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Lineage marker synchrony in hematopoietic
genealogies refutes the PU.1/GATA1 toggle switch
paradigm
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Timm Schroeder2, Fabian J. Theis 1,3 & Carsten Marr 1

Molecular regulation of cell fate decisions underlies health and disease. To identify molecules

that are active or regulated during a decision, and not before or after, the decision time point

is crucial. However, cell fate markers are usually delayed and the time of decision therefore

unknown. Fortunately, dividing cells induce temporal correlations in their progeny, which

allow for retrospective inference of the decision time point. We present a computational

method to infer decision time points from correlated marker signals in genealogies and apply

it to differentiating hematopoietic stem cells. We find that myeloid lineage decisions happen

generations before lineage marker onsets. Inferred decision time points are in agreement with

data from colony assay experiments. The levels of the myeloid transcription factor PU.1 do

not change during, but long after the predicted lineage decision event, indicating that the

PU.1/GATA1 toggle switch paradigm cannot explain the initiation of early myeloid lineage

choice.
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T ightly controlled and correctly timed cell fate decisions are
crucial for the development and maintenance of any
healthy organism. Understanding their molecular control

is therefore essential for basic biological research and the devel-
opment of future therapies. However, the identification of the
exact time point when a cell fate decision happens is often
impossible, since the emergence of an observable signal is usually
delayed from the fate decision itself. If we can only observe the
delayed signal, but not the actual decision-making process, factors
that influence the decision remain unidentified.

Consider a cellular process where an unobservable event (e.g., a
cell fate decision) leads to an observable phenotypic signal (e.g., a
morphological change or the onset of a lineage marker) with a
delay in time. From just observing the signal in non-dividing
cells, one cannot infer the true time point of the unobserved event
as the delay is typically unknown (Fig. 1a). However, if cells
divide during the delay, this induces correlated signals in related
cells (e.g., two sisters or four cousins, etc.). These correlated
signals carry information about the length of the delay and hence
about the timing of the unobserved event: for example, a delay of
1–2 generations causes correlated readouts in sister and cousin
cells and suggests a decision in the mother or grandmother
generation (see Fig. 1b).

Due to recent advances in time-lapse imaging and single-cell
tracking1–4, it is now possible to obtain large genealogies of single
cells and observe correlated signals. For example in yeast, sister
cells switch gene expression of a simple regulatory circuit in a
correlated fashion5. In mammalian hematopoiesis, differentiation
is typically read out via the expression of a lineage specific dif-
ferentiation marker6,7, e.g., the CD16/32 membrane receptor in
the myeloid branch of hematopoiesis (Fig. 2a). However, these
markers report the lineage decision only indirectly, because their
expression is a delayed downstream consequence of a former
unobserved event (Fig. 2b). Here, we parametrize the decision
process and the marker delay in a computational model that
combines a memory-less decision process and stochastic gene
expression mimicking marker delay with graphical models and
dynamic programming to cope with the computational com-
plexity of genealogies. This allows us to calculate the probabilities
of different decision scenarios (called hidden trees, Fig. 2c) and
determine the most likely time point of the unobserved lineage
decision.

We apply this method to a dataset of differentiating hemato-
poietic stem cell genealogies with annotated lineage marker onsets
and find that myeloid/megakaryocytic-erythroid lineage decision
happens several generations earlier than reported by lineage
markers and that the dynamics of PU.1 during the lineage deci-
sion is inconsistent with a PU.1-based toggle switch driving the
lineage decision.

Results
Prediction of an early cell fate decision in hematopoiesis. One
hematopoietic lineage decision is the choice of hematopoietic
stem and progenitor cells (HSPCs) between the megakaryocytic-
erythroid (MegE) and the granulocyte-macrophage (GM) line-
age7. The mutually exclusive expression of the transcription fac-
tors PU.1 and GATA1 in mature GM and MegE cells, respectively
(see e.g.,8 for an overview), and their mutual binding and cross-
antagonism inspired toggle switch models that predict tran-
scription factor dynamics before and during this decision9–14.
These models assume the switch to one of the cross-antagonistic
transcription factors to precede and induce GM vs. MegE lineage
choice, and serve as the de facto paradigm of binary cell fate
choice on a molecular level15. However, since the exact timing of
GM vs. MegE lineage choice remains unknown it is impossible to

quantify the dynamics of PU.1 and GATA1 immediately before
and during the actual lineage decision making.

