and analyze DEGs among P50, BC9
control and treatment groups. A total of four cDNA libraries were sequenced: P50- (P50
treated with sterile water), P50+ (P50 infected with BmNPV), BC9- (BC9 treated with sterile
water), BC9+ (BC9 infected with BmNPV), with each group created in triplicate. After remov-
ing the adaptors and low quality sequences, 144,439,382 sequence reads were obtained
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(Table 3). The GC content of each of the four libraries was approximately 50%, and CycleQ30%
was greater than 89.91% for each library. Thus, the quality and accuracy of the sequencing data
were sufficient for further analysis. Most of the reads matched silkworm genomic locations. All
the unigenes matched previously described sequences with approximately 70% coverage. The
length distribution of unigenes had similar patterns among the four libraries, suggesting that
there was little bias in the construction of the four cDNA libraries (Fig 1).

Unigenes annotation and classification
In order to annotate the unigenes, reference sequences were searched using BLASTX against
the NCBI nr database (E-value< 10−5). A total of 12,591 of 13,342 unigenes provided a BLAST
result (S1 Table). S2 Table shows the species with the closest match for each unigene. Most of

Table 1. Primers used in RT-qPCR for validation of DEGs.

Gene ID Forward Primer Reverse primer

BGIBMGA004355 5' GAGAGTTCCCTTGTCGCTTGTG 3' 5' CTCGCAGTTTGCTTTCGTAGTG 3'

BGIBMGA001480 5' CGAGATGGTGTGCTATGGGAAT 3' 5' CGATTTGTCGTCGTTTCAGGA 3'

NewGene_4242 5' TGTCAGTCCCCTCGTTGCTTG 3' 5' CGTTGTGGATTGGTCATCATTCA 3'

BGIBMGA013757 5' TAATGGGTTCCCTTGTGTAATGGT 3' 5' TGTTAGCGAGGTAGTGCCTTTCA 3'

BGIBMGA010400 5' ACGGCTTGGGCGTTGCTATT 3' 5' CGGTTATCTCCGCTTCTGTGCT 3'

BGIBMGA011531 5' CGCCTTCAGAAACACAAGTCGT 3' 5' CGTATCCCATCCTGCTGGTAAC 3'

BGIBMGA013756 5' CCGTGGGTGCTCCCTATGAT 3' 5' GCGGGGTTTGACGAAATGAA 3'

BGIBMGA007540 5' TTCCCATCGTCAAAGAACTCG 3' 5' TTAGCGGTAATAGCGGCAGA 3'

BGIBMGA005673 5' TGCTATGGGTGTGGGTGAAATC 3' 5' GGAAGGCGTCAAAACGAATG 3'

BGIBMGA000680 5' CCATACTACTGCGGTGTCGGTG 3' 5' CATTCCAATCTTGAACGGGCTTA 3'

BGIBMGA010023 5' TGTTTCTCTGGAGCCTTCTACCG 3' 5' GAGTGTTTCCCCAACCGATGA 3'

BGIBMGA000583 5' GAGCAGGGTGATTAGAGCGTTGT 3' 5' CCCACTCGTGAGGAGCGGTA 3'

BGIBMGA010811 5' CAACCCAACAGTTATCGCCG 3' 5' GCTCTCGCATCATCTCCACAT 3'

BGIBMGA007377 5' GAGTCACAACCAGAACCATTGCTAT 3' 5' TACCGACGAAGGAGAGGAACG 3'

BGIBMGA001320 5' GACCCTGAAAACCATCACCCA 3' 5' CGGAGTCGCCGAAGCAAGT 3'

BGIBMGA004002 5' CACTGAGCCAATCGTGCCCT 3' 5' GACTTCATCGGACTCGTCAACAA 3'

BGIBMGA004121 5' CCATCAATAGTCCCAGCACCG 3' 5' CGCTCACAGCACCACCGTCT 3'

BGIBMGA008867 5' AATGGATTCAGGTTTGGACGC 3' 5' CCGACGCTTCTCTTCTTGTTCT 3'

BGIBMGA014369 5' CGGCTCCCTATGGCTTTGG 3' 5' CGGTCAGGACAGTCATCTTCGTG 3'

BGIBMGA004869 5' GTATTGTTGTTTGTTGTGGCAGC 3' 5' CGTGGACTTCGGGATTCTCA 3'

BGIBMGA006775 5' GTGCCAGAGGTTCATCCAGC 3' 5' TGATACAGCCATAGCGGTTCC 3'

BGIBMGA010062 5' GACGGCAACCTCCACAAGC 3' 5' CAGGGGCACCCAAGTCAGTA 3'

BGIBMGA006518 5' CCACGAAGCCAGAAGGATTGT 3' 5' AAGACGGAGGTAGCGAAGGAG 3'

BGIBMGA009012 5' TACAACGATGTGCCCAGTGC 3' 5' CCTTCTTGAGTCCAGCAAATACC 3'

BGIBMGA009319 (BmRPS3) 5' CGATTCAACATTCCAGAGCA 3' 5' GAACACCATAGCAAGCACGAC 3'

doi:10.1371/journal.pone.0155341.t001

Table 2. The LC50 value ofB.mori larvae infected with BmNPV.

