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Abstract

Modern science of networks has brought significant advances to our understanding of complex systems biology. As a
representative model of systems biology, Protein Interaction Networks (PINs) are characterized by a remarkable modular
structures, reflecting functional associations between their components. Many methods were proposed to capture cohesive
modules so that there is a higher density of edges within modules than those across them. Recent studies reveal that
cohesively interacting modules of proteins is not a universal organizing principle in PINs, which has opened up new avenues
for revisiting functional modules in PINs. In this paper, functional clusters in PINs are found to be able to form unorthodox
structures defined as bi-sparse module. In contrast to the traditional cohesive module, the nodes in the bi-sparse module
are sparsely connected internally and densely connected with other bi-sparse or cohesive modules. We present a novel
protocol called the BinTree Seeking (BTS) for mining both bi-sparse and cohesive modules in PINs based on Edge Density of
Module (EDM) and matrix theory. BTS detects modules by depicting links and nodes rather than nodes alone and its
derivation procedure is totally performed on adjacency matrix of networks. The number of modules in a PIN can be
automatically determined in the proposed BTS approach. BTS is tested on three real PINs and the results demonstrate that
functional modules in PINs are not dominantly cohesive but can be sparse. BTS software and the supporting information are
available at: www.csbio.sjtu.edu.cn/bioinf/BTS/.
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Introduction

Most biological characteristics arise from complex interactions

between the cell’s numerous constituents, such as proteins, DNA,

RNA, and small molecules [1–5]. Therefore, a great challenge in

systems biology is to understand the structure and the dynamics of

the complex intercellular networks of interactions that contribute

to the structure and function of a living cell [5]. Biological

functions seldom rely on individual proteins to perform particular

cellular tasks; quite on the contrary, they are generally discovered

from interactions among multiple members to form highly-

organized modules, where proteins often interact intimately and

intensively [6]. Modules are of interest because they often

correspond to functional subunits [5], such as protein complexes

[6,7] or social spheres [8]. Revealing these modular constituents in

networks will undoubtedly bring richer biological information in

gaining insights into dynamic of molecular systems on a new

landscape. As a representative example in complex biological

systems, PIN is widely used to predict protein functions [9–11]

because its dynamic and modular structures are considered to be

capable of providing more significant and direct evidences in

formation of protein functions. One of the examples is known as

the automatic protein complex prediction method, where protein

complexes generally correspond to clusters in a PIN because

proteins in a complex are strongly interactive with each other [12].

Considering the importance of the module information buried in a

PIN, a number of mathematical and computer algorithms have

been proposed to tackle module and protein complex detections in

protein interaction networks [6,13–18].

However, it has been revealed that the cohesive modules did not

completely depict various functional units in PINs. In 2007, Wang

et al analyzed the yeast PINs including PIC network that includes

protein complex data and PEC network that excludes all edges

inferred from protein complexes, and they found that the

identified modules lack obvious correspondence to functional

units [19]. In 2010, Pinkert et al presented an alternative approach

different from prior definitions of what actually constitutes a

‘‘module’’ to detect functional modules in PINs. They applied the

method (denoted as Pinkert method in the following section) to the

PIN from the Human Protein Reference Database (HPRD) and

found some self-linking and isolated nodes that were proved to be

functional modules [20]. What’s more, the authors found some
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significant non-diagonal modules, which were functionally related

and can provide better description for the characteristics of a

protein interaction network than cohesive modules alone.

Therefore, the common notion that cohesive module is considered

as the sole organizing structure for functional unit is challenged. A

Simulated Annealing (SA) based algorithm was also proposed in

[20] for the purpose of finding both cohesive and sparse modules.

Although this method was demonstrated effective, it is highly

dependent on the parameters chosen for optimization in SA, for

example, initial temperature and cooling factor, where the most

difficult parameter could be the number of modules in the network

should be predefined. By setting different number of clusters, one

can get totally different outputs. This parameter is particularly

hard to be set properly when the network size is large. Another

disadvantage of optimizing modularity E-value by SA [20] is for

diagonal and non-diagonal modules, the over-split phenomena

can’t be avoided in the whole process (Figure 1).