To identify the time windows of this HSPC lineage decision
making, and to compare it to the dynamics of PU.1 and GATA1
regulation, we used a dataset of sorted murine HSPCs, where
endogenous PU.1 and GATA1 proteins are tagged with yellow
and red fluorescent proteins, respectively (see Hoppe et al.7 for
experimental details). Over 10,000 single cells have been tracked
and quantified, generating cellular genealogies up to 12 genera-
tions deep. Definite GM lineage commitment is detected via
CD16/32 onset using in-culture antibody staining (i.e., a
fluorescent CD16/32 antibody is present in the medium and
accumulates on cells that express CD16/32 on the membrane16,17,
Fig. 2a). MegE lineage commitment is read out via
GATA1–mCherry upregulation. We analyze 54 GM-fated and
20 MegE-fated genealogies from three independent experiments
(see Fig. 3a, b).

To infer the time point of lineage choice, i.e., the time when a
HSPC loses multipotency and commits towards the GM- or
MegE-lineage, we fit our computational model to the observed
genealogies by maximizing the likelihood of the data with respect
to the model parameters (see Methods). For each individual
genealogy (from now on also called “tree”), we calculate its
likelihood given model parameters by summing up overall
possible scenarios of differentiation, decomposing each tree into
subtrees, and calculating the probability for each subtree using a
graphical model (see Methods and Fig. 2d). After extensive testing
on synthetic data (Supplementary Notes 1-2), we use our
computational method to predict the most likely time point of
lineage choice based only on the temporal correlations in related
cells of CD16/32 or GATA1 onsets, respectively. The model
decomposes the onset distribution into a differentiation prob-
ability (Fig. 3c) and a lineage decision marker delay distribution
(Fig. 3d) to fit the observed marker onset distributions (Fig. 3e)
and the observed correlation patterns. As shown in Fig. 3c, the
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Fig. 1 Correlated signals in genealogies allow to reconstruct the preceding
unobserved events and infer the associated delay. a From uncorrelated
observed signals (green), the time point of the preceding unobserved event
(or likewise, the length of the delay) cannot be inferred (two samples
shown). b In contrast, if cells divide during the delay process, signals
become correlated and allow inferring the time points of the unobserved
events
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estimated differentiation probability is exponentially decreasing
with time. The majority (74%) of predicted lineage decisions
happen already in the first or second generation of the
genealogies (Supplementary Figure 1). While the tracked
generations are only relative to the start of the experiment,
HSPCs had just been freshly sorted and had been kept at 4 °C
from harvesting of bone marrow until shortly before the start of
the imaging experiment, thus most likely preventing cellular
decision making during HSPC preparation. Such early differ-
entiation is surprising as the established lineage markers CD16/32
and GATA1 can only be detected after many days in culture7.
Notably, the predictions of lineage decision time points are
unchanged for moderate measurement noise (up to one cell cycle
length) in the annotated onsets (see Supplementary Note 5). The
delay between the unexpected early differentiation and the onsets
of the lineage marker was on average 78 h for GM and 54 h for
MegE (Fig. 3d), with cell cycle lengths of 12 ± 5 h (for further
characterization of the delay process and its induced correlations,
see Supplementary Note 6).

Interestingly, the differentiation probability distributions are
almost identical for GM and MegE genealogies (Fig. 3c) even
though they were estimated independently from different trees.
This suggests a mechanism where a process common to both
lineages determines the timing of differentiation, while the
dynamics of lineage marker expression as a consequence of
differentiation are distinct for both lineages.

