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Abstract

Motivation: The processing of k-mers (subsequences of length k) is at the foundation of many sequence processing
algorithms in bioinformatics, including k-mer counting for genome size estimation, genome assembly, and taxo-
nomic classification for metagenomics. Minimizers—ordered m-mers where m< k—are often used to group k-mers
into bins as a first step in such processing. However, minimizers are known to generate bins of very different sizes,
which can pose challenges for distributed and parallel processing, as well as generally increase memory require-
ments. Furthermore, although various minimizer orderings have been proposed, their practical value for improving
tool efficiency has not yet been fully explored.

Results: We present Discount, a distributed k-mer counting tool based on Apache Spark, which we use to investigate
the behaviour of various minimizer orderings in practice when applied to metagenomics data. Using this tool, we
then introduce the universal frequency ordering, a new combination of frequency-sampled minimizers and universal
k-mer hitting sets, which yields both evenly distributed binning and small bin sizes. We show that this ordering
allows Discount to perform distributed k-mer counting on a large dataset in as little as 1/8 of the memory of compar-
able approaches, making it the most efficient out-of-core distributed k-mer counting method available.

Availability and implementation: Discount is GPL licensed and available at https://github.com/jtnystrom/discount.
The data underlying this article are available in the article and in its online supplementary material.

Contact: johan@jnpersson.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The analysis of k-mers, short sequence fragments of a fixed length k,
is foundational to many methods and algorithms in bioinformatics,
including genome assembly (Koren et al., 2017), k-mer counting
(Erbert et al., 2017; Kokot et al., 2017; Rizk et al., 2013), variant
calling (Audano et al., 2018) and metagenomic classification (Wood
and Salzberg, 2014). Due to the proliferation of next-generation
sequencing (NGS) data and other types of omics data, such k-mer
data analysis needs are constantly increasing. This has led to the
need for ever more efficient algorithms and methods in this area.
The k-mer analysis of large datasets is often computationally chal-
lenging. For example, when k¼55, for the usual DNA alphabet fA,
C, G, Tg there exists a total of 455 (approximately 1:3� 1033) pos-
sible such k-mers. This large data space, usually much too large to
represent in memory or on disk in its entirety, is a major source of
the complexity of k-mer analysis. One commonly used strategy for
overcoming this complexity is k-mer binning. Since only a small
fraction of all possible k-mers are seen in practice for a given

dataset, one aims to subdivide the data that is actually encountered
into reasonably sized parts and base data processing (such as count-
ing, manipulation, lookup of associated data) on these.

Binning is often done by grouping k-mers according to their min-
imizers, a technique first introduced in biological applications by
Roberts et al. (2004). Minimizers are obtained by ordering all m-
mers Mi for some fixed m, where m<k, in some way:
M0 < M1 < . . . < Mn. We say that Mi is smaller than Mj if i< j.
Each k-mer is then classified according to the smallest minimizer in
it. Often, consecutive k-mers in a longer sequence will share the
same m-minimizer. Thus, an input sequence may be split into super-
mers, maximally long substrings where all k-mers share the same
minimizer. This allows for the partitioning of super-mers into bins,
where each bin corresponds to a minimizer, which effectively yields
a hash table for k-mers. Grouping k-mers together in this way can
also provide a compact representation, since super-mers are much
more space efficient than representing each k-mer by itself.

Various minimizer orderings exist. Although simple to imple-
ment and reason about, the basic lexicographic ordering proposed
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by Roberts leads to very unbalanced bins in practice. This can lead
to higher memory usage and to a slowdown in general, since algo-
rithms on larger bins can be more expensive to run.

The k-mer counter KMC2 (Deorowicz et al., 2015) introduced
minimizer signatures, which order m-mers lexicographically, except
that in order to reduce data skew, m-mers starting with AAA or
ACA are given lower priority, and m-mers containing AA anywhere
are also avoided, except for AA at the start. This helps spread out
the k-mers somewhat and avoid certain very unbalanced bins. This
ordering is also used by Gerbil (Erbert et al., 2017), and by
FastKmer (Ferraro Petrillo et al., 2019) in a modified form with
some additional rules.

