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icroenvironment: the
“harbor” of acute lymphoblastic leukemia cells
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Abstract
Bone marrow (BM) microenvironment regulates and supports the production of blood cells which are necessary to maintain
homeostasis. In analogy to normal hematopoiesis, leukemogenesis is originated from leukemic stem cells (LSCs) which gives rise to
more differentiated malignant cells. Leukemia cells occupy BM niches and reconstruct them to support leukemogenesis. The
abnormal BM niches are the main sanctuary of LSCs where they can evade chemotherapy-induced death and acquire drug
resistance. In this review, we focus on the protective effects of BM niche cells on acute lymphoblastic leukemia cells.
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1. INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a hematologic
neoplasm characterized by clonal proliferation of B or T
malignant cells (B-ALL or T-ALL). The normal bone marrow
(BM) microenvironment is disrupted by leukemia cells1 and then
switches to an abnormal niche to protect leukemia cells from
therapy-induced cell death, resulting in disease progression.2

There are two distinct BM niches. One is the osteoblastic niche
which includes osteoblasts, stromal cells, adipocytes, macro-
phages, and regulatory T cells (Tregs). The other is the vascular
niche which consists of vascular endothelial cells and perivascular
stromal cells3,4 (Table 1). The dynamic interactions between
niche cells and ALL cells are through cells and non-cellular
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components (eg, extracellular matrix). A better understanding of
the abnormal niche to the progression of ALL may offer new
therapeutic potentials.

1.1. Osteoblastic niche
1.1.1. Osteoblasts. Osteoblasts, attached to endosteum, are
critical components of the osteoblastic niche.5 Osteoblasts play a
key role in the proliferation, differentiation, and maintenance of
hematopoietic stem cells (HSCs) by releasing various growth
factors, such as granulocyte colony-stimulating factor (G-CSF),
mSCF (stem cell factor),6,7 so the absence of osteoblasts leads to
the loss of HSCs. In counterpart to the normal microenviron-
ment, osteoblasts secrete cytokines, chemokines to protect
leukemic stem cells (LSCs) from death induced by multi-drugs,8

showing an indispensable impact on leukemogenesis. For
example, osteopontin is an extracellular matrix molecule secreted
by osteoblasts, which could maintain LSCs in a dormant state,
resulting in the evasion of death from cytotoxic agent cytarabine
(Ara-C).9

To investigate the functional impact of osteoblasts on ALL
cells, Moses et al10 described a 2D co-culture model and found
that only ALL cells buried beneath osteoblasts went into
quiescence and showed significant resistance to chemotherapy.
This was related to reduced expression level of BCL6 protein, a
proto-oncoprotein in ALL cells.
Altered miRNA expression has provided valuable insight into

the molecular mechanisms of leukemia.11 Manipulating miR-
221/222 could induce quiescent cells to cell cycle, and increase the
sensibility of S phase cells to chemotherapeutic drugs.15When co-
cultured with osteoblasts, expression of miR-221/222 in ALL
cells decreased, which created a quiescent chemo-resistant ALL
phenotype.12

1.1.2. Bone marrow stromal cells. BM mesenchymal stem
cells (MSCs) have multi-lineage potential and are able to
differentiate into adipocytes, osteoblasts, osteoclasts, chondro-
cytes, fibroblasts, stromal cells, and neuronal cells3,13 (Figure 1).
However, due to the lack of unique markers, the characterization
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Table 1

Types of BM niche cells.

Niche cells types Function in normal BM

Osteoblastic niche cells Osteoblasts Regulate normal hematopoiesis
MSCs Origin of BM niche cells and regulate hematopoiesis
Adipocytes Negatively regulate normal hematopoiesis
Macrophages Support HSCs survival and retention
Tregs Mediate immune responses and prevent immune attack

Vascular niche cells Vascular endothelial cells Regulate angiogenesis
CAR cells Secret abundant CXCL 12, maintain HSCs pool, and HSCs proliferation
NES+MSC cells Express and regulate HSCs maintenance genes, and promote HSCs homing
LepR+ cells Express SCF, and maintain HSCs numbers