Next, we validate our finding of early differentiation events using
data from independent colony assay experiments of sorted HSPCs,
performed in the same experimental conditions (Hoppe et al.7).
These colony assays allow to read out the amount of pure GM-,
pure MegE-, and mixed GMMegE (containing all lineages) colonies
formed from single HSPCs after 10 days of culture. While the
differentiation distribution Φ(t) cannot be measured directly, it
leaves a distinct fingerprint in these frequencies: if lineage decisions
happen early, and thus in few cells within the colony, mostly pure
GM or pure MegE colonies will emerge, and GMMegE colonies will
be rare. In contrast, if decisions happen late and thus independently
in many cells within the colony, mostly GMMegE colonies will
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Fig. 2 Correlated lineage marker onsets of differentiating HSPCs in time-lapse microscopy allow to infer the time point of lineage choice. a The tracking of
dividing single cells in a time-lapse experiment gives rise to a genealogy. Expression of the lineage marker CD16/32 (indicated in green) is detected along
the genealogy. b A simple differentiation model with an exponentially decreasing differentiation probability and a delay due to stochastic gene expression
up to a detection limit induces marker correlations. After the first division, both cells independently differentiate at time t1 and t2 and start expressing the
marker, but divide before reaching the detection threshold (gray line). Inheriting the state of the mother, the daughter cells will reach the threshold at
similar, but due to stochasticity in gene expression, not identical times. c As the underlying dynamics are unknown, the observed marker onsets in a
genealogy can originate from different possible differentiation scenarios termed hidden trees. The hidden tree with the highest probability is the most likely
scenario of differentiation. d For one observed genealogy T, all hidden trees H∈ H(T) are constructed. A particular hidden tree can be decomposed into a
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emerge and pure GM or pure MegE colonies will be rare. This
intuition can be formalized in a mathematical branching process
model (see Methods and Marr et al.18), which predicts the
proportions of GM, MegE, and GMMegE colonies for a given
differentiation probability.

When supplied with the differentiation probability Φ(t) in
Fig. 3c (estimated with our tree inference algorithm from time
lapse data), the branching process model faithfully predicts the
experimentally observed colony assay frequencies (see Fig. 3f, g).
In particular, we are able to correctly predict the large frequency
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of observed GMMegE colonies (60 ± 7%), even though GMMegE
genealogies were not used to estimate the differentiation
probability with our tree inference algorithm (Fig. 3f, g). Note
that GMMegE genealogies are rare in the time lapse dataset of
Hoppe et al.7, due to the tracking strategy applied, where trees are
often only partially tracked. The few observed ones (see
Supplementary Figure 18) are indeed consistent with early
differentiation events.

PU.1 dynamics at the predicted time point of lineage choice. To
investigate if PU.1 and GATA1 are the determinants or only a
consequence of these HSPC lineage decisions, we analyzed the
dynamics of endogenous PU.1 levels quantified from PU.1-eYFP
fluorescence for each tracked cell and time point in the genea-
logies (Fig. 4a; for details, see Hoppe et al.7). In a typical bran-
ch of an HSPC genealogy, both the number of PU.1-eYFP
proteins and the PU.1-eYFP concentration (intensity/cell area)
rise before CD16/32 onset (Fig. 4a). This indeed matches the
expectations from a toggle switch model including PU.19–11:
initially balanced, the switch tilts in favor of PU.1, which gets
upregulated and leads to commitment towards the GM lineage,
signified by delayed CD16/32 expression. However, it is impos-
sible to tell a priori if PU.1 upregulation induces the lineage
decision or if it is a downstream consequence of an earlier lineage
choice.

To that end, we use the predicted lineage choice time point
from our model and compare it to the time point of PU.1
upregulation. We find no significant difference in PU.1-eYFP
production, quantified by estimating the slope of the PU.1-eYFP
concentration (red lines in Fig. 4a) in cell generations before,
at, or directly after the identified lineage choice time point,
(p= 0.25 and p= 0.15, rank-sum test, see Fig. 4b). In contrast,
PU.1-eYFP production is significantly higher in later cells
with CD16/32 onset (Fig. 4b). Similarly, when inferring
lineage choice time points in 20 MegE-fated genealogies based
on correlated onsets of GATA1 expression, we find that PU.1-
eYFP production does not change in cells before, at and directly
after the predicted time point (Fig. 4c). These results are robust
across three independent experiments (see Supplementary
Note 4).

