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1  |   INTRODUCTION

Lactate is primarily produced in glycolytic muscle fibers 
during exercise and shuttled to oxidative muscle fibers as 
well as other organs via circulation to be used as a sub-
strate for ATP production in mitochondria (Brooks, 2018). 

Lactate traverses the plasma membrane via specific trans-
port proteins. In the skeletal muscles, monocarboxylate 
transporter (MCT)1 and MCT4 are known as lactate trans-
porters, with different affinities for lactate and fiber-type 
dependent distribution (Juel & Halestrap, 1999). MCT1 is 
a high-affinity lactate transporter predominantly present in 
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Abstract
The aim of this study was to investigate effects of short-term hypoxic training on 
lactate metabolism in the gluteus medius muscle of Thoroughbreds. Using crossover 
design (3  months washout), eight Thoroughbred horses were trained for 2  weeks 
in normoxia (FIO2 = 21%) and hypoxia (FIO2 = 18%) each. They ran at 95% maxi-
mal oxygen consumption (V̇O2max) on a treadmill inclined at 6% for 2 min (3 days/
week) measured under normoxia. Before and after each training period, all horses 
were subjected to an incremental exercise test (IET) under normoxia. Following the 
2-week trainings, V̇O2max in IET increased significantly under both oxygen condi-
tions. The exercise duration in IET increased significantly only after hypoxic train-
ing. The monocarboxylate transporter (MCT) 1 protein levels remained unchanged 
after training under both oxygen conditions, whereas MCT4 protein levels in-
creased significantly after training in hypoxia but not after training in normoxia. 
Phosphofructokinase activity increased significantly only after hypoxic training, 
whereas cytochrome c oxidase activity increased significantly only after normoxic 
training. Our results suggest that hypoxic training efficiently enhances glycolytic 
capacity and levels of the lactate transporter protein MCT4, which facilitates lactate 
efflux from the skeletal muscle.
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oxidative fibers for lactate uptake into the muscle, whereas 
MCT4 is a low-affinity lactate transporter in glycolytic fi-
bers for lactate release from the muscles (Bonen,  2001). 
These two MCT isoforms play a major role in the lactate 
shuttle in muscles during exercise. Lactate is released from 
glycolytic fibers via MCT4, and then taken up in oxidative 
fibers via MCT1 (Brooks, 2009).

Previous reports in both rodents and humans have shown 
that MCT1 expression increased after both continuous 
low-intensity and high-intensity training, while for increasing 
the expression of MCT4, high-intensity training accompa-
nied by an elevation of blood lactate concentration was re-
quired (Thomas, Bishop, Lambert, Mercier, & Brooks, 2012; 
Yoshida et  al.,  2004). The expression of MCT1, but not 
MCT4, is known to be regulated by peroxisome prolifera-
tor-activated receptor-γ coactivator-1α (PGC-1α), also called 
as a master regulator of genes involved in oxidative capac-
ity (Benton et  al.,  2008). In contrast, hypoxia is known to 
activate the expression of glycolytic enzymes via hypox-
ia-inducible factor 1α (HIF-1α); MCT4, but not MCT1, is up-
regulated by HIF-1α-dependent mechanisms (Ullah, Davies, 
& Halestrap, 2006). We also found that high-intensity inter-
val training increased HIF-1α protein level in mouse skeletal 
muscle (Abe et al., 2015). These previous findings led us to 
hypothesize that hypoxic training might be an efficient strat-
egy to increase MCT4 protein level in skeletal muscles.