Unlike previous approaches that extract clusters or modules by

identifying groups of proteins with similar patterns of interaction

to other proteins, this paper focuses on an unorthodox structure of

module that is defined as bi-sparse module. The members in bi-

sparse module are sparsely connected internally and densely

connected with other bi-sparse or cohesive modules. Accordingly,

we proposed a BinTree Seeking (BTS) method based on the Edge

Density of Module (EDM) and binary tree theory to mine both bi-

sparse and cohesive functional modules. Different from the

existing literatures, which focus on grouping nodes [21] or

optimizing modularity [16,22–24] in networks, the new BTS

method takes full advantage of the relationship between network

edges and nodes and binary search tree theory. Another merit of

BTS approach is that it does not need to set the number of

modules beforehand and this important parameter can be

automatically identified in BTS based on a given evaluation

criterion. By applying the BTS method to analyze the protein

Kinase and Phosphatase Interaction Network (KPIN) [25], a

human protein interaction network from the I2D database [26],

and a yeast interaction network from DIP database [27], we finally

obtain functional clusters composed of both cohesive and bi-sparse

modules.

Results

The results by applying BTS on synthetic network
Detection of blocks is a classic issue in complex network studies

and many methods were proposed in the literature [28–30]. The

outputs from traditional approaches are dominantly cohesive

clusters in the objective network, which are considered functional

important. As a significant complement, it has been revealed

recently that sparse module also could be important functional

units although the links among their members are very sparse [20].

A synthetic benchmark network that is composed of 128 nodes was

constructed consisting of four modules, two of which are cohesive

clusters and the other two form bi-partite structures. In order to

effectively demonstrate the robustness of the proposed BTS method,

5 noisy complex networks with noise level of 0.1,0.5 were

constructed by adding noise to the original benchmark data

(Figure 2(A)–(E)), where the way to add noise is the same as described

in the Pinkert method [20]. The proposed BTS and the Pinkert

method (the number of classes is set to be 4) were both employed to

mine the clusters in these 5 noisy networks. Figure 2(F) compares the

E-value results from the two methods respectively. From the results

we can find that BTS can get smaller E-values on 3 tested networks of

noise level equal to 0.1, 0.3, and 0.4; Pinkert method performs better

on the other two networks. Our experiments also show that E-values

in the Pinkert method can be changed dramatically when the number

of classes is set to other values.

Figure 1. An example of the over-split results for diagonal and non-diagonal modules. The over-split issue in the Pinkert method means
that the error function E value does not change if a big diagonal or non-diagonal module is split two or multi modules.
doi:10.1371/journal.pone.0027646.g001
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The results of applying BTS to real PINs data
By using the proposed BTS method, we analyzed the KPI

protein interaction network, DIP yeast protein interaction

network, and BIND human protein interaction network. As a

result, we get 29, 59, and 65 modules respectively on these three

PINs (see Figure S1 for details).

Different module quality control criterions are available in the

literature, for example, the concepts of structural equivalence [31],

Figure 2. The E values for the two methods on 5 complex networks. Synthetic networks composed of 2 cohesive clusters and 2 bi-partite
structures: (A) with 10% noise; (B) with 20% noise; (C) with 30% noise; (D) with 40% noise; (E) with 50% noise; and (F) E-value comparison results
between Pinkert method and proposed BTS.
doi:10.1371/journal.pone.0027646.g002
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Newman modularity Q [23,32], and the E value that describes the

connection structure of the original network [20,33] (see Appendix

S2 for definitions of Q and E function). The former two are found

as special cases of the E-value used by the Pinkert approach.

Therefore, we mainly focus on the comparison of the final E values

computed by the proposed BTS method and others. In the Pinkert

method, the E-values significantly depend on the predefined

number of modules or clusters q and it is still not clear how to

determine and select q, which is usually identified by trying

different choices. Therefore, in this study, we use the same strategy

as in [20] by testing different selections of q, i.e., q = 5 to q = 25,

50, and 100. Figure 3 illustrates the relationship between E and q

on the three PINs studied in this paper. From Figure 3, we get an

impression that the E values tend to decrease when q increases. In

this paper, the typical q = 5, 25, 50 and 100 were selected and their

corresponding E values were compared with the BTS method. In

addition, the q = 29, 65, and 59 were also set in the Pinkert

method on KPI PIN, BIND human PIN, and DIP yeast core PIN

respectively because these q values were equal to the outputs from

BTS method. The Figure 4 shows the results of comparative E

values. As can be seen from Figure 4, the BTS method yields the

smaller E values compared with the Pinkert method in BIND

human PIN and DIP yeast core PIN (apart from q = 100), which is

better according to the definitions of E. In KPI PIN, the E-values

by BTS are larger than those generated by Pinkert method in most

q selection cases. This could be the existence of some large bi-

sparse and cohesive functionally related modules that will be

proved by following sections.