Now we compare these findings to a model where a toggle
switch involving PU.1 drives cell differentiation. We implemented
a popular toggle switch model that is thought to drive binary
lineage decision composed of two mutually repressing transcrip-
tion factors (Fig. 4d inset; see Supplementary Note 3 for model
details)9–14,19. This model exhibits three stable states (Fig. 4d):
The state where both proteins are expressed at similar levels is
associated with a progenitor cell. In the two other states, one of
the two proteins is strongly upregulated, thereby repressing the
other, representing two mutually exclusive differentiated lineages.
Differentiation initiation occurs via noise driven transitions from

the progenitor to one of the differentiated states. Using Gillespie’s
algorithm20, we simulate genealogies from this toggle switch
model starting from single cells in the undifferentiated state.
Eventually this cell or its progeny will leave the progenitor state
and proceed to one of the differentiated states, turning on marker
expression. We now assume the underlying transcription factor
dynamics to be unobserved and infer the putative differentiation
time points from solely the correlated marker onsets in this
synthetic dataset with our method. We find that in our synthetic
dataset, the time point of predicted differentiation is identical to
the time point where the toggle switch tilts (Fig. 4e). Here, the
initial balance between the two factors is broken, one is
upregulated while the other is downregulated in the predicted
cells. Quantifying PU.1 production as in Fig. 4b, c, we find
significant change between cell generations before and at the
predicted differentiation time point, both for cells heading
towards the GM-lineage (PU.1 upregulation, Fig. 4f) and towards
the MegE lineage (PU.1 downregulation Fig. 4g). Similar results
are found for different parameterizations and more complex
models of the toggle switch (Supplementary Figures 12, 13). Our
method is thus able to correctly predict differentiation events
driven by a genetic toggle switch (Fig. 4e) and detect the cells
where the involved transcription factors are differentially
regulated (Fig. 4f, g) on synthetic data.

This approach shows that the experimentally observed marker
onsets and PU.1 dynamics are inconsistent with a toggle switch
involving PU.1, which initiates the lineage choice: If PU.1 was
directly involved in the GM/MegE lineage decision, we would
detect up- or downregulation in cells at the predicted time of
lineage choice (compare Fig. 4b, f, as well as Fig. 4c, g). Thus,
while PU.1’s importance in the execution of GM/MegE programs
is undoubted21 (and demonstrated by knockout
experiments22,23), it is not the initiator of lineage choice but
rather an effector that locks down the chosen lineage.

Discussion
The analysis of tree-structured data has a long history in the field
of phylogenetics24,25. Here, the main challenge is to reconstruct a
single unobserved sequence evolution tree using a stochastic
model of nucleotide substitution26 and observed sequences at the
leaves of the tree. In contrast, we directly observe the stem cell
genealogies, estimate model parameters from multiple trees,
and use a complex stochastic model which makes parameter
inference challenging. Due to the data structure and the lack of
available tools, genealogies typically have been studied using
summary statistics18,27–30. Modeling has only rarely been used to
gain mechanistic understanding about the observations31–33.
These approaches rely on a simple Markov model of state
changes (akin to our differentiation process) and assume that
this state change is readily observable. The key difference in our
approach is that we allow for a delayed observation of the