Thoroughbred horses are one of nature's most gifted 
athletes on the earth, with high maximal oxygen uptake 
(V̇O2max) and a large amount of glycogen in the muscles 
(Lacombe, Hinchcliff, Geor, & Baskin, 2001). During max-
imal exercise, the plasma lactate concentration reaches over 
30 mmol/L, suggesting that Thoroughbreds are suitable sub-
jects for the study of lactate metabolism (Harris, Marlin, & 
Snow,  1987). Indeed, we previously reported that MCT4 
protein level in equine skeletal muscle was associated with 
exercise performance in an incremental exercise test (IET) 
(Kitaoka et  al.,  2010). We also demonstrated that high-in-
tensity training was required to maintain the MCT4 protein 
level in well-trained horses (Kitaoka et  al.,  2011). A pre-
vious study reported greater improvements in running dis-
tance and V̇O2max during IET after hypoxic training than 
normoxic training (Nagahisa, Mukai, Ohmura, Takahashi, & 
Miyata, 2016). However, effects of hypoxic training on skele-
tal muscle lactate transporters remain unknown. In this study, 
we examined whether 2 weeks of hypoxic training enhances 
exercise training-induced adaptation of lactate transporters 
in equine skeletal muscle. A short-term training period (six 
sessions over 2 weeks) was selected based on human stud-
ies demonstrating the rapid improvement of both anaerobic 
and aerobic metabolism in the skeletal muscle after only 
2  weeks of sprint interval training (Burgomaster, Hughes, 
Heigenhauser, Bradwell, & Gibala,  2005; Rodas, Ventura, 
Cadefau, Cusso, & Parra, 2000).

2  |   MATERIALS AND METHODS

2.1  |  Ethical approval

All procedures were approved by the Animal Welfare and 
Ethics Committee of the Japan Racing Association Equine 
Research Institute (Permit number: 2017-2, 2018-2) and fol-
lowed the American Physiological Society's Animal Care 
Guidelines. All surgeries were performed under sevoflurane 
anesthesia and all incisions for catheter placements were 
performed under local anesthesia using lidocaine. All efforts 
were made to minimize animal suffering.

2.2  |  Animals

Eight Thoroughbred horses (three geldings and five females) 
were used in this study. The horses had their carotid artery 
surgically moved from the carotid sheath to a subcutaneous 
location to facilitate arterial catheterization. After transloca-
tion of the carotid artery, horses were acclimated to running 
on a treadmill while wearing an open-flow mask.

2.3  |  Experimental design

Using a randomized crossover design (3 months washout), 
horses were trained in normoxia (FIO2 = 21%) and hypoxia 
(FIO2  =  18%) 3  days/week for 2  weeks on a treadmill in-
clined at 6% and walked for 1 hr/day in a walker on the other 
4 days for 2 weeks. Each horse was pastured in a 17 × 22 m2 
yard for approximately 6 hr/day. The training session con-
sisted of 1 min of cantering at 7 m/s and 2 min at the speed 
of 95% V̇O2max measured under normoxia. The duration 
of hypoxic stimulus per training session was approximately 
5 min. Each training session was performed after warm-up 
(1.7 m/s for 30 min and 4 m/s for 2 min) and followed by 
cool-down (1.7 m/s for 30 min). The length of the washout 
period was determined based on our previous report that the 
protein levels of MCT1 and MCT4, as well as enzyme ac-
tivities returned to the baseline levels after 6 weeks of de-
training in Thoroughbreds (Kitaoka et al., 2011). Before and 
after each training period, the horses were subjected to incre-
mental exercise tests (IET) under normoxia. After trotting at 
4 m/s for 3 min as warm up, the horses ran on a 6% incline 
for 2 min each at 1.7, 4, 6, 8, 10, 12, and 13 m/s until they 
reached exhaustion and could not maintain their position on 
the treadmill. The duration of IET was measured as total time 
from the beginning of running at 6 m/s till the end of all-out 
running. Blood samples were obtained from the catheter in 
a carotid artery to measure the plasma lactate concentration 
and hematocrit, before and at the final 30-s of each step and 
1, 3, 5 min after the IET. Blood samples were centrifuged 
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at 12,000 g for 5 min to measure hematocrit, and at 1,800 g 
for 10 min to measure plasma lactate concentration using a 
lactate analyzer (Biosen C-Line Glucose & Lactate Analyser; 
EKF-diagnostic GmbH, Barleben, Germany). Muscle sam-
ples were taken from the same area (2 cm away from the first 
sampling point) at the midsection of the gluteus medius mus-
cle and from the same depth (5 cm below the skin surface) 
by needle biopsy under local anesthesia (lidocaine, Fujisawa 
Pharmaceutical Co., Osaka, Japan) before and after each 
training period at rest. Muscle samples were rapidly frozen 
in liquid nitrogen and stored at –80°C until further analysis.