Strains LC50 95% fiducial limits

(OB/mL) Lower Upper

BC9 2.27×106 4.58×105 1.74×107

A35[26] 5.90×107 2.14×107 3.22×108

P50[26] 1.03×105 3.96×104 2.24×105

doi:10.1371/journal.pone.0155341.t002
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the annotated sequences had the greatest homology with other B.mori sequences (87%), fol-
lowed by Danaus plexippus (9%).

RT-qPCR validation of differentially expressed transcripts
In order to determine the reliability of the transcriptome sequencing, the relative expression
levels of 15 randomly selected genes were analyzed by RT-qPCR (Fig 2A). The results were
consistent with the transcriptome data. For example, the gene encoding peptidoglycan-recog-
nition protein was down-regulated in both RNA-seq and RT-qPCR analyses, with a similar
fold change. The lipase 1 gene was significantly up-regulated in the resistant strain BC9 after

Table 3. Summary statistics for silkworm genes based on the RNA-seq data.

P50- P50+ BC9- BC9+

Total Reads 34,202,992 39,598,483 33,696,273 36,941,634

GC Content (%) 48 49 48 48

% � Q30 (%) 91.42 90.74 90.07 90.28

Mapped Reads 27,261,542 31,333,514 26,640,096 29,131,867

Mapped Ratio (%) 79.72 79.08 79.06 78.89

Unique Mapped Reads 23,563,245 26,329,862 23,325,074 25,650,914

Unique Mapped Ratio (%) 68.90 66.51 69.21 69.47

doi:10.1371/journal.pone.0155341.t003

Fig 1. Length distribution of unigenes in the assembled transcriptomes. The x axis represents different groups and treatments and the y axis shows the
number of unigenes.

doi:10.1371/journal.pone.0155341.g001
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infection with BmNPV, which was also consistent with previously reported results [10]. Linear
regression analysis of the correlation between RT-qPCR and RAN-seq (Fig 2B) showed an R2

(goodness of fit) value of 0.9169 and a corresponding slope of 1.5281, suggesting a strong

Fig 2. Correlation between gene expression ratios obtained from transcriptome data and RT-qPCR. (A) Expression ratios (FPKM fold
change) obtained from transcriptome data (red) and RT-qPCR (blue). (B) Lineage analysis between the transcriptome and RT-qPCR. The ratios
obtained by RT-qPCR (x-axis) were plotted against the ratios obtained by RNA-Seq (y-axis).

doi:10.1371/journal.pone.0155341.g002
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positive correlation between RT-qPCR and transcriptome data. Therefore, the transcriptome
data were satisfied for further analysis.

Differentially expressed genes (DEGs) and their possible roles in host
response to BmNPV
To further elucidate which DEGs had a potential role in antiviral response, a Venn diagram
was constructed. A total of 285 DEGs were found to be differentially regulated when compar-
ing P50+ and P50-, of which 122 were up-regulated and 163 were down-regulated. Similarly,
193 DEGs were found to be differentially regulated in the comparison of BC9+ vs. BC9-, with
56 genes up-regulated and 137 down-regulated. In addition, there were 154 DEGs differentially
regulated in the comparison of BC9- and P50-, among which 78 genes were up-regulated and
76 genes were down-regulated (Fig 3, Table 4, S3 Table).

There were 197, 119, 82 unique DEGs in P50+ vs. P50-, BC9+ vs. BC9- and BC9- vs. P50-,
respectively. GO assignments were used to assign a functional classification to these DEGs. For
cellular components, the number of unique DEGs fell into the macromolecular complex classi-
fication was distinct in BC9 and P50 following BmNPV infection. For molecular functions, the
number of transporter activity related unique DEGs was distinct in BC9 and P50 following
BmNPV infection. For biological progresses, the number of unique DEGs involved in metabo-
lism processes and localization was distinct in BC9 and P50 following BmNPV infection
(Fig 4).

Analysis of DEGs associated with protein metabolism, cytoskeleton, and
apoptosis
The comparisons of BC9+ vs. BC9- and P50+ vs. P50- identified many DEGs that might either
be involved in silkworm defense against BmNPV or facilitate BmNPV infection. These genes
could be divided into three categories: protein metabolism, cytoskeleton, and apoptosis.