Fig. 3 Prediction of early decisions in GM and MegE lineages with long dissimilar delay. a, b Four exemplary GM-fated (a) and MegE-fated (b) genealogies
from the dataset used to infer time points of lineage choice. c The estimated differentiation distributions Φ (and hence the differentiation rate λ) are almost
identical between GM- and MegE-fated genealogies. d The estimated delay distribution ψ show differences in the delay process between GM- and MegE-
fated genealogies. e Combining the estimated Φ and ψ into the estimated cumulative marker onset distribution (dashed lines) fits the observed cumulative
marker onset distributions (solid lines: mean, shaded area: 95% confidence intervals) in GM (green) and MegE (orange) genealogies. f A branching
process model supplied with the estimated differentiation distributions Φ correctly predicts observed colony assay frequencies (n= 3 experiments,
errorbars indicate 95% confidence intervals). g In the space of all possible frequencies of GM, MegE, and GMMegE colonies (adding up to 1), the observed
colony assay data occupies is a single point (black) and an associated confidence interval (gray). Varying its only free parameter (pGM, see Methods), the
branching process model traces a line (red) in frequency space and intersects the confidence region of the data. The frequencies of the best fit are marked
with a red cross. While this model has one free parameter, its predictions with respect to GMMegE frequencies are almost independent of that parameter:
the predicted frequency of GMMegE colonies is constrained to the [0.5, 0.55] interval unless either one of the non-GMMegE colony types is completely
absent (left and right borders in Fig. 3G)
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the basin of attraction of a differentiated state (dashed lines). e–g In genealogies simulated from a PU.1/GATA1 toggle switch model, a clear change in PU.1
production is observed at the predicted lineage choice time point. e The predicted lineage choice (t= 0, gray dashed line) coincides with the divergence of
the toggle switch dynamics in single cells. Single trajectories (black lines), as well as the density across all predicted cells (color map) are shown. f In
simulated GM-fated genealogies, the fitted slope of PU.1 abundance in cells predicted to differentiate (relative generation 0) is considerably higher as
compared to undifferentiated cells one generation before (p < 10−16, rank-sum test). The upregulation is directly linked to the in-silico lineage choice
implemented by the toggle switch. g Similarly, in simulated MegE-fated genealogies, a downregulation of PU.1 (negative PU.1 production) starts in cells
predicted to differentiate (p < 10−16, rank-sum test)
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underlying state change, detectable only several generations later.
These long-range correlations are not accounted for by previous
models.

Our model of differentiation and delay only approximates the
underlying biological process. For example, we assumed that the
differentiation rate is only time-dependent, whereas differentia-
tion is likely to depend on other external factors, e.g., spatial
interactions between cells and their microenvironment34. How-
ever, in our experiments, the high motility of blood progenitors
results in fast mixing of cells and the impact of spatial interactions
is presumably small (see Supplementary Figure 3). As time-lapse
microscopy allows observing the spatial arrangement of cells,
those effects can in principle be incorporated into the differ-
entiation rate35.

We modeled the marker delay as a simple stochastic gene
expression due to a lack of knowledge about internal processes.
Typical gene expression parameters36 and reasonable detection
limits would only allow for short delays in the range of hours.
Correlations across multiple generations (as shown in Fig. 1a)
however, cannot be explained by simple mechanisms, but are
more likely caused by cascades in the underlying gene regulatory
network that trigger differentiation. Our model can approximate
such complex delay processes, e.g. via cascades of genes appro-
priately (see Supplementary Note 2-3).

A delay between the time point of lineage decision and the
onset of lineage specific markers was expected, and some sup-
porting data has been published. Paul et al.37 recently found a
population of cells with GM-like transcriptional profiles but
without CD16/32 expression. In our setting, this corresponds to
cells that are located downstream of a differentiation decision in a
genealogy but are still negative for CD16/32 (gray cells in Fig. 3a).
Our data suggests that the delay until marker onset is
much longer than expected. Furthermore, we could show that the
PU.1/GATA1 toggle switch model, a paradigm of lineage
choice in hematopoiesis is inconsistent with the observed marker
onsets and inferred delays; the data shows that PU.1 expression
only changes significantly several generations after the
inferred time of lineage choice. This is in line with the inter-
pretation of Velten et al.38 suggesting that the differentiation–tree
model of hematopoiesis with binary lineage decisions at
branching points should be revised. In addition, it fits to the
finding that lineage choice can be predicted before marker
onset based on cell morphology and movement30. In contrast to
Kueh et al.39, who report a cell cycle elongation upon PU.1
upregulation in an LMPP-like population, we see a decrease in
cell cycle lengths from the first generation to the second,
and a stabilization afterwards at around 12 h (see Supplementary
Figure 2). Importantly the cell cycle distributions are similar
for GM- and MegE-annotated genealogies (see Supplementary
Figure 2). The prolonged cell cycle in the generations 0 and 1 is
most likely a result of stem cells gradually getting activated and
starting to cycle when exposed to the media conditions of the
experiment.

Finally, it is highly interesting, and as yet without any expla-
nation, how such a long delay between lineage choice and marker
onset can be encoded in eukaryotic cells. In bacteria Levine
et al.40 demonstrated how a system of feedback loops could
induce delayed cell fate decisions over several generations.
However, it is unknown if similar mechanisms could account for
the much longer delays on the order of several days, as estimated
from our data.