BM = bone marrow, CAR = CXCR12-abundant reticular, HSCs = hematopoietic stem cells, MSCs = mesenchymal stem cells, SCF = stem cell factor.
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of MSCs is still a mystery. What counts is that BM stromal cells
(BMSCs) are key players in the transformation of the niche to
favor the survival of leukemia cells.14 Primary LSCs are unable to
proliferate and survive without BMSCs.15,16

It is known that many adhesive interactions between leukemia
cells and BMSCs contribute to the self-renewal and survival of
leukemic cells, such as lymphocyte function-associated antigen
(LFA-1)/intercellular adhesion molecule-1 (ICAM-1)-mediated
adhesion,17 very late antigen-4 (VLA-4)/vascular cell adhesion
molecule-1-mediated adhesion,18 and N-cadherin/b-catein medi-
ated adhesion.19 Besides, BMSCs show pro-function to ALL
through cytokines and molecules. Activin A, a member of the
transforming growth factor-b (TGF-b) family secreted by
BMSCs, was highly expressed when co-cultured with ALL cells,
resulting in modulating the proliferation, migration, and
progression of ALL cells.20 Naderi et al21 found that BMSC-
derived prostaglandin E2 (PGE2) could inhibit DNA damage-
induced p53 accumulation by activating cAMP-PKA signaling,
thereby accelerating leukemogenesis and protecting against
therapy-induced cell death. Yu et al22 confirmed that over-
Figure 1. MSCs differentiate into various BM niche cells. M
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expression of HO-1, a cytoprotective enzyme, in BMSCs could
enhance the resistance of B-ALL cells to vincristine, which was
induced by PI3K/AKT signaling pathway. In addition, asparagine
secreted by BMSCs was absorbed by ALL cells to protect
themselves from asparaginase cytotoxicity.23

Chemotherapeutic drugs, including paclitaxel, anthracyclines,
ara-C, and methotrexate24 induced apoptosis of leukemia cells
through upregulating the level of reactive oxygen species
(ROS).25 Upregulating the ROS level, particularly in mitochon-
dria which was the prime source of ROS, was a feasible strategy
of killing ALL cells.26 Cai et al27 found that reduced
mitochondrial ROS level was related to BMSC coculture, which
induced chemotherapy resistant. T-ALL cells cultured with
BMSCs led mitochondrial metabolism to switch toward the
glycolytic phenotype, which was initiated by phosphorylation of
Drp1. In addition, intracellular oxidative stress may be elicited by
chemotherapeutic drugs. T-ALL cells transferred more mito-
chondria through tunneling nanotubes that were protrusions
extending from cell membrane to BMSCs, but received fewer
mitochondria from BMSCs, resulting in chemoresistance. ICAM-
SCs = mesenchymal stem cells, BM = bone marrow.
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1 mediated the adherence between T-ALL cells and BMSCs in
mitochondria transfer. Treatment with a neutralizing antibody
against ICAM-1 led to a decreased number of adhering ALL cells,
decreased mitochondria transfer, and increased chemotherapy-
induced cell death.28 These findings suggested that mitochondria
transfer could be a potential therapeutic target, and interruption
of ICAM-1-mediated T-ALL/BMSCs adhesion may be a novel
strategy for T-ALL treatment. Overall, the role of BMSCs in the
leukemic microenvironment remains controversial, therefore
further investigation is needed to explore the mechanisms of
diverse effects of BMSCs in ALL.

1.1.3. Adipocytes. BM adipocytes (BMAs) derived from
either Sca1+CD45�CD31�29 or LepR+CD45�CD31� BMSCs
are abundant in BM30 and increase with age. BMAs secrete a
variety of adipokines, inflammatory factors, and free fatty acid
(FFA) to regulate hematopoiesis.31 Increased adiposity is
frequently coincident with reduced hematopoiesis.
BMAs produce numerous factors, such as stromal cell-derived