Most of the DEGs (70%) associated with protein metabolism were down-regulated in BC9
following BmNPV infection. In contrast, 80% of the genes in P50 were up-regulated after
BmNPV infection. Most of the DEGs (87.5%) associated with the cytoskeleton were up-regu-
lated in P50 after BmNPV infection, but the number of up-regulated genes (50%) decreased in
BC9. A total of 19 DEGs associated with apoptosis were identified following BmNPV infection.
Ten of these DEGs were altered in BC9 after BmNPV infection. The other DEGs were all over-
expressed in P50 following BmNPV infection (Table 5).

Alteration in immunity related gene expression after BmNPV infection in
different resistant strains
Pathogen infection stimulated both cellular and humoral responses of insects [33–36]. Genes
participating in innate immunity pathways were identified and analyzed in regards to their
potential role in BmNPV infection (Table 6). Thirty DEGs were identified, which could be clas-
sified into Toll pathway, Imd pathway, polyphenol oxidase (PPO) pathway, pattern recognition
receptor, and antimicrobial peptide. As shown in Table 6, 14 (47%) of these genes were down-
regulated and 9 (30%) were up-regulated in BC9 after infection with BmNPV, while 17 (57%)
were down-regulated and 6 (20%) were up-regulated in P50 after BmNPV infection.

Role of selected DEGs in BmNPV resistance
After removing the genetic background and strain specific immune stress response genes, a
total of 22 DEGs were identified as possibly being involved in silkworm resistance to BmNPV
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(Fig 3, Table 7). For BC9- vs. P50-, 13 genes were up-regulated and the rest were down-regu-
lated. However, the 22 genes were all down-regulated in BC9 following BmNPV infection (Fig
5). Some genes, including prostatic acid phosphatase, protease inhibitor 6, actin cytoskeleton-

Fig 3. Venn diagram showing the DEGs related to BmNPV infection in different resistant strains.

doi:10.1371/journal.pone.0155341.g003

Table 4. The number of up-regulated, down-regulated and unique DEGs of the pairwise comparisons of the experimental groups. Shared numbers
of DEGs are also shown in Fig 3.

Groups Total Up-regulated genes Down-regulated genes Unique genes

P50+ vs. P50- 285 122 (43%) 163 (57%) 197

BC9+ vs. BC9- 193 56 (29%) 137 (71%) 119

BC9- vs. P50- 154 78 (51%) 76 (49%) 82

doi:10.1371/journal.pone.0155341.t004
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regulatory complex protein PAN1, and EF-hand domain-containing protein, were further ana-
lyzed by RT-qPCR (Fig 6). After BmNPV infection, the expression levels of 4 genes were
down-regulation in BC9 and A35 (resistant strain) (Fig 6), which was consistent with the tran-
scriptome data. Thus, we deduced that the 22 genes were possibly involved in resistance to
BmNPV infection. Gene functions fell into the following categories: transport, virus replica-
tion, intracellular innate immunity, and apoptosis.

Discussion
Despite the confirmation of an association between many genes and proteins and resistance to
BmNPV, the molecular mechanism of antiviral activities was still unclear. Here, transcriptome
sequencing was carried out to identify genes related to BmNPV-resistance in silkworm across
the genome. By using the near-isogenic line BC9 (resistant strain) and the recurrent parent P50
(susceptible strain) to study silkworm antiviral mechanisms, some DEGs responding to
BmNPV infection were successfully identified after comparing infected groups and controls in
the two strains.

Overview of specific DEGs in two strains following BmNPV infection
Based on the GO analysis, more DEGs were found to be involved in metabolic processes in
BC9 (17.8%) than in P50 (9.2%) following BmNPV infection (Fig 4), which was consistent
with previous reports for Sogatella furcifera (Hemiptera: Delphacidae) and Campoletis

Fig 4. Gene ontology (GO) analysis of DEGs in different comparable groups. These genes were divided into groups based on cellular component,
molecular function, and biological process. The percent of DEGs that could be assigned to the different categories are indicated.

doi:10.1371/journal.pone.0155341.g004
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Table 5. DEGs involved in protein metabolism, cytoskeleton, and apoptosis after BmNPV infection in different resistant strains.