Provided its extendibility and generality, we are confident that
our method is applicable to a wide range of cellular decision
problems. For example, it has been described that treatment of
differentiating embryonic stem cells leads to a highly synchro-
nized, delayed lineage choice days later17,41. Along the same

line, reprogramming somatic cells into iPS cells is believed to
be a stochastic process42,43, and e.g. analyzing the timing of
reprogramming44 might give insight into this complex procedure.
Similarly, it is thought that tumorigenesis is the result of sto-
chastic state transitions between cancer stem cells and non-
tumorigenic cells while metastases are generated when cells
randomly undergo an epithelial–mesenchymal transition,
detach from the tumor and spread the cancer into other body
parts45. Here, our method could be used to trace back to
the tumor- or metastasis-initiating cells in suitable time-lapse
in vitro experiments in order to investigate what triggered these
initial events.

Methods
Model assumptions. We introduce a computational method that, based on
observed correlations, estimates a delay to obtain the true time point of the
unobserved decision. Although our method is generally applicable to any decision
process and associated delay that leads to correlated outcomes in tree-structured
data, we focused on cellular differentiation. Time lapse microscopy combined
with cell tracking and fluorescence signal quantification delivers genealogies of
single cells with fate annotation typically read out via surface markers or cell
morphology46–49 (Fig. 2a). Each genealogy starts with a single stem cell at t= t0
(the start of time lapse microscopy). During the experiment, the cell divides and
gives rise to two daughter cells. These cells will later also divide, giving rise to
further progeny. At time points t > t0 the onsets of lineage markers are observed
(green in Fig. 2a).

We propose that observed correlations in marker expression emerge because of
a delay between the unobserved differentiation time point and the observed
marker onset. According to this generic model, an observed tree T can be
explained by several scenarios that we call “hidden trees” H Tð Þ(Fig. 2c). In
order to infer the true time point of the lineage choice, one has to assign
probabilities to these alternatives and predict the mostly likely hidden tree given the
observed data.

Therefore, we propose a simple model of lineage choice and delay based on two
assumptions:

i. Lineage choice is independent between cells: No internal information is passed
from mother to daughter cell that has influence on the timing. Thus, the
probability to differentiate must only depend on factors that are not inherited
during cell division. In the following, we will assume that the probability to
differentiate is a function of time (see below).

ii. The delay between lineage choice and marker onsets originates from a gene
expression process that starts after the differentiation decision. The marker
onset is detected once the amount of marker proteins in the cell crosses a
certain threshold x* (Fig. 2c). If the cell divides before the protein amount
exceeds the detection limit, its daughter cells inherit the marker expression
from their mother. As daughter cells inherit the state of their mother, they
become correlated with respect to marker onset; if one daughter reaches the
detection limit, the other daughter will likely do the same. Because gene
expression is intrinsically stochastic, the dynamics of both cells will not be
exactly identical50.

Differentiation process. We define a rate λ(t) so that λ(t)dt is the probability that
the lineage decision occurs in the interval [t, t+ dt] in a single cell, given that it has
not occurred yet in the interval [0, t). Note that in survival analysis, λ is called the
hazard rate51.

Next, we define the overall distribution of decision times ϕ(t), that is, the
probability density to observe a decision at time t (known as event density in
survival analysis). Both quantities are related via (see Supplementary Methods):

ϕ tð Þ ¼ λ tð Þ exp � R t
0
dτ λ τð Þ

� �
:

For example, if λ(t)= λ is constant, the above equation yields ϕ(t)= λ exp(−λt),
which is the probability density of an exponential distribution. Without loss of
generality, but motivated by experimental observation18, we assume that the
differentiation rate is a linear function of time such that