2.4  |  Oxygen consumption

Horses wore an open-flow mask on the treadmill in which air 
was drawn through rheostat-controlled blower. Air flowed 
through a 25-cm diameter tube and across a pneumotacho-
graph (LF-150B; Vise Medical, Chiba, Japan) connected to 
a differential pressure transducer (TF-5; Vise Medical). This 
was done to ensure that bias flows during measurements 
were identical to those used during calibrations. Bias flow 
was set to keep changes in O2 concentration and CO2 con-
centrations < 1.5% to keep the horses from rebreathing CO2. 
Oxygen and CO2 concentrations were measured with an O2 
and CO2 analyzer (MG-360; Vise Medical) and calibrations 
were used to calculate rates of O2 consumption and CO2 
production with mass flow meters (CR-300, Kofloc, Kyoto, 
Japan) using the N2-dilution/CO2-addition mass-balance 
technique (Fedak, Rome, & Seeherman, 1981). Gas analyzer, 
thermohygrometer, and mass flowmeter outputs were also 
recorded on personal computers using commercial hardware 
and software (DI-720 and Windaq Pro+, DATAQ, Akron, 
OH) sampling at 200 Hz.

2.5  |  Hypoxic stimulus

The procedure for producing the hypoxic condition was 
slightly modified from the method previously described 
(Ohmura et al., 2010). Briefly, a mixing chamber was con-
nected upstream to a flexible tube on a 25-cm diameter open-
flow mask through which N2 was blown into the upstream 
end of the flow system and mixed with a bias-flow of air of 
80–120 L/s to create the desired O2 concentration. Nitrogen 
gas flow was controlled with a mass flow meter (Model 
DPM3, Kofloc, Kyoto, Japan) connected to compressed gas 
cylinders through a gas manifold. Nitrogen gas flow was 
adjusted to maintain 18% O2 by monitoring the O2 concen-
tration in the downstream arm of the mass flow meter with 
an O2 analyzer (LC-240UW, Vise Medical, Chiba, Japan) 
when horses ran in hypoxia. In the second session of each 
training, we collected arterial blood samples in the final 

30 s of galloping at 95% VO2max to measure arterial oxygen 
saturation (SaO2) using (ABL800 FLEX and ABL80 FLEX-
CO-OX, Radiometer, Copenhagen, Denmark).

2.6  |  Western blotting

Gluteus medius muscle sample was homogenized in radio-
immunoprecipitation assay buffer (25 mmol/L Tris-HCl, pH 
7.6, 150  mmol/L NaCl, 1% NP-40, 1% sodium deoxycho-
late, and 0.1% sodium dodecyl sulfate [SDS]) supplemented 
with protease inhibitor mixture (Complete Mini, ETDA-free, 
Roche Applied Science, Indianapolis, IN) and phosphatase 
inhibitor mixture (PhosSTOP, Roche Applied Science). The 
total protein content of samples was quantified using the 
BCA protein assay (Pierce Biotechnology, Rockford, IL). 
Equal amounts of protein were loaded onto 12% SDS–PAGE 
gels and separated by electrophoresis. Proteins were trans-
ferred to polyvinylidene difluoride membranes, and western 
blotting was carried out, using antibodies raised in rabbits 
against the oligopeptide corresponding to the C-terminal re-
gions of equine MCT1 and MCT4 by Cosmo Bio (Tokyo, 
Japan), respectively. Ponceau staining was used to verify 
consistent loading. Blots were scanned and quantified using 
C-Digit Blot Scanner (LI-COR, Lincoln, NE).