Name Gene ID P50-
FRKM

P50
+ FPKM

BC9-
FPKM

BC9
+ FPKM

P50+ vs. P50-
ratio

BC9+ vs. BC9-
ratio

Protein metabolism

Hypothetical protein KGM_08787 BGIBMGA003894 6.479 7.031 6.991 4.125 1.085 0.590

B(0,+)-type amino acid transporter 1 BGIBMGA007713 34.455 33.024 25.861 18.795 0.958 0.727

L-asparaginase BGIBMGA012995 21.645 24.361 21.849 16.429 1.125 0.752

NEDD8-conjugating enzyme UBE2F BGIBMGA013486 8.256 7.871 7.639 10.033 0.953 1.313

4-aminobutyrate aminotransferase BGIBMGA006823 106.219 101.463 117.167 155.906 0.955 1.331

Uncharacterized protein LOC101742492 BGIBMGA006234 21.208 16.606 15.485 14.839 0.783 0.958

Proton-coupled amino acid transporter 4 BGIBMGA001151 1.715 3.412 2.198 1.239 1.990 0.564

Y+L amino acid transporter 2 BGIBMGA010801 1.541 2.816 2.030 1.249 1.827 0.615

Solute carrier family 12 member 6 BGIBMGA003629 1.068 1.736 0.867 0.564 1.625 0.651

Cystathionine gamma-lyase BGIBMGA003656 219.509 270.108 184.300 138.484 1.231 0.751

Cytoskeleton

Actin BGIBMGA013945 945.736 1115.438 637.646 1057.763 1.179 1.659

Muscle LIM protein isoform 1 BGIBMGA001202 124.039 124.062 89.846 127.161 1.000 1.415

Apolipophorins isoform X2 BGIBMGA013341 2.345 3.642 2.198 2.856 1.553 1.300

Putative villin BGIBMGA003119 6.824 6.585 7.700 9.502 0.965 1.234

Zinc finger protein Gfi-1b BGIBMGA006132 12.448 18.952 12.387 9.220 1.522 0.744

Actin cytoskeleton-regulatory complex
protein PAN1

BGIBMGA004121 83.016 99.504 54.242 28.428 1.199 0.524

Actin cytoskeleton-regulatory complex
protein PAN1

BGIBMGA004002 4834.384 6342.360 4000.747 1781.384 1.312 0.445

Actin cytoskeleton-regulatory complex
protein PAN1

BGIBMGA010768 7.855 45.723 7.668 0.250 5.821 0.033

Proteasomal ATPase-associated factor 1 BGIBMGA003545 4.920 8.102 6.756 7.861 1.647 1.164

Actin-binding protein BGIBMGA013080 2.026 3.810 2.813 3.095 1.880 1.100

ATPase family AAA domain-containing
protein 3

BGIBMGA000542 23.055 17.196 20.730 21.882 0.746 1.056

Apoptosis

Conventional protein kinase C BGIBMGA014132 0.352 0.305 0.384 0.250 0.866 0.652

Pyruvate dehydrogenase kinase BGIBMGA003258 6.211 5.928 4.519 3.213 0.955 0.711

P53 BGIBMGA013185 0.714 0.687 0.675 0.552 0.963 0.818

Creb BGIBMGA006865 21.657 21.099 23.179 18.966 0.974 0.818

Cytochrome c BGIBMGA009012 1149.891 1072.848 1153.371 1464.034 0.933 1.269

Cell death activator CIDE-B BGIBMGA011008 4.881 4.655 4.116 6.451 0.954 1.567

Caspase Nc BGIBMGA002841 5.533 6.677 6.469 6.021 1.207 0.931

cAMP-dependent protein kinase C1 BGIBMGA011429 17.894 23.160 20.027 21.581 1.294 1.078

Tak1 BGIBMGA010752 6.565 8.039 6.933 7.573 1.224 1.092

Apoptosis-inducing factor BGIBMGA014381 0.836 1.080 0.633 0.725 1.291 1.145

Protein kinase ASK1 BGIBMGA010545 1.928 2.558 2.321 2.588 1.327 1.115

Ribosomal protein S6 kinase, 90 kda BGIBMGA011088 14.457 19.178 17.556 20.070 1.327 1.143

Daxx BGIBMGA007470 7.205 9.653 9.246 9.842 1.340 1.065

TRAF6 BGIBMGA001290 1.493 2.077 1.604 1.906 1.392 1.188

TNFSF5 BGIBMGA003585 0.257 0.206 0.376 0.577 0.799 1.535

Survivin 2 BGIBMGA003946 0.521 0.387 0.585 1.015 0.743 1.737

App BGIBMGA008317 0.075 0.032 0.045 0.093 0.433 2.059

(Continued)
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sonorensis (Hymenoptera: Ichneumonidae) [35, 36]. Approximately twice as many DEGS
related to transporter activity were identified in BC9 (12.2%) than in P50 (6.3%) (Fig 4).
Down-regulation of transporter related genes, such as lactase-phlorizin hydrolase (LPH), B(0,
+)-type amino acid transporter 1 (BAT1), actin cytoskeleton-regulatory complex protein
PAN1 (PAN1), MFS-type transporter (MFS), and otoferlin, could repress virus infection in
host cells [37–42]. Therefore, the increased number of these genes with altered expression lev-
els in BC9 might be related to BmNPV infection. Moreover, the number of macromolecular
complex genes in BC9 (14%) following BmNPV infection that showed an increase in expres-
sion compared with P50 (5.1%) were similar to previous reports [43, 44].