The frequency-counted ordering was first introduced by Chikhi
et al. (2014) for the purpose of efficient de Bruijn Graph representa-
tion. A similar approach (weighted minimizers) was also used by
Jain et al. (2020) for long read mapping. In this ordering, rare mini-
mizers, based on occurrence in the actual dataset in each case, are
given higher priority than common minimizers.

Finally, the concept of compact universal k-mer hitting sets was
recently introduced by Orenstein et al. (2016, 2017). For any given
sequence of length k to be hit by (include) at least one sequence of
length m in some set of m-mers, it is not necessary to include every
m-mer in the set. Small sets that hit every k-length sequence can be
precomputed. Such a set can be turned into an ordering by giving all
m-mers not in the set lower priority, effectively excluding them.
Although generating optimal universal sets is an NP-hard problem,
the recently introduced PASHA (Ekim et al., 2020) algorithm is able
to generate near-optimal sets relatively quickly.

Although many different orderings with diverse characteristics
have been proposed, it is still not clear which ordering should be
preferred in practice, and many recent innovations have not yet been
fully explored. Thus, to help identify the best methods for large scale
omics data analysis, a practical evaluation of the various possible
orderings when applied to demanding tasks is needed.

When evaluating minimizer orderings with the aim of improving
software efficiency, the following measurements are useful to
consider.

• Maximum bin size. This directly impacts performance. For tools

that perform out-of-core sequential processing of bins, often the

minimum memory requirement is that each bin should be able to

fit in memory in its entirety. Moreover, larger bins may increase

the total runtime due to the superlinear cost of algorithms such

as sorting, as well as the amount of temporary data structures

being allocated.
• Flatness of distribution. This can be measured in various ways.

Since the impact of outsized large bins is much more significant

than that of small bins, we focus on the proportion of k-mers

stored in the largest 0.5% of bins. We also give the max/mean

ratio of bin sizes.
• Length of super-mers/compactness. Longer super-mers give a

more compact representation in memory and on disk, or for net-

work transmission in a distributed setting. Equivalently, one may

measure the average distance between minimizers (the inverse of

their density), or the total number of super-mers (inversely pro-

portional to their average length for a given dataset) (More pre-

cisely, the total number of k-mers represented by n super-mers of

length L (in letters) is nðL� ðk� 1ÞÞ, since each super-mer has to

overlap another by ðk� 1Þ letters. Thus, the larger L, the smaller

the fraction of pure overlap data ðk� 1Þ in the super-mer, and

the more efficient the storage.).
• Number of bins. Many tools currently in use also try to limit the

number of bins. For example, the KMC2 authors argue that one

goal of a good minimizer ordering should be that ‘the number of

bins should be neither too large nor too small’ (Deorowicz et al.,

2015). However, while limiting the number of bins is reasonable

when each bin is stored in a separate file, alternative system

designs allow a large number of bins to be stored together in a

small number of files. Furthermore, a larger number of fine

grained bins has advantages in subsequent processing. Many

algorithms, such as sorting, have a lower per-item cost when

applied to smaller lists of items, e.g. quicksort has a best case

runtime of Oðn log nÞ and a worst case of Oðn2Þ. Thus, in add-

ition to the goals stated above, we believe that the ability to gen-

erate a large number of small (but evenly distributed) bins is a

desirable goal, especially if this can also be done while keeping

super-mers long.

Marçais et al. (2017) provided a systematic study of the minimizer
behaviour in practice of various widely used tools. They compared
existing tools with universal sets generated by DOCKS (Orenstein
et al., 2016) for the parameters m¼7, k¼11, for a synthetic dataset as
well as for the human genome. They reported the average bin size, the
max/mean ratio for bins, and the mean distance between minimizers.
The number of bins studied was in each case � 16;384.

Various minimizer orderings were evaluated by Erbert et al. (2017),
in the context of the F. vesca genome for m¼6, k¼28. In addition to
the KMC2/signature ordering, lexicographic ordering, randomized
ordering and the CGAT (lexicographic, but with C<G < A<T)
ordering, they also studied distance from pivot (dfp), which is a modi-
fied version of the frequency-counted ordering that attempts to avoid
very small bins. For this comparison, they only reported the maximum
bin size and the total number of super-mers. Although compactness
was measured, measurements such as the bin size distribution, or the
number of bins generated in each case, were not reported.