In order to evaluate the functional meaningfulness of the

obtained modules by the BTS method, Newman-fast method, and

the Pinkert method, we performed Gene Ontology (GO) [34]

Figure 3. The relationship between E and q on three PINs in the
Pinkert method.
doi:10.1371/journal.pone.0027646.g003

Figure 4. E values comparison results between BTS and Pinkert
methods on 3 different PINs. 29, 65, and 59 modules were identified
by BTS on the three PINs respectively and results of 5 different number
of clusters q of Pinkert method on each PIN were reported.
doi:10.1371/journal.pone.0027646.g004

Figure 5. The p-values of cumulative distribution frequency of
KPIN. The x-axis represents log(p-value) and the y-axis represents the
cumulative distribution frequency of the modules of which p-value less
than the corresponding log(p-value) in the x-axis.
doi:10.1371/journal.pone.0027646.g005

Figure 6. The p-values of cumulative distribution frequency of
BIND human PIN. The x-axis represents log(p-value) and the y-axis
represents the cumulative distribution frequency of the modules of
which p-value less than the corresponding log(p-value) in the x-axis.
doi:10.1371/journal.pone.0027646.g006
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enrichment analysis for all modules using the BiNGO tool [35],

which was incorporated into the Cytoscape platform [36]. Based

on the BiNGO tool, the number of the modules with no significant

annotations and the p-values (biological process BP) of all modules

are compared. The cumulative distribution frequency of all

modules detected by three approaches is employed to explain

the results of the p-values (see Figure S1 for the detailed results of

cumulative distribution frequency and P-values). The performance

comparisons are presented in Figures 5, 6, and 7 where it is

generally considered to be better if the area under the

corresponding curve is larger. As can be seen, the two areas

captured by BTS method and Newman method are nearly equal

in Figure 5. In Figures 6 and 7, the BTS method achieves the

largest area in three methods apart from some cases such as the

results generated by the Pinkert method with q = 5.

Then, let’s further analyze the cumulative distribution frequen-

cy of P-values on the microcosmic level. For example, the BTS

method captures 5.36% and 12.96% of modules that have at least

one enriched GO-term (BP) with p-value lower than 10225 in

BIND human PIN and yeast core PIN, respectively. Using

Newman-fast method, the two values are 2.73% and 7.86%.

Unlike the BTS and Newman-fast method, the results of Pinkert

method vary significantly with the predefined number of clusters

q. As a result, 40% modules have one enriched GO-term with p-

value lower than 10225 when the q value is set to be 5, and no

modules are found to have at least one enriched GO-term with p-

value lower than 10225 when the q values are set to others on these

two PINs. In additional experiment, 3.7% and 4.92% of modules

with p-value lower than 10225 are obtained when we test the BTS

method and Newman-fast method on the KPIN network. Using

the same data set, the Pinkert method can identify 40% modules

with p-value lower than 10225 in a special case (q = 5). These results

indicate that the BTS method does capture more effective

functional units than the Pinkert method in spite of the low p-

values obtained by setting small q (q = 5). The outstanding results,

which are generated from the Pinkert method with q = 5, is

possible because the small q value leads to the formation of large

modules, however the meanings of very small number of modules

(q = 5) in large PINs are still not clear. In our experiments, we also

found that since the Newman-fast method aims to seek maximum

Q, it tends to output a few or some large relative dense modules

and an amount of small modules especially in sparse networks.

Whereas the BTS method tries to simultaneously analyze both bi-

sparse and cohesive modules, keep the balances between bi-sparse

and cohesive modules by preventing the formation of very large

cohesive modules.

Even though a p-value gives a good indication about the

prominence of a certain functional category, it is risky to draw

conclusions solely based on p-values [35]. Therefore, we take an

additional way that was used in [20] of computing the number of

modules that do not have significant enrichment of GO-terms.