Protein metabolism, cytoskeleton, and apoptosis may play an important
role in host response to BmNPV infection
Cellular and metabolic processes will be dramatically changed after viral infection [35]. In our
study, several DEGs that participate in protein metabolism were found to be of interest. For exam-
ple, solute carrier family 12 is involved in transporting extraordinarily diverse solutes [45], and
cystathionine gamma-lyase participates in hydrolysis of cystathionine [46]. Viruses may have to
rely on cell proteins to accomplish replication in intercellular regions [47], therefore, the down-
regulation of the genes involved in protein metabolism could inhibit the replication of BmNPV in
the host cell. We speculated that the down-regulation of these genes affected virus replication.

Cytoskeleton-dependent intracellular transport is an important strategy for transport of
viral particles to different destinations [48]. In this study, some cytoskeleton related genes were
found to be of interest, including actin cytoskeleton-regulatory complex protein PAN1 and
actin-binding protein. These genes related to actin-coupled endocytosis could promote viral
transport [49, 50]. We speculated that the down-regulation of the cytoskeleton genes might
affect BmNPV transport.

Apoptosis plays a vital role in regulating cell response in Lepidopteran insects during viral
infections, where larvae use selective apoptosis and subsequent sloughing of the infected cells
in the midgut epithelium to resist virus infection [51, 52]. In this study, some genes related to
activation of apoptosis were found to be of interest, including cytochrome c, inhibitor of cas-
pase-activated DNase, amyloid precursor protein and B-cell lymphoma protein 2. The activity
of caspase-activated DNase was blocked by Hepatitis C virus core at physiological levels, result-
ing in the inhibition of apoptotic cell death [53]. Amyloid precursor protein is a member of
several signaling pathways that are involved in abnormal cell cycles, subsequently leading to
apoptosis [54]. B-cell lymphoma protein 2 could bind to BH3 domains of various pro-apopto-
tic regulators to activate apoptosis [55]. The overexpression of cytochrome c in rabies virus
showed a decreased pathogenicity in vitro and in vivo [56]. Based on their role in apoptosis
activation, hosts need to increase the expression level of these genes to promote apoptosis
when exposed to a virus; this supposition explains the up-regulation of genes involved in apo-
ptosis in the transcriptome following BmNPV infection. Additionally, a significantly higher

Table 5. (Continued)

Name Gene ID P50-
FRKM

P50
+ FPKM

BC9-
FPKM

BC9
+ FPKM

P50+ vs. P50-
ratio

BC9+ vs. BC9-
ratio

Buffy BGIBMGA001845 0.261 0.047 0.000 0.000 0.181 NA

The ratio represents the fold change of FPKM values after infection with BmNPV: a ratio � 1.2 indicates genes that were up-regulated, a ratio � 0.83

indicates genes that were down-regulated. Abbreviation: na, not applicable.

doi:10.1371/journal.pone.0155341.t005
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relative transcriptional level of cytochrome c was detected by RT-qPCR in BC9 and A35 (Fig
6), which indicated the up-regulation of this gene could activate apoptosis to repress further
BmNPV infection. However, some genes were down-regulated, including cysteine aspartic acid
specific protease 9L, protein kinase A, apoptosis-inducing factor, apoptosis signal-regulating
kinase 1, TNF-receptor-associated factor 6, TGF-beta-activated kinase 1, and p90 ribosomal S6

Table 6. Relative FPKMs of innate immune-related genes in silkworm after BmNPV infection in different resistant strains.

Description Gene ID P50-
FRKM

P50
+ FPKM

BC9-
FPKM

BC9
+ FPKM

P50+ vs. P50-
ratio

BC9+ vs. BC9-
ratio

Toll pathway

Protein toll-like BGIBMGA011084 0.016 0.035 0.008 0.074 2.142 9.010

18 wheeler BGIBMGA011037 0.048 0.111 0.089 0.124 2.314 1.396

Protein toll-like BGIBMGA011034 1.936 2.607 1.903 1.829 1.347 0.962

Slit homolog 2 protein BGIBMGA011085 0.049 0.000 0.040 0.008 0.000 0.212

Hypothetical protein KGM_16873 BGIBMGA011216 30.386 28.239 23.694 25.300 0.929 1.068