2.7  |  Enzyme activity

Gluteus medius muscle sample was homogenized in 100 ml 
(v/w) of 100 mmol/L potassium phosphate buffer. Activities 
of two enzymes (phosphofructokinase (PFK) and cytochrome 
c oxidase (COX)) were measured spectrophotometrically to 
determine the glycolytic and oxidative capacities, respec-
tively, following established protocols (Shonk & Boxer, 1964; 
Spinazzi, Casarin, Pertegato, Salviati, & Angelini, 2012).

2.8  |  Statistical analysis

All data were expressed as mean ± standard error of means 
(SEM). Mixed-effects analysis followed by Bonferroni post 
hoc test were performed. All statistical analyses were per-
formed by GraphPad Prism 8 (GraphPad Software, La Jolla, 
CA). Statistical significance was defined as p < .05.

3  |   RESULTS

There was no differences in pretraining values between 
normoxia and hypoxia for any parameters. The changes 
in SaO2 were confirmed during the second training ses-
sions in the first week of each oxygen condition. SaO2 was 
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significantly lower in hypoxia (74.3 ± 1.5%) than that in 
normoxia (91.0 ± 1.1%) at the end of exercise. Following 
2 weeks of training under both oxygen conditions, body 
weight was significantly reduced, while V̇O2max in the 
IET increased significantly (Table 1). The exercise dura-
tion increased significantly after hypoxic training and ap-
proached significance after normoxic training (p  =  .05). 
The plasma lactate concentration at running speed of 6 m/s 
in the IET was significantly decreased after training under 
both oxygen conditions, whereas it was significantly de-
creased only after training in normoxia at running speeds 
of 8 and 10 m/s. The lactate concentration at exhaustion 
in the IET was significantly increased only after hypoxic 
training (Table  1). There was no change in hematocrit 
after training under both oxygen conditions. (Table  1). 
MCT1 protein level remained unchanged after both train-
ings, although there was a trend toward significance after 
training in normoxia (p = .06, Figure 1a). MCT4 protein 
level increased significantly after training in hypoxia but 
was not altered after training in normoxia (Figure  1b). 
Phosphofructokinase activity increased only after hypoxic 
training (Figure 2a), whereas COX activity increased only 
after training in normoxia (Figure 2b).

4  |   DISCUSSION

Hypoxic training has been utilized as a method to improve 
athletic performance in human athletes. The underlying 
mechanisms of exercise-based performance improvement are 
considered to lie mainly in cardiovascular and hematological 
adaptations (Viscor et al., 2018). In Thoroughbreds, hypoxic 
training is reported to improve exercise performance, associ-
ated with the increase in V̇O2max but without changes in packed 
cell volume, suggesting the contribution of non-hematological 
adaptations (Nagahisa et al., 2016; Ohmura, Mukai, Takahashi, 
Takahashi, & Jones,  2017). However, it is still unknown 
whether hypoxic exposure during training leads to greater 
changes in muscular metabolic characteristics. The major find-
ing of this study showed that short-term training in hypoxia 
enhances glycolytic enzyme activity and lactate transporter 
MCT4 protein levels in Thoroughbred skeletal muscles.

4.1  |  Monocarboxylate transporters

In human studies, it has been well established that high-inten-
sity interval training increases both MCT1 and MCT4 protein 

Normoxia Hypoxia

PRE POST PRE POST

Body weight (kg) 516.3 ± 8.8 505.9 ± 8.3** 520.8 ± 11.2 502.4 ± 10.2**

V̇O2max 
(ml kg−1 min−1)

161.1 ± 3.9 173.3 ± 2.4* 159.0 ± 4.1 174.6 ± 2.5**

Exercise duration (s) 414.1 ± 24.8 446.8 ± 24.8 418.3 ± 29.1 470.9 ± 25.3**

Plasma lactate (mmol/L)