Figures 8 and 9 show the number of modules which lack

enrichment in Biological Process (BP) and in all three basic

categories of Gene Ontology annotations, i.e., biological process,

molecular function, and cellular component. Since Newman-fast

method detects modules (communities) only by optimizing the

modularity Q and can not effectively detect modules in sparse

Figure 7. The p-values of cumulative distribution frequency of
Yeast core PIN. The x-axis represents log(p-value) and the y-axis
represents the cumulative distribution frequency of the modules of
which p-value less than the corresponding log(p-value) in the x-axis.
doi:10.1371/journal.pone.0027646.g007

Figure 8. Number of modules with no annotations in BP in
Gene Ontology.
doi:10.1371/journal.pone.0027646.g008

Figure 9. Number of modules with no annotations in all of the
three basic categories of Gene Ontology annotations, i.e.,
biological process, molecular function and cellular component.
doi:10.1371/journal.pone.0027646.g009
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networks and get many small modules, the modules of lacking

enrichment by Newman-fast method are more than those from the

BTS method. As shown in Figure 8, 2/29 module, 9/65 modules,

and 5/59 modules obtained by BTS approach lack enrichment in

GO BP annotations in KPIN, BIND human PIN, and Yeast core

PIN respectively. When evaluating these results with all three

categories GO annotations (Figure 9), 3/29 module, 5/65

modules, and 4/59 modules lack enrichment annotations in the

tested three PINs. For the Pinkert method, the number of modules

without highly significant annotation would increase with the q

values become larger. When we set the q value to 5 in the Pinkert

method, the number of modules without highly significant

annotation in BP or in all three basic categories of GO can be

decreased to 0 as shown in Figures 8 and 9. Although most of

modules are annotated because there are more proteins in these

modules with a small q, these modules lack of significant biological

meanings from the statistic p-values as shown in Figures 5, 6, and 7.

Hence, the Pinkert method would inevitably get into the dilemma

when trying to solve the relationship between optimizing the error

function value (E) and the number of modules (q) (refer to Figure

S1 for the number of modules without highly significant

annotations).

Case studies of mined bi-sparse modules by BTS
In the Yeast core PIN, module 36 is a bi-sparse module with

EDM = 0, this cluster is closely related to the biological functions of

rRNA modification (p-value = 1.7066E-10). Module 36 is found

densely connecting with another bi-sparse module 35, whose EDM

is also 0 and the members of which are highly enriched under rRNA

processing (p-value = 1.1915E-8). Figure 10 illustrates the detailed

connections between the two bi-sparse modules. This intuitive

figure has demonstrated again the importance to develop novel

approaches that can effectively find bi-sparse functional clusters in

PINs. Apart from Module 36 and 35, bi-sparse module 15

(EDM = 0) containing 261 proteins is also found highly enriched

under regulation of biological process (p-value = 1.3513E-13) and

regulation of cellular process (p-value = 2.8968E-13).

In the KPI PIN, module 28 is a bi-sparse module with

EDM = 0, which means there are almost no internal links among

the 107 nodes in this cluster. However, it is interesting to find that

members in module 28 are densely linked with another bi-sparse

module 27 in the same network (42 nodes and EDM = 0). Both

modules 27 and 28 are significantly enriched in biological

regulation (p-value = 1.8192E-9) and acetyl-CoA biosynthetic

process from pyruvate (p-value = 1.8245E-9) respectively. Although

the nodes in the two clusters weakly link each other, they do form

functional units. It is also found that these two bi-sparse modules

strong connect with the cohesive modules 3 and 4 that are

involved in nucleolus organization (p-value = 2.6173E-7) and

protein amino acid phosphorylation (p-value = 7.7314E-11) respec-

tively. The other example in KPIN is module 13, which is also a

bi-sparse module with EDM = 0, indicating 17 member proteins

have no connections with each other. However, they are

demonstrated to be closely functional related with protein amino

acid phosphorylation (p-value = 7.3985E-15) and phosphorylation

(p-value = 7.4029E-13). By analyzing the distribution results of the

above 17 nodes obtained by Newman-fast algorithm, we found 3

members (YGK3, SRP1, CLA4) of were clustered into module 7

in Newman’s results, proteins PSK1 and CLB2 were distributed

into module12, 2 proteins of YCK1 and SKM1 were fallen into

module 11, and the rest 10 proteins were clustered into different

modules by Newman-fast algorithm. These results reveal that

Newman-fast algorithm prefers to separate the nodes in sparse

modules although they are indeed functional related. This bi-

sparse module is not found by the Pinkert method either,

indicating BTS is more sensitive than the Pinkert method.