Toll-like receptor 13 BGIBMGA008840 0.572 0.842 0.645 0.307 1.472 0.475

Slit homolog 2 protein BGIBMGA011025 0.112 0.128 0.061 0.070 1.144 1.157

Slit homolog 3 protein BGIBMGA011082 1.351 1.454 1.333 1.952 1.076 1.464

Protein toll-like BGIBMGA006244 0.182 0.207 0.226 0.093 1.139 0.412

Imd pathway

Inhibitor of nuclear factor kappa-B kinase
subunit beta

BGIBMGA008389 2.825 3.434 3.333 3.683 1.216 1.105

Nuclear factor NF-kappa-B p110 subunit
isoform 1

BGIBMGA002465 19.945 17.731 23.296 17.230 0.889 0.740

Nuclear factor NF-kappa-B p110 subunit
isoform 1

BGIBMGA002464 41.624 37.288 44.316 36.213 0.896 0.817

PPO pathway

Serine protease inhibitor dipetalogastin BGIBMGA009047 54.598 68.729 50.136 52.770 1.259 1.053

Serine protease inhibitor 6 BGIBMGA007729 0.372 0.858 0.549 0.350 2.308 0.638

Pattern recognition receptor

C-type lectin 10 BGIBMGA006768 1.300 3.213 1.591 1.503 2.472 0.945

Macrophage mannose receptor 1 BGIBMGA002288 0.133 0.392 0.000 0.066 2.940 na

Beta-1,3-glucan recognition protein 2 BGIBMGA011609 12.509 7.548 33.869 7.289 0.603 0.215

Peptidoglycan-recognition protein SC2 BGIBMGA000584 3.019 4.118 3.421 3.479 1.364 1.017

Peptidoglycan recognition protein S6 BGIBMGA012866 0.722 0.253 0.734 0.081 0.351 0.110

Antimicrobial peptide

Attacin BGIBMGA002739 0.193 0.000 0.098 0.048 0.000 0.495

Attacin precursor BGIBMGA002747 1.055 0.974 0.820 0.145 0.923 0.177

Cecropin-A precursor BGIBMGA006280 0.481 0.000 0.328 0.325 0.000 0.989

Defense protein precursor BGIBMGA014360 0.162 8.504 4.234 0.200 52.588 0.047

Gloverin 1 precursor BGIBMGA013863 1.805 1.326 6.944 0.684 0.735 0.098

Gloverin 2 precursor BGIBMGA005658 17.719 9.138 14.492 3.872 0.516 0.267

Gloverin 3 precursor BGIBMGA013803 3.068 2.236 1.915 1.245 0.729 0.650

Hemolin BGIBMGA008736 0.000 0.022 52.634 0.136 na 0.003

Lebocin-3precursor BGIBMGA006775 4.279 2.530 26.723 0.912 0.591 0.034

Lysozyme BGIBMGA007458 1.936 4.622 0.876 2.108 2.387 2.407

Moricin 1 BGIBMGA011495 0.000 0.000 0.379 0.192 na 0.507

The ratio represents the fold change in the FPKM value after infection with BmNPV; a ratio � 1.2 indicates genes that were up-regulated, a ratio � 0.83

indicates genes that were down-regulated. Abbreviation: na, not applicable.

doi:10.1371/journal.pone.0155341.t006
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kinase. The inhibition of these genes may strongly impair viral infectivity and virus-induced
apoptosis [57–62].

Changes to immune gene expression following infection with BmNPV
Although some differential expression of immune genes was observed, this might not be con-
sidered biologically important due to low expression levels; low expression levels were also
found after BmCPV infection [21]. In this study, most immune related genes were down-regu-
lated, with a few exceptions, such as the 2-fold up-regulation of toll-like protein and lysozyme.
The expression of several other genes, including 18 wheeler, macrophage mannose receptor 1,
and slit homolog 3 protein, were also up-regulated during the BmNPV infection. Unfortu-
nately, the relationship between immune genes and BmNPV remains unclear and requires fur-
ther study. We presumed that the low expression levels of immunity related genes may be
associated with the disruption of the immune system by BmNPV, similar to the pathogenicity
of human immunodeficiency virus (HIV).

Multiple genes have potential roles in repressing BmNPV infection
Based on the Venn diagram, 22 genes of interest were identified, all of which were down-regulated
in BC9 following BmNPV infection. These genes were grouped based on their functions, as reported

Table 7. Relative FPKMs of 22 DEGs of interest in BC9 following BmNPV infection.

