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We investigated the clinical predictors of the degree of recovery in patients with prolonged disorders of consciousness (PDC) caused
by traumatic brain injury. Fourteen patients with PDC underwent two diffusion tensor imaging (DTI) studies; the first and second
scans were performed at 345.6 + 192.6 and 689.1 + 272.2 days after the injury, respectively. In addition to the temporal changes in
each of these diffusion parameters, fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity were
assessed over a l-year period. Relationship of clinical and DTI parameters with recovery from PDC (RPDC) was evaluated using
Spearman’s rank-correlation and stepwise multiple linear regression analysis. The mean FA and number of voxels with FA values >
0.4 (VsFA0.4) were significantly decreased at the second scan. A significant positive correlation was observed between the degree
of RPDC and mean FA (r = 0.60) and VsFA0.4 (r = 0.68) as well as between the difference in VsFA0.4 (r = 0.63) and AD (r = 0.54)
between the first and second scans. On multiple linear regression analysis, initial severity of PDC and the difference in AD remained
significantly associated with the degree of RPDC. The microstructural white matter changes observed in this study indicate their

potential relation with the degree of RPDC over the longer term.

1. Introduction

Diftuse axonal injury (DAI) is a common form of traumatic
brain injury (TBI) sustained in motor vehicle collisions.
The injury involves rotational forces and is characterized
by extensive white matter damage [1]. The neuropathology
of disorders of consciousness (coma, vegetative state, and
minimally conscious state) has been extensively described at
postmortem [2-4]. Diffuse disruption of subcortical white
matter is the most common postmortem finding in victims
of TBI associated with impaired consciousness [2]. DAI
and thalamic damage were the most common postmortem
structural abnormalities reported in a case series of 35

patients who remained in a vegetative state after TBI until the
time of their death [3, 4]. Thus, severe TBI commonly involves
multiple diffuse lesions in both white and gray matter.
Diffusion tensor imaging (DTI) has been useful in
describing the microstructure changes in the chronic stage
of DAI [5]. Several studies have documented posttraumatic
findings of axotomy and demyelination, months to years after
injury. These include findings of increased water diffusion
as measured by mean diffusivity (MD) and a reduction
in the directionality of diffusion as measured by fractional
anisotropy (FA) on DTI [5]. These findings, in conjunction
with the apparent loss of subcortical white matter volume,
suggest that acute edema may be a potential early marker
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of posttraumatic deterioration that ultimately impairs axonal
integrity in the chronic state [5]. Few longitudinal studies
have examined temporal evolution of white matter damage
after DAI in humans [6-9]. However, the acute scans were
collected, on average, within two months after injury; smaller
time windows are necessary to obtain a more thorough
understanding of the evolution of white matter damage. Fur-
ther, several studies have documented correlation between
decreased FA in several brain regions and unfavorable out-
comes in patients with severe TBI [8, 10, 11]. A recent whole
brain WM analysis of DTI parameters revealed an increase
in axial diffusivity (AD) and radial diffusivity (RD) in the
acute phase and a positive correlation of RD with severity
of injury [5]. Longitudinal analysis showed reduction in FA
and AD, but not in RD [5]. This study [5] examined the
evolution of white matter integrity from acute to chronic
stages of DAI due to TBI. Data from this study suggest
complicated mild-to-severe TAI results in significant edema
that eventually resolves leaving behind a compromised white
matter microstructure. The data [5] also suggest that white
matter compromise after DAI is a process involving white
matter demyelination as well as axonal damage that may be
present not only in the early stage but also in the chronic
stage [5]. However, the mechanism that explains this finding
is still unclear. DTI still appears to be capable of detecting
microstructural changes after DAI.

Patients with severe PDC, such as those in a vegetative
state, typically have unfavorable outcomes although gradual,
subtle, and minor clinical changes are on record. In the last
2 years, our institution provided inpatient care to patients
with prolonged disorders of consciousness (PDC) due to
TBI. The therapeutic modalities include standard nursing
care, physical therapy, and occupational therapy, as well as
other alternative treatment modalities such as music therapy;,
aroma massage, and exposure to natural environment (i.e.,
feeling the sunlight, blowing wind, and exposure to seasonal
temperature changes). Indeed, a few patients have shown
slight positive reactions during inpatient residency at our
institution.