λ tð Þ ¼ a0 þ a1t: ð1Þ

This represents a first order approximation to a potentially complex but
unknown differentiation rate. It allows more flexibility than a zeroth-order
approximation (λ(t)= a0) and is sufficient to encompass mechanistic models of
lineage choice (see Results). From now on, we denote the parameters of the
differentiation process as θ= (a0, a1) and write ϕ(t|θ) to make the dependence on
the parameters explicit.
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Delay process. We model the marker delay as a stochastic gene expression pro-
cess. Combining transcription and translation for simplicity, we obtain a
birth–death process with two reactions, one producing a protein with rate α and
the other removing a protein with rate γ (for details, see Supplementary Methods).
We are only interested in the dynamics of the system until the protein numbers
exceed the detection threshold x*, where we assume that the marker can be
observed. The delay process is characterized by the first passage time distribution
ψx0

tð Þ, that is, the probability that the protein number crosses the threshold x* for
the first time at time t starting with x0 proteins initially, and the propagat or Px−> x

′(t), the probability to start a state x and after time t arrive at state x'. Both ψx0
tð Þ

and Px−> x′(t) depend on the parameters η= (α, γ, x*) of the underlying model, but
we have dropped this dependence for readability. We obtain ψx0

tð Þ and Px−> x'(t)
by numerically solving the Master Equation of the associated stochastic process
(see Supplementary Methods).

Statistical inference. Our goal is to estimate the parameters (θ, η) of the
model from observed genealogies in order to predict lineage choice in a given tree.
To that end, we derive the likelihood L(T|θ, η) of an observed tree T given the
parameters, which is then optimized to find the maximum likelihood estimates
θ̂; η̂.

The entire process of differentiation and marker delay on genealogies
has the Markov property; given the internal state in terms of ϕ and ψ of
some cell i at time t, the subtree induced by this cellis independent of all
other cells in the entire tree. This allows us to divide the problem into smaller
subproblems, where we enumerate on a per cell basis all possibilities of
differentiation events in an observed tree, which we termed “hidden trees” (see
Fig. 1c).

The likelihood of the observed tree T given parameters θ and η is the sum of
likelihoods of the hidden trees H, because these are competing alternatives
(Fig. 2d):

L Tjθ; ηð Þ ¼
X

H2H Tð Þ
L Hjθ; ηð Þ ð2Þ

To derive the likelihood of a single hidden tree H, we partition the hidden tree
into various subtrees Di induced by the differentiating cells and a single tree U that
only contains undifferentiated cells (Fig. 2d). Due to the Markov property, the
likelihood factorizes:

L Hjθ; ηð Þ ¼ L Ujθð Þ
Y
i

L Dijθ; ηð Þ ð3Þ

Note that the parameters θ also appear in the likelihoods for Di as the root of
these subtrees is still undifferentiated for some unknown time (Supplementary
Figure 6). The first term is readily computed from the decision process (Eq. 1) as
the process generating it has no memory and factorizes across cells in U. The terms
L(Di|θ, η) are more difficult to obtain, as the delay process has memory and hence
the individual cells of the subtree cannot be treated independently. Also, one has to
account for the unknown time interval where the root of the subtree is still
undifferentiated (see Supplementary Figure 6). We represent each tree Di as a
factor graph (Fig. 2d and Supplementary Methods). The factor graph models the
dynamics of the delay process on the tree structure, whose state is only known at
the leaves of the tree, where an onset is observed. We use message passing to
integrate out all unobserved variables in the graph and thereby obtain the
likelihood L(Di|θ, η)52. The sum over H in Eq. 2 consists of a large number of terms
(it is double exponential in the number of cells53), hence an explicit summation is
prohibitive for larger trees. However, the sum can efficiently be evaluated using
dynamic programming (see Supplementary Methods).

Using Eq. 2 and 3, we can now perform maximum likelihood estimation of the
underlying model parameters θ, η given a set of observed trees T1,…Tn:

θ̂; η̂
� �

¼ argmax

θ; η

Xn
i¼1

log L Tijθ; ηð Þ½ �: ð4Þ

To solve the above optimization problem, we apply a standard multiple-restart
(Latin Hypercube54) optimization routine. Having learned the parameters θ̂; η̂ via
Eq. 4, we predict differentiation times and cells in the genealogies. For an observed
tree T, we select the most likely hidden tree Ĥ from the set of all possible hidden
trees according to

Ĥ ¼ argmax

H 2 H Tð Þ
L Hjθ̂; η̂
� �

ð5Þ

Ĥ is calculated recursively to avoid enumerating the entire set H Tð Þ
(Supplementary Methods) and is used to predict which cells most likely

differentiated. Note that one can additionally obtain the k-most likely hidden trees
and their corresponding likelihoods (see Supplementary Figure 7).