In BIND human protein interaction network, module 32

detected by BTS is also a bi-sparse module with EDM = 0. This

Figure 10. Connections between bi-sparse modules 35 and 36 detected by BTS method in the Yeast core PIN.
doi:10.1371/journal.pone.0027646.g010
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module contains 167 proteins and 143 of them are protein

bindings (p-value = 5.175E-40). From the EDM, although all the

proteins in the module do not interact with each other, most of

them are found to have related functions in signaling (p-

value = 4.5229E-8) and regulation of catalytic activity (p-va-

lue = 1.2642E-6).

Case studies of mined cohesive modules by BTS
In addition, the BTS method can also effectively identify

cohesive modules. For example, mined module 3 in KPIN is a

cohesive module (EDM = 0.293) that is significantly enriched in

protein amino acid phosphorylation (p-value = 7.278E-8) and

nucleolus organization (p-value = 2.6173E-7). Modules 4

(EDM = 0.312), 8 (EDM = 0.216), and 22 (EDM = 0.257) in the

Yeast core PIN are the cohesive modules that are involved in

transcription (p-value = 6.2057E-26), protein import into nucleus (p-

value = 3.348E-36), and RNA 39-end processing (p-value = 1.5842E-

30) functions respectively.

Discussion

Protein interaction networks are typical complex biological

systems that are difficult to be understood from raw experimental

data alone. Algorithmic and modeling progresses in the area of

biomolecular networks analysis have been demonstrated contrib-

uting significantly to the understanding of biological processes and

organizations. A common traditional hypothesis is that a

functional module in a network is a cohesively linked group of

nodes, densely connected internally, and sparsely interacting with

the rest of the network. So, many algorithms in the literature try to

identify functional modules in PPI networks by searching for such

cohesive groups of proteins. However, recent studies have revealed

that it is not always the case that members in the functional

module link each other densely to form a cohesive cluster. In this

paper, a new structure called bi-sparse module was defined, and it

would be interesting to answer the question of why bi-sparse

subnetworks can compose functional modules. For the bi-sparse

modules that link two or multiple bi-sparse or cohesive modules,

these proteins might play the role as transport products; for other

bi-sparse modules, the homogeneity repulses could be good

explanations for the phenomenon.

BinTree Seeking (BTS) method based on the Edge Density of

Module (EDM) is proposed to detect both bi-sparse and traditional

cohesive modules. Results on three PINs illustrate that BTS can

effectively mine functional units, which is better than the

approaches that mainly based on maximizing modularity Q (or

E), especially in discovering sparse functional clusters. The BTS

method also has advantages that can automatically find optimized

number of modules in a large PIN. Although BTS method has

been demonstrated useful, there is much space to decrease its

computational complexity. When applying the current BTS

method for analyzing the PIN with more than 10,000 nodes, it

could take several days for running depending on the configura-

tions of computation platform. How to speed up BTS and

implement a fast algorithm is our future direction. We will also

study the effects of different modularity evaluation criteria on the

final results in the future. BTS software and the supporting

information are available at: www.csbio.sjtu.edu.cn/bioinf/BTS/.

Materials and Methods

Materials
In order to verify the universality of bi-sparse functional modules

and effectiveness of the proposed BTS method, we applied the BTS

approach to three different PINs of different scales. Two

experimentally verified yeast protein interaction networks were

used. The first one is a global protein Kinase and Phosphatase

Interaction Network in yeast (KPIN), which includes 1,844

interactions between 887 protein partners [25]. The other yeast

protein interaction network is the DIP ‘‘core’’ set of PPIs and

contains 2,147 proteins and 4,275 interactions by removing self-link

interactions [27], which is available at http://dip.doe-mbi.ucla.

edu/dip/. The third benchmark dataset is human protein

interaction network downloaded from the I2D database at:

http://ophid.utoronto.ca/ophidv2.201/downloads.jsp. The I2D

database [26] is an online database of known and predicted

mammalian and eukaryotic protein-protein interactions. It consists

of all human protein interaction data sets (including HPRD, BIND,

etc). By identifying ‘BIND’ label and removing self-link interactions,

we get 3,724 proteins and 8,748 interactions. Detailed information

of these 3 PINs is given in the supporting information.