Before exercise 0.9 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1

6 m/s 2.3 ± 0.2 1.6 ± 0.1** 2.3 ± 0.3 1.6 ± 0.2**

8 m/s 5.8 ± 1.2 3.6 ± 0.5* 5.5 ± 1.0 3.8 ± 0.7

10 m/s 11.9 ± 1.4 8.2 ± 1.1* 11.2 ± 1.3 9.3 ± 1.6

Exhaustion 16.9 ± 1.7 15.1 ± 1.8 16.6 ± 1.9 18.7 ± 1.6*

1 min after exercise 24.3 ± 2.2 22.6 ± 1.9 23.1 ± 2.5 24.9 ± 2.3

3 min after exercise 23.4 ± 2.3 20.8 ± 2.2 22.0 ± 2.7 23.4 ± 2.4

5 min after exercise 22.2 ± 2.5 19.4 ± 2.4* 20.8 ± 3.0 22.1 ± 2.7

Hematocrit (%)

Before exercise 46.3 ± 1.7 45.0 ± 2.0 45.9 ± 1.7 47.2 ± 1.9

6 m/s 52.8 ± 1.0 52.4 ± 1.2 54.2 ± 1.1 55.0 ± 1.4

8 m/s 57.1 ± 1.3 56.4 ± 1.4 58.2 ± 0.9 58.9 ± 1.0

10 m/s 60.4 ± 1.2 59.4 ± 0.9 60.7 ± 1.0 61.3 ± 1.0

Exhaustion 61.4 ± 1.1 60.1 ± 1.1 61.0 ± 1.1 62.8 ± 1.1

1 min after exercise 62.8 ± 1.3 63.3 ± 1.1 63.6 ± 1.2 64.3 ± 1.2

3 min after exercise 61.9 ± 1.4 62.6 ± 1.2 62.0 ± 1.2 63.2 ± 1.4

5 min after exercise 60.8 ± 1.4 60.9 ± 1.2 60.8 ± 1.3 62.1 ± 1.4

T A B L E  1   Body weight, maximal 
oxygen consumption (V̇O2max), peak plasma 
lactate concentration, and exercise duration 
in the incremental exercise test before 
(PRE) and after (POST) hypoxic training 
in Thoroughbreds. *p < .05 **p < .01, 
significant difference versus pretraining
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levels in skeletal muscles (Burgomaster et al., 2007; Perry, 
Heigenhauser, Bonen, & Spriet,  2008). In accordance with 
these reports in humans, we previously demonstrated that 
high-intensity training increased MCT1 and MCT4 protein 
levels in Thoroughbred horses. Interestingly, the increase 
in MCT1, but not MCT4, was maintained with moderate-
intensity training (Kitaoka et  al.,  2011). In this study, we 
found that hypoxic training increased MCT4 protein expres-
sion, suggesting that training in hypoxia could be more ef-
fective than similar training in normoxia in Thoroughbreds. 
This finding is in line with an earlier report showing an up-
regulation of MCT4 mRNA expression after intermittent 
hypoxic training (all-out repeated sprints) in trained cyclists 
(Faiss et  al.,  2013). However, although MCT4 was shown 
to be up-regulated by severe hypoxia (Py et al., 2005; Ullah 
et  al.,  2006), previous studies reported that there was no 
change in MCT1 and MCT4 after acclimation to high altitude 
(Juel, Lundby, Sander, Calbet, & Hall, 2003), and “live high, 
train low” hypoxic exposure (Clark et al., 2004) in humans. 
The lack of changes in lactate transporters in these reports 
suggested that more intense training may be required under 
hypoxic conditions.