factor 1a (SDF-1a), leptin, adiponectin, and FFA32 to progress
leukemia. Adipocytes were energy storage to provide a suitable
proliferation capacity forALL cells, in the formof FFAs and amino
acids.33 Tucci et al34 found that FFA could be the fuel source to
ALL cells. In turn, they stimulated adipocytes lipolysis and unitized
adipocyte-derived free acids for growth. Blocking lipolysis and
FFA efflux from BMAs or inhibition of FFA oxidation may offer a
promising therapeutic avenue for ALL treatment.34 For example,
L-asparaginase was applied in ALL treatment, due to the extreme
sensitivity of leukemia cells to the decrease of exogenous
asparagine and glutamine.35,36 Ehsanipour et al37 found that
adipocytes caused ALL cells resistance to L-asparaginase via
producing glutamine and asparagineet.However, the protection of
ALL cells from adipocytes was inhibited by pretreatment with the
inhibitor of glutamine synthetase.
On the other hand, adipocytes attract ALL cells to migrate to

a safe area to protect them from chemotherapy-induced
apoptosis. Pramanik et al38 demonstrated that ALL cells
migrated into adipose tissue through adipocyte-derived SDF-
1a, and thus gained a survival advantage within BM niche.
Additionally, ALL cells were protected from chemotherapy in
vitro by adipose tissue38 via upregulation of survival genes Bcl-2
and Pim-2.
Leptin, an adipocyte-secreted hormone that was involved in

hematopoiesis,39,40 can activate many signaling pathways,
including JAK/STAT, MAPK/ERK1/2, and PI3K signaling
pathways to stimulate cell proliferation and protect leukemia
cells from apoptosis.41,42 Besides, Lu et al39 reported that
upregulation of LepR could inhibit ALL progress. Serum leptin
levels were markedly higher in ALL patients than health
controls43 whereas the leptin levels of BM-derived plasma from
children ALL were significantly lower than healthy controls at
diagnosis. Leptin levels were normalized after complete hemato-
logic remission of ALL.44

In summary, although various studies have been carried out to
investigate the effect of BMAs in tumorigenesis, BMAs as a cell-
based therapy for ALL are less reported. Therefore, much more
studies are necessary to develop targeted therapy based on the
interaction between BMAs and ALL.

1.1.4. Macrophages. Macrophages, which are considered as
pivotal components of immune responses,45 play significant
and distinctive roles in hematopoiesis. Macrophages can be
divided into two subsets, M1 and M2. M1 macrophages
produce proinflammatory cytokines (IL-12, IL-1b, TNFa,
www.blood-science.org
IL-6, and IL-23) and immune activation factors to encourage
inflammation and tumor suppression.46,47 M2 macrophages
secrete anti-inflammatory cytokines (IL-10, IL-13, and TGF-b)
and PGE2 to suppress inflammation and promote the invasion,
growth, and metastasis of tumors.47,48

The role of tumor-associated macrophages (TAMs) had been
extensively investigated in solid tumors whereas few reports in
hematopoietic malignancies. In leukemic microenvironment,
TAMs are called leukemia-associated macrophages (LAMs),
which mostly display an M2-like phenotype49 and promote
leukemia. In Notch1-induced mouse model of T-ALL, the gene
expression patterns and phenotypes of LAMs from BM, spleen,
and peritoneum showed significant differences. LAMs from
spleen accelerated T-ALL progression. Compared with LAMs
from BM and spleen, peritoneum-derived LAMs expressed more
M1 associated genes.50 Valencia et al51 highlighted that the ALL
cells released bone morphogenetic protein 4 (BMP4) to induce
macrophages to polarize toward an M2-like macrophage with
pro-tumoral features, which in turn stimulate ALL progression.
Taken together, increasing evidence suggest that ALL cells
actively engage in crosstalk with LAMs to regulate their
progression. So, repolarizing macrophages into M1 phenotype
may be a promising therapeutic strategy in ALL.