Name Gene ID P50-
FPKM

P50
+ FPKM

BC9-
FPKM

BC9
+ FPKM

BC9- vs. P50-
FPKM

BC9+_vs.
_BC9- FPKM

Peptidoglycan-recognition protein 2 BGIBMGA000583 300.13 229.37 197.96 121.57 0.66 0.61

Adenylate cyclase type 5 BGIBMGA002064 3.52 2.39 3.48 1.14 0.99 0.33

Pyruvate dehydrogenase kinase BGIBMGA003258 6.21 5.93 4.52 3.21 0.73 0.71

MFS-type transporter BGIBMGA003409 50.65 47.67 15.50 6.82 0.31 0.44

Actin cytoskeleton-regulatory complex protein
PAN1

BGIBMGA004121 83.02 99.50 54.24 28.43 0.65 0.52

B(0,+)-type amino acid transporter 1 BGIBMGA007713 34.46 33.02 25.86 18.79 0.75 0.73

EF-hand domain-containing protein CG10641 BGIBMGA008867 36.74 28.33 25.33 18.58 0.69 0.73

Lactase-phlorizin hydrolase BGIBMGA010811 1751.88 1141.90 913.76 411.25 0.52 0.45

EN protein binding/engrailed nuclear
homeoprotein-regulated protein

BGIBMGA011701 49.08 54.49 37.03 27.34 0.75 0.74

Antimicrobial protein 6Tox BGIBMGA000861 0.59 0.37 3.91 0.26 6.57 0.07

Facilitated trehalose transporter Tret1 BGIBMGA004426 3.90 6.88 9.06 3.19 2.32 0.35

Protease inhibitor 6 BGIBMGA004869 7.51 6.49 51.58 4.39 6.86 0.09

Lebocin-3 BGIBMGA006775 4.28 2.53 26.72 0.91 6.25 0.03

1-acyl-sn-glycerol-3-phosphate
acyltransferase alpha

BGIBMGA007880 7.70 2.58 17.19 8.46 2.23 0.49

Hemolin BGIBMGA008736 0.00 0.02 52.63 0.14 NA 0.00

Integument esterase 2 BGIBMGA009544 2.39 2.49 8.48 1.12 3.55 0.13

Alanine aminotransferase 2 BGIBMGA011984 0.34 0.13 9.50 0.13 27.59 0.01

Otoferlin BGIBMGA012258 0.02 0.04 2.23 0.05 96.93 0.02

U2AF function domain protein BGIBMGA013991 0.00 0.07 2.95 0.15 NA 0.05

Defense protein precursor BGIBMGA014360 0.16 8.50 4.23 0.20 26.18 0.05

Prostatic acid phosphatase BGIBMGA014369 71.98 60.03 111.41 54.97 1.55 0.49

Zinc Ribbon domain protein NewGene_1603 0.00 0.00 2.17 0.00 NA 0.00

The ratio represents the fold change in the FPKM value after infection with BmNPV; a ratio � 1.2 indicates genes that were up-regulated, a ratio � 0.83

indicates genes that were down-regulated. Abbreviation: na, not applicable.

doi:10.1371/journal.pone.0155341.t007
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in the literature. These groups, including transport, virus replication, intracellular innate immune,
and apoptosis, may play an important role in the process of silkworm resistance to BmNPV.

Several genes related to virus transport, including lactase-phlorizin hydrolase (LPH) [37], B
(0,+)-type amino acid transporter 1 (BAT1) [38, 46], actin cytoskeleton-regulatory complex
protein PAN1 (PAN1) [63], and otoferlin [41, 42] were identified in this study. The expression
level of these genes were all down-regulated in BC9 following BmNPV infection (Fig 5). The
resistant strain A35, a donor parent, was used to validate our results. The expression level of
PAN1 was chosen for further testing by RT-qPCR. Expression levels of PAN1 were down-regu-
lated in both BC9 and A35 following BmNPV infection (Fig 6). The down-regulation of virus
transport-related genes could inhibit the transmembrane and intracellular transport of
BmNPV thereby preventing further infection. MFS-type transporter (MFS) [39, 40], a trans-
membrane facilitator, was induced to increase intracellular monovalent ion concentrations,
which led to lysis and cell death after HIV-1 infection. The down-regulation of this gene in silk-
worm could potentially block BmNPV infection.

Several genes related to virus replication were found to be of interest, including engrailed
nuclear homeoprotein-regulated protein [64], 1-acyl-sn-glycerol-3-phosphate acyltransferase
alpha (ASGPA) [65, 66], alanine aminotransferase 2 (ALT2) [67, 68], U2AF domain protein
(U2AF) [69, 70], adenylate cyclase type 5 (ACT5) [71], EF-hand domain-containing protein
(EFHP) [72, 73], prostatic acid phosphatase (PAP) [74], and zinc ribbon domain protein
(ZRDP) [75]. In this study, the expression level of these genes were all down-regulated in the
transcriptome of BC9 following BmNPV infection (Fig 5). In order to validate the results, RT-
qPCR was conducted as described above. The expression levels of EFHP and PAP were lower
following BmNPV infection in both BC9 and A35 (Fig 6). The down-regulation of these genes
could directly or indirectly participate in repressing BmNPV replication in host cells.