Methods
The bi-sparse module introduced in this work is a new

organizational structure of functional unit in PINs, which is

difficult to be mined by applying traditional methods that are

specialized for detecting cohesive modules. For example, Accord-

ing to the definition of the modularity Q [16,23] or E [20], a graph

has community structure with respect to a random graph with

equal size and expected degree sequence. Therefore, the

modularity maximum of a graph reveals a significant community

structure only if it is appreciably larger than the modularity

maximum of random graphs of the same size and expected degree

sequence [37]. Although Reichardt and Bornholdt have studied

the issue of the modularity values for random graphs in some

depth and proposed the developmental modularity for community

detection [38], it was particularly hard to detect communities in

sparse graphs by using modularity optimization [37].

Thus, we propose to achieve this task based on the Edge Density

of Module (EDM) and binary tree theory, which is called a BinTree

Seeking (BTS). In this new approach, the PIN matrix blocks along

Figure 11. Black blocks (1, 2 and 3), white blocks (4 and 5), and
grey blocks (6 and 7) represent cohesive modules, bi-sparse
modules and bridge matrixes respectively in an adjacency
matrix of a network. Block 6 represents the links between blocks 2
and 4, block 7 represents the links between blocks 4 and 5.
doi:10.1371/journal.pone.0027646.g011
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the diagonal of the adjacency matrix represent the inner links in the

functional modules (both bi-sparse and cohesive modules), and the

non-diagonal matrix blocks represent bridge matrix in adjacency

matrix of a PIN or links between different functional modules in a

PIN. Figure 11 gives an intuitive picture of bi-sparse module,

cohesive module, and bridge matrix. Hence, the process of detecting

both bi-sparse and cohesive modules is equivalent to optimize the

EDMs of the three kinds of modules in an adjacency matrix.

It can be proved that the information of topological interactions

in a PIN contained in the matrix is kept unchanged after matrix

primary transpositions on the adjacency matrix, such as

rearranging the rows and columns, and the information of the

rearrangement will be saved in each row and column. We define

this quality of adjacency matrix as information synchronization

(see Appendix S1 for the proof). Hence, the goal of searching

functional modules in a PIN can then be totally achieved by the

operations on the adjacent matrix directly. This is different from

the conventional approaches in the literature, which detect

functional modules by optimizing an objective function of

grouping nodes.

Given a module r, its EDM is defined as:

EDMr~
lr

n|(n{1)=2
~

Pn
i~1

Pn
j~1

rij

n2{n
ð1Þ

Figure 12. The BinTree Seeking (BTS) method, black blocks, white blocks and grey blocks represent cohesive modules, bi-sparse
modules and adjacency matrix blocks to be processed respectively.
doi:10.1371/journal.pone.0027646.g012

Figure 13. The procedure for building bi-sparse modules, where the white block in adjacency matrix represents bi-sparse modules
and the gray blocks represent bridge matrixes. Figure A shows the important steps in constructing the bi-sparse module; and figure B shows
how to regulate the bi-sparse module based on its edge density of bridge matrix when some nodes in the bi-sparse module do not meet the
threshold a3.
doi:10.1371/journal.pone.0027646.g013
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Figure 14. The flowchart for detecting modules from adjacency matrix by BTS.
doi:10.1371/journal.pone.0027646.g014
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where lr is the actual number of edges in the module r, n is the

total nodes in r. We define the Link Density (LD) between a node a

and module r as follows:

LD~

Pn
i~1

eai

n
ð2Þ

where eai~1 if there is a link between a and the i-th node in r,

otherwise eai~0.

Edge Density of Bridge Matrix (EDBM) between modules r1

and r2, and the Edge Density for a whole Network R (or a protein

interaction network) (EDN) are defined respectively as:

EDBM~

1

2

Xn1

i~1

Xn2

j~1

bmij

n1|n2
ð3Þ

EDN~
LR

N|(N{1)=2
~

PN
i

PN
j

Rij

N2{N
ð4Þ

where

bmij~
1 i[r1,j[r2, if vertices i and j are connected,

0 i[r1,j[r2, if vertices i and j are not connected:

�
ð5Þ

and n1, n2 are the number of nodes in modules r1 and r2

respectively, LR is the actual number of edges a network R, N is

the total number of nodes in network R.