In this study, we sought to identify potential predictors
of the degree of recovery from PDC over a period of 2
years, using DTI parameters in whole brain. We examined the
longitudinal alterations in anatomical connections of white
matter in these patients and explored potential association
of microstructural imaging biomarkers in whole brain white
and gray matter with clinical markers of potential clinical
relevance.

2. Methods

2.1. Patients. We retrospectively recruited 14 patients at our
institution that had chronic severe PDC resulting from
traffic accident-related brain injury. All patients with PDC
underwent 3 T MRI studies at admission and after completion
of 1 year of treatment at our institution. Mean age (+SD) of
patients was 58.6 + 19.3 years; the mean duration (+SD) from
admission to study recruitment was 339.8 + 191.7 days. The
clinical characteristics of patients are presented in Table 1. The
first DTI scan was performed at admission (345.6 + 192.6
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days after the initial injury); the second scan was performed
approximately 1 year after admission (689.0 +272.2 days after
the initial injury).

Furthermore, we prospectively recruited 8 healthy nor-
mal volunteers (2 males and 6 females) for comparison. The
age range of the healthy participants was 32-60 (45.5 + 9.1)
years (Table 2).

2.2. Standard Protocol Approvals, Registrations, and Patient
Consent. This study was conducted in compliance with the
ethical principles for biomedical research on human subjects
enshrined in the Declaration of Helsinki and informed
consent regulations. Approval from the institutional ethics
committee was obtained prior to the initiation of the
study.

2.3. PDC Assessment. PDC was assessed using the Kohnan
score, which measures the severity of consciousness disorder
from a severe, persistent vegetative state (Appendix [12]). The
Kohnan score was developed at our institution to resolve this
issue. The unidimensionality and higher intra- and interrater
reliability of this score have previously been reported [12].
The score is based on seven parameters, each of which is
subdivided into 5 grades: extreme (10 points), severe (9
points), moderate (7 or 8 points), mild (5 points), and slight (0
points). We additionally assessed general functional recovery
using the Extended Glasgow Outcome Scale (GOSE) (range
1-8; higher scores indicate superior functional outcomes).
These assessments were performed at admission and at 2
years after admission.

2.4. Image Acquisition. MRI was performed using a 3.0 T
Signa Excite HD scanner (General Electric, Milwaukee,
WI, USA). The parameters for DTI were as follows: echo
time, 59 ms; repetition time, 9,000 ms; flip angle, 90°; slice
thickness, 3 mm with no gap; field of view, 28.8 x 28.8 cm;
acquisition matrix, 96 x 96; image matrix, 256 x 256 with a
voxel size of 1.125 x 1.125 x 3.0 mm; number of excitations,
1; and band width, 250 kHz. Images were obtained using 15-
directional diffusion encoding (b value, 1,000 s/mm? in each
direction) and one set of images with b = 0 s/mm”.

A total of 46 axial sections covering the entire cerebrum
were obtained. The most inferior DTT slices were positioned
at the medulla oblongata during acquisition.

2.5. Image Preprocessing. All DTI data were processed using
the FSL software package (the Oxford Centre for Functional
Magnetic Resonance Imaging of the Brain Software Library
[13]). DTI images were skull-stripped using the Brain
Extraction Tool (BET) in the FSL. The images were corrected
using the Eddy Correct program of the FSL package to adjust
for the effects of head movement and eddy currents. FA, MD,
AD, and RD maps were generated using dtifit program in
the FSL. Lastly, we calculated the mean FA, MD, AD, and RD
and counted the number of voxels in which FA values were
>0.4 in the whole brain (VsFA0.4) using fslstats program
implemented in the FSL. We assumed that using whole brain
method affected not only white matter changes but also gray
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matter and ventricles. To eliminate these effects, we chose
the method of VsFA0.4 that selects only the voxel with high
FA values.