Fig 5. Expression patterns of selected genes related to BmNPV resistance in different resistant strains. Each row represents a different gene, with
blue, yellow and red indicating low, medium and high levels of gene expression, respectively.

doi:10.1371/journal.pone.0155341.g005
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Of the genes related to apoptosis, the expression level of pyruvate dehydrogenase kinase
(PDK) was obviously inhibited after treatment with apoptosis-inducing agents [76]; such
down-regulation might activate apoptosis in response to BmNPV infection.

Protease inhibitor 6 is a member of the protein superfamily that contains TIL functional
domain. Zhao et al. used genome sequences to demonstrate that the expression level of the TIL
superfamily were down-regulated following BmNPV infection [77], which was consistent with
our results (Fig 6). Furthermore, peptidoglycan-recognition protein 2, hemolin, facilitated tre-
halose transporter Tret1, integument esterase 2, defense protein precursor, and antimicrobial
protein 6Tox precursor also showed differential expression following BmNPV infection. The
relationship of these genes to BmNPV is an important area for further study.

Four DEGs were down-regulated in BC9 following BmNPV infection, including ras-
responsive element-binding protein 1, GTPase-activating protein, trypsin alkaline A and per-
oxidase (Fig 5). Previous studies revealed that these proteins play a role in virus infections.

Fig 6. Real-time PCR analysis of expression profiles of several genes in B.morimidgut. After removing genetic background and individual
immune stress response genes, 22 differentially expressed genes of interest potentially involved in resistance to NPV infection were obtained.
Additionally, 119 genes unique differentially expressed in the isogenic-line BC9 (resistant strain) following BmNPV infection were observed. In order to
further conformed the function of these genes, 4 genes from 22 DEGs and 5 genes from 119 DEGs with well reported previously were selected to
conduct RT-qPCR.

doi:10.1371/journal.pone.0155341.g006
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Mdv1-miR-M4 encoded by Marek's disease virus efficiently targeted the 3' untranslated regions
of ras-responsive element-binding protein 1 (RREB1) [78]. TBC domain proteins belonging to
a GTPase-activating protein were knocked out by double stranded RNA interference (RNAi),
which led to a decrease in the level of transcripts of white spot syndrome virus genes [79].
Trypsin in the myocardium was able to trigger acute myocarditis following influenza A virus
infection [80]. Overexpression and RNA silencing studies revealed that peroxidase was
involved in the production of hepatitis C virus particles [81]. Moreover, RT-qPCR results indi-
cated that the expression levels of all genes were down-regulated in BC9 and A35 following
BmNPV infection (Fig 6). Therefore, we speculated that the down-regulation of these genes
might be involved resistance to BmNPV infection.

Hypothesized modal analysis of the roles of the screened DEGs in
silkworm resistance to BmNPV infection pathway
We hypothesized that the 22 DEGs discussed above played a role in the process of host
response to BmNPV infection. The endocytosis process is triggered when the BmNPV nucleo-
capsid containing envelope binds to the cytomembrane. Vacuolar ATP synthase is activated by
LPH to promote the fusion of the envelope and endosome thereby releasing the nucleocapsid

Fig 7. Hypothesizedmodal analysis of the roles of the screened DEGs in BmNPV infection pathway. V-ATPase is activated by LPH to promote viral
entry into the cytoplasm, a process which was also effected by PAN1 and otoferlin. BAT1 related channel could serve as an alternative pathway for virus
transmembrane transport. The released nucleocapsid is transported into the nucleus with the help of EFP. During replication, EFHP, ASGPA, ALT2, U2AF,
ACT5 and ZRDP play an important role in facilitating virus replication. MFS is induced by the virus to increase cell volume leading to cell death. At the same
time, the apoptosis process could be triggered by PDK to inhibit BmNPV infection.

doi:10.1371/journal.pone.0155341.g007
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into the cytoplasm. This process can be promoted by PAN1 and otoferlin. However, the trans-
membrane transport channel is an alternative pathway for virus to enter the cytoplasm, a pro-
cess which can be facilitated by BAT1. The released nucleocapsid is transported into the
nucleus with the help of the cytoskeleton (EFP). Once viral DNA is released into the nucleus, it
will utilize host nucleotides to complete replication. In the final step of replication, viral DNA
has to rely on host cell amino acids for assembly on the cytoskeleton (Table 5) [82]. In the cyto-
plasm, EFHP, ASGPA, ALT2, U2AF, ACT5 and ZRDP play an important role in facilitating
virus replication, although the exact mechanism is still unclear. Moreover, transmembrane
protein, MFS, is induced by BmNPV to increase cell volume, leading to lysis and cell death. We
speculated that the down-regulation of these genes may affect the entry of virus into host cells
and virus replication. The apoptosis process could also be triggered by PDK to inhibit BmNPV
from further infecting other cells once BmNPV entered a host cell (Fig 7).

Taken together, our results provide useful information on silkworm resistance to BmNPV
infection.
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