In omics data analysis, metagenomics data has much higher com-
plexity compared to single-species omics data, owing to the large
number of distinct k-mers, and hence represents a challenging use
case. Here, we systematically study, using two metagenomics data-
sets, the use of six different minimizer orderings to generate a large
number of k-mer bins. We consider cases in the order of 105 to 106

bins. As far as we know, this is the first time that these minimizer
orderings have been comparatively evaluated for a large number of
bins, or with metagenomics data. As part of our study we propose a
new ordering, the universal frequency ordering, which yields a very
even distribution and long super-mers.

With the increasing size and complexity of omics datasets, and
the high resource requirements of some omics tools, there is an
increasing need for distributed algorithms (Ferraro Petrillo et al.,
2017). For distributed processing, being able to subdivide the work-
load evenly is even more important than for single-machine process-
ing, since communication and synchronization costs, such as
shuffling over the network, can be significant. One of the more
popular and widely accepted frameworks for distributed data proc-
essing in recent years is Apache Spark (The Apache Software
Foundation, 2020) (Spark for short), which brings a general pro-
gramming model to the Hadoop distributed filesystem.

As a case study for the performance benefits of minimizer order-
ings, we are particularly interested in the problem of k-mer counting
(Manekar and Sathe, 2018). In itself, this method can be used for
purposes such as abundance filtering and genome size estimation,
and it can also be a necessary foundation for more complex meth-
ods, such as de Bruijn Graph compaction, genome assembly and
metagenomic classification. Thus, in order to evaluate the various
minimizer orderings, we implement a new distributed k-mer count-
ing tool on Spark, called Discount. Discount can function as a pure
k-mer counter, but can also double as a minimizer analysis tool,
reporting detailed statistics about super-mers and k-mers in each
bin. This allows us to freely evaluate various orderings on a realistic
workload. Discount is freely available (on GitHub at https://github.
com/jtnystrom/discount) and GPL licensed.

2 Materials and methods

In order to study minimizer orderings as well as their effect on prac-
tical tasks, we have implemented a distributed k-mer counting tool,
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Discount, on Apache Spark. Here, we briefly describe the design
of this tool. Spark applications operate on RDDs (resilient dis-
tributed datasets), which are distributed collections of data, div-
ided into some number of partitions. An application can execute
some number of stages that operate on such partitions in parallel
on a cluster.

In order to read FASTA and FASTQ files efficiently into Spark,
we use the FastDoop library (Ferraro Petrillo et al., 2017). Next, the
following stages are applied (Fig. 1).

• Sampling (optional). When sampling is used, a fraction (our de-

fault is 1%) of reads is sampled to obtain an estimate of minim-

izer frequencies in the data.
• Hashing. Genomic reads are split into super-mers. If desired, the

minimizer frequency estimate from the previous stage, and op-

tionally also a user-supplied universal hitting set, are used to con-

figure the minimizer ordering. The resulting super-mers are

encoded in the commonly used compact form of two bits per let-

ter. Super-mers are shuffled into their assigned bins (i.e. by min-

imizer) such that each bin is located in its entirety in one

partition, and thus on a single machine in a Spark cluster.
• Processing. In k-mer counting mode, in each bin super-mers are

broken up into individual k-mers, sorted and counted.

Optionally, a counts table or histogram is written to disk.

Otherwise, only summary statistics is collected and aggregated,

and then presented to the user. In minimizer analysis mode, a

summary of the contents of bins is output in a table containing

each bin’s number of super-mers, distinct k-mers and total k-

mers. This allows for further downstream evaluation of the

selected minimizer ordering’s behaviour and characteristics.

We use Discount to study the following minimizer orderings. As
baselines for comparison, one may take the signature ordering,
which is used by many tools in practice, and the naive random
ordering.

Signature. We implement minimizer signatures according to the
rules described in Deorowicz et al. (2015). See the introduction for
details.