For these definitions, the bridge matrix locates on non-diagonal

in adjacency matrix and ensures the links between cohesive

modules as few as possible and refines the sizes of bi-sparse

modules. Moreover, a priority of operations on adjacency matrix is

defined in BTS, i.e., ‘‘cohesive module’’.‘‘bridge matrix’’.‘‘bi-

Figure 15. The relationship between the threshold a1, a2 and E values on the benchmark data with noise level 0 (A) and 0.1 (B)
mentioned above, respectively.
doi:10.1371/journal.pone.0027646.g015
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sparse module’’. By defining the priority, BTS method can not

only successfully capture the functionally cohesive modules defined

in traditional approaches because they have the highest priority

but also meaningful bi-sparse modules because the priority of

‘‘bridge matrix’’ is higher than ‘‘bi-sparse module’’, and the

‘‘bridge matrix’’ is capable of refining the sizes of the bi-sparse

modules.

Depending on the definitions and priority given above, we detect

modules from the adjacency matrix of a PIN in following steps.

First, by randomly selecting a seed node, we try to build its cohesive

modules (left subtree of Figure 12) by adding the nodes whose link

density values larger than a threshold a1 and build its bi-sparse

modules (right subtree of Figure 12) by adding the nodes whose link

density values smaller than a threshold a2. As a result, we obtain a

Binary Tree (BinTree) with a root (Adjacency matrix) and two

leaves, i.e., left subtree represents the adjacency matrix that includes

a cohesive modules and the other represents the adjacency matrix

that includes a bi-sparse module. Second, the bridge matrixes (block

6 in Figure 11 for example) of the cohesive modules are built if its

edge density of bridge matrix value larger than a threshold a3.

Likewise, for the bi-sparse modules obtained by the previous step, its

bridge matrixes are also built (block 7 in Figure 11 for example).

Third, remove the nodes whose link density values do not meet the

threshold a1 in cohesive module and regulate the bi-sparse module

based on its bridge matrixes. Figure 13 gives a simple illustration for

building and updating the bi-sparse module. Finally, repeat these

steps, until all nodes are processed.

When all the nodes in the network are classified into different

modules, a big bintree is built on the whole network and every

pathway in the bintree corresponds to a state to detect modules in

a PIN. For all the leave modules in the bintree, we can then

evaluate their qualities using some criteria (such as E value) and

find the best outputs. The intuitive description of the BTS method

and the detailed computation steps are shown in Figures 12 and 14

respectively, where modules on the leftmost path of Figure 12 are

similar to modules detected by Newman-fast algorithm [39] that

tries to build cohesive modules.

As discussed above, the three thresholds (a1, a2, a3) play important

roles in BTS. Hence, how to select proper values is a major point.

There are some notices for prudently selecting the three thresholds.

First, a1 is the lower limit of the link density of cohesive module; a2 is

the upper limit of link density of bi-sparse module, and a3 is the

lower limit of edge density of bridge matrix required to confirm the

existence of bridge matrix. Second, we set a1,1 and a2.0, so it can

fit the network as a whole to image graphs as good as possible.

Third, a1 and a3 are the lower limits of the edge density of cohesive

matrix blocks and bridge matrixes respectively. So, they should be

larger than the upper limit of the edge density of bi-sparse matrix

blocks a2. Due to the priority mentioned above, a1 is required to be

larger than a3. Therefore, the three threshold values should satisfy

a1.a3.a2. According to our experiments, a3 can be set as the edge

density of the given PIN calculated by Eq. (4), and then change the

values of a1 and a2 accordingly. Figure 15 (A) and (B) illustrate the

relationship between a1, a2, and the E-values obtained by BTS on

the synthetic network. From the two figures, we can see that the

combination of a1~a0:7
3 and a2~a1:5

3 is a significant infection point.

E-values tend to increase when a1wa0:7
3 and a2wa1:5

3 , but the

various values of a1 and a2 that belong to a1[½a3
0:7*a3

0:9� and

a2[½a3
1:5*a3

2� respectively lead to various E values with tiny

fluctuation. Although one can get even smaller E values if a1va3
0:7

and a2va3
1:5, these cases possibly lead to form more small modules.

Hence according to the experiments, we select the thresholds as

a1~a0:7
3 and a2~a1:5

3 in this study. We also recommend other

combinations for these 3 thresholds on the condition that

a1[½a3
0:7*a3

0:9� and a2[½a3
1:5*a3

2�.
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