4.2  |  Glycolytic capacity

In Thoroughbred horses, the activity of glycolytic enzymes 
generally do not change following training (Cutmore, Snow, & 
Newsholme, 1985; Serrano, Quiroz-Rothe, & Rivero, 2000). 
Unlike humans (MacDougall et al., 1998; Rodas et al., 2000), 
even high-intensity training does not enhance PFK activity in 

Thoroughbreds (Kitaoka et  al.,  2011), with few exceptions 
as examined in long-term training effect over 3 months (Eto 
et al., 2004). This was thought to be due to the inborn high 
glycolytic capacity of equine skeletal muscles. However, 
here, we found that six sessions of hypoxic training increased 
PFK activity, suggesting that there is trainability for glyco-
lytic capacity in Thoroughbreds. Our finding of increased 
PFK activity after hypoxic training is consistent with several 
previous reports in mice (Suzuki, 2019) and humans (Puype, 
Van Proeyen, Raymackers, Deldicque, & Hespel,  2013). 
Moreover, exercise-intensity–dependent changes in PFK 
mRNA was augmented by hypoxia in human skeletal muscle 
(Vogt et al., 2001; Zoll et al., 2006). Taken together, the addi-
tion of hypoxic stress to exercise training augmented glyco-
lytic capacity in the skeletal muscle of Thoroughbreds.

4.3  |  Oxidative capacity

In contrast to glycolytic enzymes, it has been demonstrated 
that long-term exposure to hypoxic conditions leads to a de-
crease in muscle mitochondrial enzyme activities, including 
citrate synthase (CS), succinate dehydrogenase (SDH), and 
COX (Green, Sutton, Cymerman, Young, & Houston, 1989; 
Howald et al., 1990; Levett et al., 2012). Proteomic analysis 
showed that chronic exposure to hypoxia induced downreg-
ulation of proteins involved in tricarboxylic acid cycle and 
electron transport, and upregulation of glycolytic enzymes in 
rat skeletal muscles (De Palma et al., 2007). The addition of 
hypoxic stress during exercise training has been reported to 
additively increase mRNA levels but do not affect activity of 

F I G U R E  1   Monocarboxylate 
transporter protein (MCT)1 and 4 contents 
before (PRE) and after (POST) hypoxic 
training in Thoroughbred skeletal muscle. 
Data are presented as mean ± SEM. n = 8 in 
each group. **p < .01, significant difference 
versus pre-training

F I G U R E  2   Phosphofructokinase 
(PFK) and cytochrome c oxidase (COX) 
activities before (PRE) and after (POST) 
hypoxic training in Thoroughbred skeletal 
muscle. Data are presented as mean ± SEM. 
n = 8 in each group. *p < .05, significant 
difference versus pretraining
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oxidative enzymes (CS and COX) in trained human skeletal 
muscles (Zoll et al., 2006). Another study in untrained sub-
jects showed that training in hypoxia resulted in greater in-
crease in CS activity but not SDH activity, compared with the 
same amount of training in normoxia (Melissa, MacDougall, 
Tarnopolsky, Cipriano, & Green, 1997). Likewise, training 
in hypoxia with the same relative workload as in normoxia 
had similar effects on muscle mitochondrial volume in hu-
mans (Desplanches et al., 1993). In this study, we also found 
that there was no additional effect of the hypoxic stimulus on 
training-induced COX activity in Thoroughbreds. This result 
was consistent with a previous study demonstrating that train-
ing-induced increase in muscle oxidative function observed 
during normoxia was absent during hypoxia (Bakkman, 
Sahlin, Holmberg, & Tonkonogi, 2007). However, it is worth 
noting that hypoxic training may alter the intrinsic properties 
of mitochondrial function without changes in oxidative en-
zyme activity (Ponsot et al., 2006; Roels et al., 2007).