Random. A random ordering obtained by XORing each m-mer
with a random constant. This ordering is different each time
Discount runs.

Frequency-sampled. Here, we order minimizers from rare to
common based on their estimated abundance in the actual dataset.
For efficiency, we sample 1% of the data and use frequencies
obtained from this fraction. Ties between equally frequent minimiz-
ers are resolved by ordering them lexicographically.

Universal lexicographic. We used the PASHA (Ekim et al., 2020)
tool to generate compact universal hitting sets for k¼28, 55 and
m¼9, 10. For this ordering, we exclude those minimizers that are
not in the universal set, and the included minimizers are ordered lex-
icographically (A<C < G<T). For example, for k ¼ 28;m ¼ 10,
the set includes 1 67 178 m-mers and number of bins created would
not be greater than this number. The sizes of our other generated
sets are: 44 143 (k ¼ 28;m ¼ 9), 1 31 773 (k ¼ 55;m ¼ 10) and
34 719 (k ¼ 55;m ¼ 9).

Universal random. A random ordering on the universal sets used
above, obtained by XORing each m-mer with a random constant.
This ordering is different each time Discount runs.

Universal frequency. We propose a novel ordering, obtained by
combining the frequency-sampled ordering and the universal set
ordering. This ordering is established by sorting the universal sets
used above according to the 1% sampled frequency count in the
data. As above, ties between equally frequent minimizers are
resolved lexicographically.

Fig. 1. Internal stages of the Discount application. Here, we show a toy example with m¼3 (minimizer length) and k¼5 (k-mer length)
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3 Results

We applied Discount to two short read NGS datasets: (i) part of a
cow rumen metagenomic study (Hess et al., 2011) (SRA run
SRR094926), and (ii) part of the Tara Oceans marine metagenome
study (Sunagawa et al., 2015) (SRA run ERR599052). First, we used
the first 100 million reads of both datasets (Table 1) to study the
properties of the various orderings. As FASTQ files, each of these
partial datasets is approximately 30 GB in size.

We collected bin statistics for the various orderings (shown in
Table 2). For each ordering, the total size of the largest 0.5% of bins
gives an indication of the evenness of distribution (the smaller, the bet-
ter). The signature ordering resulted in an uneven distribution, but pro-
duced long super-mers. The universal lexicographic and universal
random orderings produced even longer super-mers, and were slightly
more evenly distributed. The frequency ordering greatly improved
evenness, but super-mers were much shorter. Finally, the universal fre-
quency ordering produced the best max/mean ratio, the best evenness,

and also almost as long super-mers as the signature ordering. Figure 2
shows density plots of the bin size distributions for the two datasets.
The frequency ordering had a larger area under the curve since it gener-
ated a much larger number of mostly very small bins. Universal fre-
quency bin sizes were mainly concentrated in a single peak.

Since they depend on a random constant, the random ordering
and the universal random ordering were in practice different specific
orderings for each run of Discount. The average super-mer length
for the random ordering on the marine dataset (k¼28) is an outlier
(7.64) and shows the volatility of this ordering.

As for the sampling fraction for the frequency-sampled order-
ings, in practice we have found that 1% of reads produced consist-
ent results, and can be sampled quickly. Increasing the fraction to
10% had only very minor effects in terms of the metrics we study
here.

Next, we compared the performance of k-mer counting on
Discount with FastKmer (Ferraro Petrillo et al., 2019). FastKmer is
a highly efficient distributed k-mer counting tool based on Spark,
which uses a variant of the signature ordering. For this comparison,
we applied the two tools to the full data from run SRR094926, cow
rumen metagenomics data (see above), from which we previously
used only 100 million reads (Table 1). The size of this dataset is
about 314 GB as uncompressed FASTQ files.