Branching process model for colony assays. To validate the estimated differ-
entiation rate λ (Fig. 3c), we utilize colony assay data of single sorted HSPCs done
in the same experimental conditions as the genealogies. Single HSPCs are sorted
into separate microwells and form colonies over ten days. These colonies are
classified into three categories: GM-colonies, which contain only granulocytes and
monocytes; MegE-colonies, which contain only megakaryoctes and erythrocytes;
and GMMegE colonies, which contain cell from both the GM and the MegE
lineage. The relative frequencies and confidence intervals of these three colony
types over the course of ten days are reported in Extended Data Fig. 6c of Hoppe
et al.7. We consider only the data from day ten where the colony assay frequencies
have stabilized.

Intuitively, the colony assay frequencies depend on the differentiation rate: early
lineage choice will increase the fraction of homogeneous (GM or MegE) colonies
whereas late lineage choice will give rise to mostly GMMegE colonies. This
intuition can be formalized into a mathematical model (see Marr et al.18 for
details). The model has two parameters: the differentiation rate λ(t) (related to the
differentiation probability Φ(t), see Supplementary Note 1) and the lineage
probabilities PGM and PMegE (PGM+ PMegE= 1) for a single cell to pick either one
or the other lineage upon differentiation. With these two parameters, one can
derive recursive equations for the probability of observing a GM, MegE, and
GMMegE colony as a function of cell generations. The frequency of a GM-colony
after N generations is:

FGM Nð Þ ¼ fGM N; 1ð Þ

where

fGM N; ið Þ ¼ λ ið ÞpGM þ 1� λ ið Þð Þ fGM N � 1; iþ 1ð Þ2� �
N > 0

0 N ¼ 0

(

The recursion is to be understood as follows: to yield a homogeneous GM
colony, either the founding cell of the colony must differentiate and choose
the GM lineage (first term of the sum), or the founding cell does not differentiate,
but both its daughters in turn form homogeneous GM colonies (second term
in the sum). The variable i in fGM(N, i) is a mere bookkeeping device that keeps
track of the current generation (due to a generation dependent λ). Note that in the
case of constant λ(i)= λ, the result from Marr et al.18 is obtained. An analogous
formula applies for FMegE(N) and by definition, FGemM(N)= 1− FGM(N)−
FMegE(N).

As the colony assay model operates in discrete time (cell generations), we
discretize the continuous differentiation rate λ(t) obtained from the genealogies as
follows:

λ ið Þ ¼ Esi ;ci
1� e

�
Rsiþci

si

λ τð Þdτ
2
64

3
75

where we take the expectation with respect to the birth time si of a cell in
generation i and the cell cycle time ci of a cell in generation i. The expression
inside the expectation is the probability to differentiate in the time interval
[si, si+ ci]. Here, we account for the fact that cells in generation 1 and 2
tend to have longer cell cycles then cells in subsequent generations. Hence the
hazard in generation 1 and 2 is increased due to prolonged cell cycle. The
distribution of si, ci is readily estimated from the tracked genealogies (see
Supplementary Figure 2).

Using the extracted generation-wise differentiation rate in the colony assay
model, the only remaining free parameter is pGM (since pMegE= 1− pGM). Note
that we cannot use the fraction of GM and MegE genealogies in the time lapse
dataset as a surrogate for pGM, since the genealogies are not guaranteed to be
tracked unbiased; their proportions do not reflect the true underlying lineage
probabilities.

A parameter sweep of pGM (but fixed λ(t)) creates a curve in the (FGM, FMegE,
FGemM) space (see Fig. 3f), each point on the curve corresponding to a particular
choice of pGM. As the curve intersects with the confidence interval of the observed
colony assay frequencies, the model is capable of explaining the observed colony
assay frequencies. The predicted frequencies of the best fit match the observed
frequencies (Fig. 3f, g).

Data availability. The datasets analysed during the current study are available
from the corresponding author on request.

Code availability. An implementation of the computational method is available at
https://github.com/QSCD/tree-inference.
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