1.1.5. Regulatory T cells. Among immunocytes in BM
microenvironment, Tregs are the mostly well-characterized type,
which are pivotal regulators in various inflammatory conditions
and secure peripheral T-cell tolerance.52 Tregs which comprise
around 2% to 10% of human CD4+ T-cells,53 are characterized
by positive expression of CD4, CD25, the transcription factor
forkhead box P3 (Foxp3), and negative expression of CD127.
Tregs suppressed T-cell activities through the production
of immunosuppressive cytokines, including IL-10, TGF-b, and
IL-35.54,55

Tregs could be activated by CD19+ B-ALL cell lines and
primary B-ALL blasts.56 It is known that the percentage of Tregs
cells was higher in patients with B-ALL and the expression of
cytotoxic T lymphocyte-associated antigen-4, glucocorticoid-
induced tumor necrosis factor receptor, and lymphocyte
activation gene 3 increased, suggesting that the activation of
Tregs might be an initiator to immune escape. Additionally, there
was a positive correlation between patients’ age and Tregs
numbers. The more Tregs cells ALL patients had, the worse
prognosis they got, indicating that a higher percentage of Tregs in
ALL predicted a worse immunological reaction.
Helios in combination with FoxP3, are suitable markers for

discriminating functional Tregs.56 Li et al57 demonstrated
patients with pre-B ALL had a higher percentage of Helios+

FoxP3+CD4+ Tregs, and the expression level of Helios was
correlated positively with the inhibition of Tregs. Thus, Helios
may be a novel target to manipulate Treg activity in ALL
immunotherapy.

1.2. Vascular niche
The vascular niche, also known as the endothelial niche, is

mainly served as a location where the proliferation, differentia-
tion, and mobilization of short-HSCs take place.58 The vascular
niche is comprised of many different cell types that ensure normal
homeostasis with their mutual cooperation, including vascular
endothelial cells, CXCR12-abundant reticular (CAR) cells,
Nestin+ MSCs, and LepR+ MSCs.59

Angiogenesis is necessary for the progress of tumor growth and
metastatic dissemination. Leukemia-derived VEGF connects with
31
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Figure 2. Leukemic cell interaction with BM niche cells. BM = bone marrow.
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VEGFR expressed on endothelial cells to activate proliferation,
migration, survival, and vascular permeability. Lyu et al60

revealed that the expression level of VEGF was higher in relapsed
ALL patients compared to standard or high-risk ALL, suggesting
that VEGF is associated with an adverse prognosis. Ang/Tie
signaling pathway exerts a vital and rate-limiting role in tumor
vascularization.61 Tie-1 and Tie-2 tyrosine kinase receptors are
expressed specifically on vascular endothelial cells. Angiopoie-
tin1-4 (Ang1-4), the ligand of Tie-2 receptor, are expressed on
perivascular cells. The level of Ang1 in BMplasma was lower and
Ang2 was higher than control, suggesting that the remission
induction is associated with increasing Ang1/Ang2 ratio.62

Hence, Ang1 and Ang2 can serve as biomarkers to monitor
the effectiveness of chemotherapy.
Most vascular niche cells are originated from MSCs. CAR

cells, which secret CXCL12, surround sinusoidal endothelial
cells or locate near the endosteum. CAR cells have a strong
overlap with leptin receptor-expressing (LepR+) cells.59 Leuke-
mia cells are in direct contact with CAR cells to promote
leukemogenesis. Uy et al63 showed that treatmentwithG-CSF led
to a marked decrease in pro-B and pre-B cells through decreasing
production of CAR cells related factors, including CXCL12,
IL-7, and insulin-like growth factor-1. Additionally, CXCL12
deletion in vascular endothelial cells impeded tumor prolifera-
tion, suggesting that CXCl12 was necessary for T-ALL
progression (Figure 2).

2. CONCLUSIONS

Coordination between ALL cells and osteoblastic/vascular
niches creates a suitable leukemic microenvironment, promoting
32
ALL cell proliferation and resistance to chemotherapeutic drugs.
Various BM niche cells are involved in the progression of ALL,
and these cells protect ALL cells from chemotherapy-induced
death and help them to acquire drug resistance. Fortunately,
increasing numbers of potential targets of niche-directed treat-
ments are now starting to emerge, gaining great efficiency for the
treatment of ALL. In conclusion, each of the alterations in the
abnormal niche may be effectively targeted by various therapeu-
tic procedures, to be the basis for the development of innovative
strategies.
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