We ran the benchmarks on the Google Cloud Platform (GCP)
using three different configurations (Table 3). In each case, four
worker machines with sixteen cores each were used, and the cluster
master machine was an n1-standard-4 machine with four CPUs. All
machines were from the Google Cloud N1 series, with Intel Xeon
CPUs running at 2.7–3.2 GHz (all-core turbo frequency). The ver-
sion of Apache Spark used was 2.4.6. For FastKmer, we used four
n1-highmem-16 machines, for a total of 64 CPUs and 256 GB ex-
ecutor RAM (since FastKmer would not run with less memory). The

Table 1. Datasets

Partial (100 million reads) Full

Dataset k Total Distinct Total Distinct

Cow rumen 28 7:39� 109 5:09� 109 7:23� 1010 2:94� 1010

55 4:69� 109 3:73� 109 4:59� 1010 2:50� 1010

Marine 28 7:26� 109 3:73� 109 3:89� 1010 1:14� 1010

55 4:57� 109 3:04� 109 2:44� 1010 1:04� 1010

Note: Number of k-mers in the datasets used for minimizer ordering evalu-

ation (partial) and k-mer counting (full) in this work.

Table 2. Minimizer ordering measurements

Bin sizes (total k-mers)

k m Ordering Bins Mean Max Max/mean Std.dev Avg s.mer Top 0.5%

Cow rumen metagenome dataset

28 10 random 4 02 181 18 373.98 14 08 363 76.65 44 412.59 9.28 11.66%

frequency 9 85 599 7 497.64 2 02 535 27.01 8 965.39 5.75 3.25%

signature 4 15 899 17 767.94 13 52 062 76.10 40 958.18 9.02 8.81%

universal lex 1 66 577 44 361.86 18 93 021 42.67 59 794.00 9.84 4.87%

universal rand 1 67 115 44 219.05 45 30 489 102.46 61 420.43 9.42 5.21%

universal freq 1 67 172 44 203.97 3 94 768 8.93 18 921.38 9.27 1.14%

55 10 random 2 59 619 18 070.26 18 71 228 103.55 55 389.36 16.15 13.04%

frequency 8 89 414 5 274.69 2 87 304 54.47 8 857.77 11.31 5.01%

signature 2 09 023 22 444.34 18 29 255 81.50 53 684.77 16.13 9.28%

universal lex 1 23 308 38 046.05 30 67 656 80.63 69 920.79 16.28 7.29%

universal rand 1 25 272 37 449.57 42 76 472 114.19 71 767.70 16.16 7.68%

universal freq 1 31 704 35 620.66 3 12 687 8.78 23 950.62 15.97 1.51%

Marine metagenome dataset

28 10 random 5 36 419 13 534.92 74 08 859 547.39 69 815.50 7.64 19.95%

frequency 1 002 163 7 244.72 82 931 11.45 7173.75 5.12 2.52%

signature 415 718 17 464.70 51 79 699 296.58 68 689.92 9.20 19.92%

universal lex 1 66 520 43 600.70 88 15 602 202.19 1 19 830.20 9.78 13.74%

universal rand 1 66 895 43 502.73 50 85 446 116.90 97 268.02 9.45 11.86%

universal freq 1 67 173 43 430.39 5 35 913 12.34 26 234.79 9.00 2.02%

55 10 random 2 08 541 21 896.81 48 26 566 220.42 78 406.11 15.88 17.23%

frequency 9 93 329 4597.05 68 616 14.93 6635.20 10.41 4.25%

signature 1 96 514 23 236.93 55 94 282 240.75 83 778.67 16.05 18.17%

universal lex 1 23 364 37 015.51 1 42 23 589 384.26 1 42 466.09 16.03 18.92%

universal rand 1 23 921 36 849.14 59 36 297 161.10 98 391.61 16.32 15.54%

universal freq 1 31 765 34 655.50 1 02 733 2.96 15 219.88 15.62 1.16%

Note: Results obtained when using Discount to break up each dataset into binned super-mers. Here, m represents the minimizer length, so that for an uncon-

strained ordering, there would be a theoretical maximum of 4m different minimizers (bins). Bin sizes are measured as the total number of k-mers in each bin prior

to counting distinct items (i.e. as the sum of super-mer lengths in that bin). The average super-mer length is measured as a number of k-mers. The rightmost col-

umn gives the proportion of k-mers in the largest 0.5% of bins. Data for m¼ 9 may be found in Supplementary Materials.
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FastKmer authors’ recommended best settings from Ferraro Petrillo
et al. (2019) were used: x ¼ 3; b ¼ 8192. However, we increased
parallelism (partitions) from the recommended 320 to 2000, since
this gave better performance in our setting. For FastKmer, the num-
ber of bins was limited to 8192 as recommended. We also tried
larger numbers but did not see a performance improvement. For
Discount, the universal frequency ordering was used with the same
universal sets as in the previous section, m¼10. The number of bins
was not constrained and most likely exceeded the number shown in
Table 2 (but would not have been larger than 1 67 178, the size of
the universal set).