2.6. Statistical Analysis. Statistical analyses were performed
using the Statistical Package for the Social Sciences (SPSS)
24.0 for Mac (IBM SPSS, Chicago, IL, USA). Comparisons
over time for group Kohnan scores, GOSE, FA, VsFA0.4,
MD, AD, and RD were conducted using the paired ¢-test
or Wilcoxon rank-sum test according to the results of the
Shapiro-Wilk test. The Spearman rank-correlation coefhi-
cient was used to evaluate the relationships between age, time
of admission from injury, degree of recovery from PDC (as
determined by change in the Kohnan score during the 2-year
period after admission), and the diffusion tensor parameters.
These diffusion tensor parameters used for comparisons
were FA, VsFA0.4 MD, AD, and RD in the first scan and
the differences in the same parameters between the first
and the second scan. All univariate potential factors with
a P value < 0.1 were entered into the multivariate linear
regression model. In addition, variance inflation factors
were computed to examine the possible collinearity problem
among the predictors. Stepwise multiple regression analyses
were performed to identify the variables associated with the
degree of recovery from PDC. The alpha level was set to 0.05
for all statistical tests and adjusted for multiple tests (e.g.,
n =5, P > 0.01, comparison of the mean FA, MD, AD, and
RD) with Bonferroni correction.

3. Results

In this study, 12 patients had a GOSE score of 2 (vegetative
state), and 2 patients had GOSE score of 3 (severe disorder)
at admission. However, Kohnan scores at admission showed
more variability (range: 29-68). These ranged from minimum
consciousness disorder (<39) to complete vegetative state
(>65). After 2 years, there was no significant change in GOSE
scores (P = 0.16, Wilcoxon rank-sum test): 10 patients had
a GOSE score of 2, while 4 patients had a GOSE score of 3.
In contrast, a subset of PDC patients showed a significant
recovery based on the Kohnan score (58.9+12.3 versus 48.7 +
22.7, P < 0.01; Wilcoxon rank-sum test) (Table 3). The mean
difference in Kohnan scores at admission and at completion
of 2 years was 10.14 + 11.10.

In patients with PDC, FA, VsFA0.4, MD, AD, and RD
values in the first scan were 0.24 + 0.03, 43715. 14 + 20913.54,
1.47 + 0.15 [x10~> mm?/s], 1.82 + 0.18 [x10~> mm®/s], and
1.30 + 0.14 [x10~> mm?/s], respectively, whereas those in the
second scan were 0.22 + 0.02, 33036.07 + 10413.59, 1.47 +
0.01 [x10mm?/s], 1.79 + 0.15 [x10~> mm?/s], and 1.31 +
0.13 [x107> mm?/s], respectively (Table 3). Patients with PDC
showed significant changes in FA (P = 0.006, paired ¢-test)
and VsFA0.4 (P = 0.003, Wilcoxon rank-sum test) over
time. However, there were no significant differences in MD
(P = 0.993, paired t-test), AD (P = 0.506, paired ¢-test), and
RD (P = 0.650, paired t-test) values between the first and
second scans (Table 4). In contrast, any significant change
of DTI parameters was not shown in the 8 normal healthy
participants (Table 5).

No significant correlations were observed between the
degree of recovery from PDC and age. Kohnan score was
strongly associated (r = —0.76, P = 0.002) with the degree of
recovery from PDC. Among the DTI parameters, significant
correlations were observed between the degree of recovery
from PDC and FA (r = 0.60, P < 0.05) and VsFA0.4 at
the first scan (r = 0.68, P = 0.008); however, no significant
correlation was observed between the MD, AD, and LD at the
first scan (Table 6). In the longitudinal DTI parameters, no
significant correlations were observed between the degree of
recovery from PDC and difference in FA, MD, and RD over
time (Table 6). However, a significant positive correlation was
observed between the degree of recovery from PDC and time-
dependent changes in AD (r = 0.544, P < 0.05) and VsFA0.4
(r = 0.624, P < 0.05) between the first and second scans
(Table 6).

Variables showing a significant association (P value < 0.1)
were included in the Spearman correlation analysis. Thus,
day of institution admission from injury, Kohnan score at
the first assessment, FA at the first scan, VsFA0.4 at the first
scan, difference in VsFA0.4, and MD and AD from the first to
the second scan were included in the multivariate regression
analysis. Stepwise multiple regression analysis revealed that
the Kohnan score at the first scan (standardized 8 = —0.723,
95% CI: 32.7-63.0, P < 0.0001) and difference in AD over
time (standardized 8 = 0.337, 95% CI: 4610.7-46541.3, P <
0.05) accurately predicted the degree of recovery from PDC
[adjusted R* = 0.841].