4.4  |  Potential mechanisms

The cellular response to hypoxia is mainly mediated by HIF-
1, which is identified as master transcription factor of oxygen 
homeostasis (Wang & Semenza, 1995), and therefore, HIF-1α 
has been recognized as the key mediator of adaptations to 
hypoxic training. Several studies have reported that hypoxic 
training increased mRNA levels of HIF-1α in the skeletal 
muscle of humans (Vogt et al., 2001; Zoll et al., 2006) and 
Thoroughbreds (Nagahisa et al., 2016). Given that pharma-
cological activation of HIF-1α elevated mRNA expression of 
PFK and MCT4 (Abe et al., 2015), our results of increased 
PFK activity and MCT4 protein level in the current study 
might be partly owing to the activation of HIF-1α pathway by 
hypoxic training. While HIF-1α regulates glycolytic metabo-
lism, PGC-1α is a potent regulator of oxidative metabolism 
and MCT1 in the skeletal muscle (Benton et al., 2008; Lin 
et al., 2002). It is well established that high-intensity training 
increases PGC-1α protein level in the skeletal muscle of hu-
mans (Little, Safdar, Wilkin, Tarnopolsky, & Gibala, 2010) 
and horses (Kitaoka et al., 2012). Importantly, high-intensity 
exercise-induced PGC-1α mRNAs were attenuated under 
hypoxia in Thoroughbred skeletal muscle (Okabe, Mukai, 
Ohmura, Takahashi, & Miyata, 2017). This hypoxia-induced 
reduction of PGC-1α might diminish the mitochondrial adap-
tation to exercise training.

4.5  |  Lactate metabolism during exercise

Increased PFK activity and MCT4 protein level by hypoxic 
training reveal enhanced capacity for anaerobic ATP produc-
tion. Given that the transport of lactate via MCT is coupled 

with the transport of a proton, increased MCT4 might play 
an important role in maintaining intramuscular pH (Juel & 
Halestrap, 1999), which prevents the low pH induced inhi-
bition of glycogenolysis during exercise (Hollidge-Horvat, 
Parolin, Wong, Jones, & Heigenhauser, 1999). Supporting 
this notion, we previously found a correlation between 
MCT4 protein content and muscle lactate concentration im-
mediately after 2 min of intense exercise at 120% VO2max in 
Thoroughbreds (Kitaoka et al., 2014). In the present study, 
the plasma lactate concentration at exhaustion during IET 
was higher after hypoxic training than normoxic training, al-
though exercise performance in the IET increased to a simi-
lar extent after both training (7.9% in normoxia and 12.6% 
in hypoxia). A previous study reported that MCT4 protein 
content was correlated with average power output during the 
2-min time trial, but not during 10-min time trial in trained 
cyclists (Bentley et al., 2009). These observations suggested 
that MCT4 becomes more important during short and in-
tense exercises that require very high rate of glycolytic ATP 
production. Thus, we speculated that the duration and form 
of the IET might have masked the effects of enhanced glyco-
lytic capacity, since it depended more on oxidative metabo-
lism, which was not altered by hypoxic training. In contrast 
to the values at exhaustion, the plasma lactate concentra-
tion at submaximal intensity during IET decreased follow-
ing hypoxic training, despite that MCT1 protein level and 
mitochondrial enzyme activity were not altered. Increased 
capillary density might have contributed in increased lactate 
uptake in oxidative tissues, since it was previously observed 
only after hypoxic training in Thoroughbreds (Nagahisa 
et al., 2016).

Lastly, a limitation of the current study is its relatively 
small sample size. In a larger study using 163 healthy 
Thoroughbreds, the proportion of Type IIB fibers is reported 
to be different between sexes; however, importantly, no dif-
ferences were seen in metabolic enzyme activities between 
sexes (Roneus, Lindholm, & Asheim,  1991). Considering 
that we did not observe any differences in enzyme activities 
and MCT protein levels between sexes in our previous studies 
in Thoroughbreds (Kitaoka et al., 2011, 2012), we included 
horses of both genders in this study. In addition, it should be 
noted that enzyme activity does not necessarily represent the 
actual metabolic flux in vivo. Further studies are required to 
elucidate the effects of hypoxic training for a longer period on 
lactate metabolism during exercise.

5  |   CONCLUSION

In this study, we examined the effects of short-term hypoxic 
training on MCT and indicators of energy metabolism in 
the gluteus medius muscle of Thoroughbreds. We demon-
strated that training in hypoxia enhances glycolytic enzyme 
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activity and MCT4 protein level but has no additional effects 
on oxidative enzyme activity and MCT1 protein level in 
Thoroughbred skeletal muscle.
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