The two applications were performing very similar tasks: output-
ting a final table with counts for each k-mer. Generating this table
involves allocating a large amount of strings and writing the data to
disk. Hence, this benchmark shows the overall performance effects
of non-trivial processing of k-mer bins. The outputs from the two
applications were identical, except that FastKmer unified k-mers
with their reverse complements, unlike Discount.

In a Spark cluster, not all the memory available on the machines
is assigned to Spark executors (which run the actual tasks), since
some memory is reserved for the operating system, task management
and other functions. For the Discount high memory case, we limited
executor memory to test the efficiency of our method. Thus, the
total executor memory in that case was only 87 GB across all four
machines. For the Discount low memory case, we increased the
number of Spark partitions, making them smaller to further limit
memory pressure. We also reduced the maximum MapReduce split
size (for the underlying file inputs) from the default 128–64 MB.

We measured the time required by running Discount as well as
FastKmer on the full dataset (Table 4). Since FastKmer is internally
divided into two main stages, we break down its runtime in the
same way as we do for Discount. However, the precise algorithms
used by these stages are different between the two applications. To
test scaling to a larger number of worker machines, we also ran the
Discount high memory case on sixteen worker machines with four
CPUs each. Performance did not change significantly from the four
machine case.

We also measured, for the cow rumen dataset and k¼28, the
memory usage of each minimizer ordering, to be able to separate
their performance benefits from other factors (Table 5). When the
memory pressure of Java VM applications, such as Discount,
increases, the application spends a higher percentage of its CPU time
in garbage collection (GC). We adjusted the total heap size in 16 GB
increments from a baseline to find the smallest size that would allow

Discount to spend at most 15% of its time in GC. The worst per-
forming orderings in this comparison, universal lexicographic and
universal random, were already relatively frugal. The lowest mem-
ory usage was achieved by the frequency ordering (71 GB), with uni-
versal frequency a close second (87 GB).

Finally, we compared the performance of Discount with the trad-
itional, non-distributed k-mer counters KMC3 and Jellyfish to
evaluate the benefits of distributed processing. For KMC3 and
Jellyfish we used a single machine with the same total resources as
total of the four Discount worker machines—240 GB RAM and 64
cores—to examine the effect of distributing the workload (Table 6).
The machine had a single 4 TB HDD disk, and the Discount workers
had one 1 TB disk each. As before, we measured the task of generat-
ing a full table with the counts of all k-mers. The total time required
was about twice as long for KMC3 (114 min versus 57) and more
than four times as long for Jellyfish (252 min). However, the benefit
is task dependent: when only generating summary statistics for a
dataset, we found that KMC3 was faster than Discount. Full details
of the commands used are given in the supplementary materials.

4 Discussion

In this work, first, we compared six minimizer orderings when
applied to two partial metagenomics datasets: random, signature,
frequency, universal lexicographic, universal random and universal
frequency. The signature ordering has been a practical choice for
many tools since it yields relatively long super-mers and avoids cer-
tain large bins. However, it produces a high 0.5% bin fraction: up
to 19.92% for the marine dataset for k ¼ 28;m ¼ 10.

The universal lexicographic and universal random orderings
yielded even longer super-mers. However, they were only slightly
more evenly distributed. The frequency-sampled ordering dramatic-
ally improved evenness of distribution, as well as the size of the
maximum bin, but at the expense of a much larger number of bins
for a given value of m. As Figure 2 shows, this ordering yielded a
large amount of small bins. For some applications, having to main-
tain so many very small bins will lead to undesirable overhead.
Moreover, super-mers are very short, meaning that the bins cannot
be stored efficiently in this form.