4. Discussion

We explored potential clinical predictors of the degree of
recovery from PDC after 2 years of admission, with a
particular focus on the DTI parameters. Our results showed
significantly decreased FA values and number of voxels
in which FA values were >0.4 (VsFA0.4) in whole brain,
but MD, AD, and RD showed no significant change. In
contrast, healthy participants did not exhibit such changes.
On correlation analysis, Kohnan score and FA and VsFA0.4,
the difference of VsFA0.4, and AD were significantly corre-
lated in monovariable analysis. Multiple regression analysis
revealed that each Kohan score in the first assessment and
the difference in AD over time have statistically significant
contribution to the degree of recovery from PDC. Currently,
to the best of our knowledge, there are no known predictors
of long-term positive clinical response in patients with
PDC. Several clinicians were forced to provide long-term
care without established specific clinical goals for patients
with PDC. Therefore, it is critical to develop predictors of
long-term changes elicited through long-term therapeutic
intervention in these patients. Our results demonstrate that
microstructural white matter changes occurred in patients
with PDC, which suggests that the assessment of white
matter changes may help identify valid long-term outcome
predictors in these patients.

DTI is based upon the diffusivity of water molecules,
which varies in different tissues [14]. In white matter, it is
more limited in the directions of diffusion. In healthy tracts,
the anisotropy (limited directionality of diffusion) is higher
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TABLE 4: Comparison of diffusion tensor parameters and consciousness disorders.
First scan Second scan
Diffusion parameters Standard Standard P values
Mean L Mean e
deviation deviation
Kohnan score” 58.86 12.30 48.71 22.69 0.001
GSCE* 214 0.36 229 0.47 0.157
Fractional anisotropy 0.24 0.03 0.22 0.02 0.006
E‘;ﬁ‘gj lonf :’}:’:imieﬂ;;f;imonal anisotropy value greater 43715.14 2001355 33036.07 1041359 0.003
Mean diffusivity (MD) [x10™* mm®/s] 1.47 0.15 147 0.01 0.993
Axial diffusivity (AD) [x10~> mm?/s] 1.82 0.18 1.79 0.15 0.506
Radial diffusivity (RD) [x10~> mm?/s] 1.30 0.14 1.31 0.13 0.65
*Wilcoxon rank test.
TaBLE 5: Comparison of diffusion tensor parameters in normal healthy participants.
First scan Second scan
Diffusion parameters Standard Standard P values
Mean o Mean e
deviation deviation
Fractional anisotropy 0.26 0.07 0.27 0.01 0.13
i]lutrﬁlfjvrh(;fl:%);zli;wnh a fractional anisotropy value greater than 0.4 122522.38 17745.24 127124.63 16594.75 0.15
Mean diffusivity (MD) [x107* mm?/s]” 1.01 0.03 0.99 0.05 0.40
Axial diffusivity (AD) [x107> mm?*/s]* 1.26 0.03 1.25 0.05 0.23
Radial diffusivity (RD) [x10~> mm?/s]* 0.88 0.03 0.09 0.05 0.57
*Wilcoxon rank test.
TaBLE 6: Correlation between the degree of recovery from prolonged consciousness disorder and each value.
Degree of recovery from PCD
Variable r P values
(Spearman correlation coefficient)
At the first scan or assessment
Age -0.24 0.41
Day of institution admission from injury -0.48 0.086
Kohnan score -0.76 0.002
Fractional anisotropy 0.60 0.023
Numbers of voxels with a fractional anisotropy value greater than 0.4 0.68 0.008
Mean diffusivity -0.22 0.459
Axial diffusivity -0.01 0.976
Radial diffusivity -0.34 0.241
The difference between the first and the second scan
Fractional anisotropy 0.38 0.177
Numbers of voxels with a fractional anisotropy value greater than 0.4 0.62 0.017
Mean diffusivity 0.48 0.086
Axial diffusivity 0.54 0.044
Radial diffusivity 0.40 0.162

than that in the gray matter. This difference allows for the
calculation of fractional anisotropy (FA) values for tissue and
the generation of white matter fiber maps. FA ranges from 0
to 1, where 0 represents isotropic diftusion (or lack of direc-
tional organization) and 1 represents anisotropic diffusion
(or organized tissue such as white matter tracts) [15]. Studies