The universal frequency ordering consistently obtained the best
evenness of distribution, the lowest max/mean ratio, and also
restored the long super-mers. For example, for the marine dataset,
k ¼ 55;m ¼ 10, for a bin number comparable to the universal

Fig. 2. Density plots of k-mer bin distributions. Please see Table 2 for further details. Additional plots for k¼55 are available in Supplementary Materials

Table 3. Resource configurations used for performance measurements

Benchmark Worker machine type Workers Cores RAM (GB) Executor RAM (GB) Partitions (parallelism)

FastKmer n1-highmem-16 4 64 416 256 2000

Discount high memory n1-standard-16 4 64 240 87 4000

Discount low memory n1-highcpu-16 4 64 57.6 34 14 000

Note: Cores and memory (RAM) are reported as totals for all worker machines.
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lexicographic ordering, the 0.5% bin fraction was reduced from
18.92% to 1.16%. Super-mers were almost as long as for the signa-
ture and universal cases. Thus, for a given number of desired bins,
this ordering provided the best balance of long super-mers and an
even distribution.

Next, we applied the universal frequency ordering to distributed
k-mer counting, to test a practical application. We evaluated a high
memory as well as a low memory scenario while comparing against
FastKmer, an existing similar k-mer counter. For the former, al-
though the amount of executor memory assigned to Discount was
only 34% of what was assigned to FastKmer, Discount ran faster.
We believe that this reflects various costs of processing larger bins.
For example, both FastKmer and Discount have to sort all k-mers in
each bin as part of counting, and the cost of sorting increases more
than linearly as the array to be sorted grows longer. For the low
memory scenario, we carefully tuned Spark to test the limits of our
approach. Discount was running on a low memory machine type,
with a total of 64 CPUs and only 34 GB total executor memory,
around 1/8 of the FastKmer memory. Even with this minimal

resource allocation, Discount ran at nearly the same speed as
FastKmer.

We also evaluated the effects on runtime and memory usage of
each minimizer ordering for k¼28 on the cow rumen dataset.
Generally, orderings that produced a greater number of smaller bins
required less memory than the ones producing fewer and larger bins.
A notable exception was the universal frequency ordering, which
had the second lowest memory usage, despite generating a number
of bins similar to those yielded by the universal lexicographic and
universal random orderings. We include the frequency ordering for
m¼9 to show the effect of this parameter. For this ordering,
increasing m to 10 produced around four times more bins (2 52 033
versus 9 85 599, details in Supplementary Materials). This by itself
reduced the memory requirement substantially.

Although the frequency ordering had the lowest memory usage,
this is largely because it was able to generate around six times more
bins than the universal frequency ordering (Table 2), which is se-
cond lowest. It also does this while generating much shorter super-
mers, which inflates the size of the shuffle data. If this additional
memory usage reduction is desired, universal frequency for m¼11
may be a better choice than frequency for m¼10.

Finally, we compared the performance of Discount with the non-
distributed k-mer counters KMC3 and Jellyfish. Since the task was
to generate a full k-mer counts table, which is more than 800 GB in
size, disk I/O became a limiting factor, and Discount thus benefited
from having access to four disks operating independently on separ-
ate machines, as well as from inputs and outputs being stored on a
distributed filesystem in the cloud. A full investigation of the per-
formance of Discount on large clusters is beyond the scope of this
work. However, since a typical single machine can only support a
small number of disks, but Spark clusters can have thousands of
worker nodes, Discount should be an attractive choice for very large
datasets.

Distributed k-mer counters can be divided into two categories:
out-of-core, (which keep some data on disk) and in-core methods
(which keep all data in memory). FastKmer and Discount are both
in the former category, since Spark relies on the ability to spill data
to disk when necessary. Given the comparison between FastKmer
and other tools such as KCH, ADAM and BioPig in Ferraro Petrillo
et al. (2019), which are also out-of-core, this would make Discount
both the fastest and the most memory efficient distributed k-mer
counter in this category. On machines with a given amount of mem-
ory, the maximum amount of data that Discount can analyse should
be much larger than for comparable existing tools.

In the present work, we have only studied selected minimizer
orderings of interest, and we leave a broader comparison with other
binning methods for future work. For example, Efe (2018) suggests
a method based on sums of integers associated with the letters of a
k-mer.

Many k-mer processing tools unify each k-mer with its reverse
complement, treating them as the same value. This is made possible
in part by restricting minimizers and super-mers in certain ways.
Unfortunately, with our minimizer ordering this kind of

Table 5. Memory usage of different orderings

Time (min) GB

Ordering k m Hash Process Total Shuffle Memory

Frequency 28 10 19 39 60 259.7 71

Frequency 28 9 14 44 60 219.9 135

Random 28 10 14 42 57 165.7 119

Signature 28 10 13 43 57 163.9 135

Universal lex 28 10 12 44 57 151.4 151

Universal rand 28 10 12 43 57 150.2 151

Universal freq 28 10 12 43 57 159.4 87

Note: Cow rumen full dataset. Executor memory required to run with less

than 15% of CPU time spent in garbage collection. Other settings were the

same as in the Discount high memory case.

Table 6. Comparison with non-distributed k-mer counters

Runtime (min) GB

Case k Count Dump Total Temp data

Jellyfish 28 124 128 252 302

KMC3 28 28 86 114 165

Discount 28 57 159

Note: Cow rumen full dataset. The total size of the generated k-mer counts

table was 851 GB. For comparison, we reproduce the Discount high memory

case from Table 4. Its stages are not directly comparable with the count and

dump operations.

Table 4. Performance comparison

Runtime (min) GB

Case k m Sample Hash Process Total Shuffle

FastKmer 28 10 21 57 78 125.4

55 10 18 43 60 73.1

Discount high memory 28 10 1.4 12 43 57 159.4

55 10 1.4 8.9 39 51 89.5

Discount low memory 28 10 2.0 16 60 79 172.9

55 10 1.7 11 49 63 100.3

Note: Cow rumen full dataset. For Discount, the universal frequency ordering was used. FastKmer does not have a sampling stage, so no timing is reported.

The shuffle data, which is stored on disk when not needed in memory, corresponds to all generated super-mers, binned and partitioned. These are shuffled across

the network to the correct machine between the hashing stage and the processing stage. The size, which is sensitive to super-mer length and to the number of parti-

tions, is a total across all of the machines.
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optimization is not currently possible. This has been recognised as
an open problem for universal sets (Marçais et al., 2017). In general,
research in universal k-mer sets is currently ongoing (DeBlasio et al.,
2019; Zheng et al., 2020), and future results may further improve
the universal frequency ordering.

5 Conclusion

In this work, we have investigated the formation of binned super-
mers from genomic sequences by using minimizers, a common tech-
nique in omics data analysis tools. To support the investigation, we
implemented a new distributed k-mer counting tool, Discount,
which also has minimizer ordering analysis functionality. We sought
to achieve an even distribution of bin sizes, aiming for improvements
such as memory usage reduction, efficient storage on disk and
increasing the overall processing speed. By combining frequency-
sampled minimizers with universal k-mer sets, we obtained the uni-
versal frequency ordering. To the best of our knowledge, the present
work is the first time this combined ordering has been used. Relative
to minimizer signatures, the fraction of k-mers stored in the largest
0.5% of bins was reduced by as much as from 18.17% to 1.16%
(for m¼10, k¼55, marine dataset) while still yielding long super-
mers. Furthermore, the cost of sampling is small: for the full dataset,
only around 5% of the runtime was spent sampling 1% of the reads.
Using Discount, compared with the fastest existing out-of-core dis-
tributed k-mer counting tool, we were able to count k-mers in a
metagenomic dataset at comparable speed using only 14% of the
memory. Considering these benefits, we believe that frequency-
sampled universal minimizers would significantly improve the per-
formance of many tools that use minimizers to construct binned
super-mers, and that this should be a preferred strategy for produc-
ing evenly sized bins. With this minimizer ordering, Discount
expands the practical boundaries of analysis of very large omics
datasets.
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