have demonstrated the potential utility of DTI for providing
quantitative assessments of microstructural damage in TBI,
in which DAIis common [1-11, 14-16]. Although the specifics
are still not well understood, FA is believed to be influenced
by many factors, including the degree of myelination and
axonal density and/or integrity [9, 17-19].
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FA has been shown to decrease in patients with mild and
moderate/severe brain injury [1, 4, 5, 11, 14-16, 19-28]. Perez
et al. [5] reported significantly lower FA in the chronic phase
of TBI as compared to that in healthy controls; in contrast,
AD, MD, and RD in chronic patients were significantly
higher than in healthy controls. Additionally, chronic FA
showed a positive correlation with processing speed [28].
In this study, patients with chronic PDC had significantly
lower FA and VsFA0.4 at 2 years as compared to those at
admission. Our first scan data were collected 345.6 + 192.6
days after injury, which corresponds to the chronic stage of
white matter damage. Thus, our results suggest occurrence of
microstructural change over the longer term. On univariate
correlation analysis, FA and VsFA0.4 at the first scan signifi-
cantly correlated with the degree of recovery of PDC, which is
consistent with previous studies [5-8, 10, 11, 14, 20-29] where
patients with higher FA showed good recovery. Temporal
change in VsFA0.4 and AD significantly correlated with the
degree of recovery from PDC. This probably indicates that
minor microstructural changes correlate with the degree of
recovery from PDC. Several previous studies [6, 8, 10, 11,
20, 25-29] have reported a positive association of FA with
higher cognitive function and outcomes. However, in this
study, higher difference of VsFA0.4, MD, and AD positively
correlated with the degree of recovery from PDC. In other
words, a time-dependent decrease in VsFA0.4, MD, and
AD may be related to a better outcome in PDC. In this
respect, our results are not inconsistent with those of several
previous reports [6, 8, 10, 11, 20, 25-29], which indicated
that a time-dependent decrease in FA was associated with
poor outcomes as assessed by cognitive function and GOSE.
These contradictory findings may reflect the difference in
PDC severity between studies; most of our patients had
GOSE scores of <3 and showed subtle and minor clinical
changes. Although significant recoveries were observed based
on Kohnan scores, the changes were not significant when
based on GOSE scores, which suggests that improvement
in our patients was lower than that reported in previous
studies [6, 8, 10, 11, 20, 25-29]. Our subjects generally had
more severe outcomes; all our patients had GOSE scores <
3, which indicates more severe disability than that among
patients in the previous studies [6, 8, 10, 11, 20, 25-29]. Thus,
interstudy differences in results may reflect DAI severity.
Differences with respect to time elapsed since injury may
also have contributed to the divergent findings; we included
patients with PDC in the extended chronic phase.

In patients with PDC, the degree of recovery was very
small, as shown by the lack of change in GOSE scores. In
our participants, induction of a severe inactive state due
to brain injury might lead to secondary neurodegeneration
that might be detected by DTI. However, the underlying
mechanism behind longitudinal alterations in white matter
remains unclear. In addition, this study had some limi-
tations. The number of subjects was small, and they had
various pathological states, such as contusion, subarachnoid
hemorrhage, and intracranial hemorrhage. Thus, further
longitudinal studies are warranted that combine DTI with
volumetric measurements and other detailed analyses, such
as functional connectivity analysis. The potential of DTT use

Neural Plasticity

as a prognostic tool needs further investigation in studies with
a larger number of subjects.

In conclusion, on stepwise multiple linear regression
analysis, Kohnan score and the difference in AD showed
a significant association with the degree of recovery from
PDC. In other words, we demonstrate evidence of temporal
microstructural white matter changes in patients with PDC;
DTI parameters are useful indices for assessment of white
matter alterations in these patients. As a noninvasive modal-
ity, DTI provides in vivo quantitative pathophysiological
information. Tracking white matter microstructural changes
over time has the potential to measure neuroplasticity and
repair after TBI and may eventually be utilized to monitor
therapeutic responses. Further research is required to inves-
tigate the leads identified in this study.

Appendix
See Table 7.
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