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Abstract

Introduction: Educational attainment is a substantially heritable trait, and it has

recently been linked to specific genetic variants by genome-wide association studies

(GWASs). However, the effects of such genetic variants are expected to vary across

environments, including countries and historical eras.

Methods: We used polygenic scores (PGSs) to assess molecular genetic effects on

educational attainment in Hungary, a country in the Central Eastern European region

where behavioral genetic studies are in general scarce and molecular genetic studies

of educational attainment have not been previously published.

Results:We found that the PGS is significantly associatedwith the attainment of a col-

lege degree as well as the number of years in education in a sample of Hungarian study

participants (N=829). PGSeffect sizeswerenot significantly differentwhencompared

to an English (N = 976) comparison sample with identical measurement protocols. In

line with previous Estonian findings, we found higher PGS effect sizes in Hungarian,

but not in English participants who attended higher education after the fall of Commu-

nism, althoughwe lacked statistical power for this effect to reach significance.
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Discussion:Our results provide evidence that polygenic scores for educational attain-

ment have predictive value in culturally diverse European populations.
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1 INTRODUCTION

Educational attainment is a key psychological and sociological vari-

able, which comprises an important part of socioeconomic status and

which is positively correlated with income and health, but negatively

with crimeandwelfaredependency (Behrmanet al., 1997). Educational

attainment is moderately heritable, with a substantial shared environ-

mental component (Branigan et al., 2013) and it shares substantial, but

not all genetic variance with cognitive abilities (Krapohl et al., 2014).

Early reports on the heritability of educational attainment were

derived from family pedigree studies, most notably twin studies

(Cesarini & Visscher, 2017). Recently, however, the heritability of

educational attainment was confirmed with molecular genetic meth-

ods. Single nucleotide polymorphism (SNP) heritability studies (Davies

et al., 2016; Hill et al., 2016) confirmed that genetic similarity between

non-related individuals is positively associated with the phenotypic

similarity of their educational attainment, with common genotyped

SNPs accounting for up to 20% of the total variance. Over the past

10 years, a series of genome-wide association (GWA) studies using a

constantly expanding international study sample have been performed

within the framework of the Social Science Genetic Association Con-

sortium (SSGAC), linking specific genetic variants toeducational attain-

ment (Lee et al., 2018; Okbay et al., 2016; Rietveld et al., 2013). Poly-

genic scores (PGSs) based onGWAS results (referred to as EA1-3 PGSs

depending on which of the SSGAC GWAS results were used to con-

struct them) confirmed the predictive value of these genetic variants

(also termed PGS heritability), which typically account for up to 10% of

thephenotypic variance ineducational attainment itself (Allegrini et al.,

2019; Domingue et al., 2015), cognitive abilities (Allegrini et al., 2019;

de Zeeuw et al., 2014; Selzam et al., 2016), social mobility (Ayorech

et al., 2017), and overall socioeconomic success (Belsky et al., 2016,

2018) in independent samples. The predictive performance of educa-

tion attainment PGSs has been demonstrated among others in samples

of Icelanders (Kong et al., 2018), Estonians (Rimfeld et al., 2018), and

African Americans (Domingue et al., 2015; Lee et al., 2018; Rabinowitz

et al., 2019).

However, neither the pedigree-based or SNP heritability of educa-

tional attainment nor the correlation of polygenic scores with socioe-

conomic phenotypes is a biological constant. There is evidence that

between-country differences (Lee et al., 2018; Silventoinen et al.,

2020) and within-country changes in education policy (Heath et al.,

1985), as well as the attendance of different types of schools (Trejo

et al., 2018)mayaffect theheritability of educational attainment (gene-

environment interaction). In other words, the relative importance of

genetic and environmental effects on individual differences in educa-

tional attainment is affected by the characteristics of the environment.

It has been argued (Conley et al., 2015; Hauser, 2002; Nielsen, 2008)

that a high heritability of educational attainment is a sign of a merito-

cratic educational system, because attainment is determined by innate

abilities and preferences instead of shared environmental effects such

as social class or parental income. The social changes due to the Fall

of Communism (FoC) in the former Eastern Bloc may have had a par-

ticular effect on educational meritocracy. In line with this hypothe-

sis, a recent Estonian study (Rimfeld et al., 2018) found that the SNP

and PGS heritability of educational attainment was higher in Estonians

who attended school after FoC, suggesting that the educational sys-

tem in Estonia has becomemoremeritocratic. In linewith this observa-

tion, pedigree-based studies conducted in countries with higher social

mobility generally also show higher heritability (Engzell & Tropf, 2019).

Because of the moderating and mediating effects of environmental

variables, the strength of genetic effects on educational attainment

maybedifferent across countries. In the present study,we investigated

molecular genetic effects on educational attainment in Hungary, a

country where no similar study has previously been published. The

main purpose of the current study was to establish the presence and

magnitude of the predictive performance of the latest educational

attainment PGS in a Hungarian subsample. While the Hungarian

population is not substantially genetically different from that of other

European countries (Heath et al., 2008), the country is characterized

by lower GDP, income, and according to some indicators, lower social

mobility (Eurofound, 2017) compared toWestern European countries

where PGSs have been extensively used in research. Notably, the coun-

try transitioned from a planned economy to a market economy only

about 15 years before our data was collected. These characteristics

of Hungarian society and economy render it an interesting question

to what extent the molecular genetic indicators discovered in other

countries predict educational attainment, a key element of social and

economic success, in Hungary.

As auxiliary analyses, we also estimated cohort differences in PGS

heritability as well as overall SNP heritability. These are of interest

because no data on these metrics is available from Hungary and we

are unaware of any ongoing research to calculate these estimates from

larger samples. We caution, however, that our study, while well pow-

ered for its main purpose, has limited statistical power to provide pre-

cise estimates of these latter effects.

Throughout thepaper,weuse the term “genetic effects” because the

route of causation in this case can only go in one direction, from the

genotype to the phenotype. However, we note that nominally genetic
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effects can be indirect and environmentally moderated (Young, 2019)

in practice indexing environmental effects (see also Section 4).

2 MATERIAL AND METHODS

We used genetic data and self-reported level of education collected

in the NewMood study (New Molecules in Mood Disorders, Sixth

Framework Programof the EuropeanUnion, LSHM-CT-2004-503474)

to validate the EA3 polygenic score (Lee et al., 2018) in Hungarian

participants (Budapest sample, N = 829). We used data from English

participants fromNewMood (Manchester sample, N= 976) to provide

a comparison group with an identical phenotypic and genotypic data

collection regimen. Participants of 18–60 years of age were recruited

through advertisements, general practices, and a website. Full details

of the recruitment strategy and criteria have been published previ-

ously (Juhasz et al., 2009, 2011; Lazary et al., 2008). NewMood was

originally conceptualized as a study of psychiatric phenotypes and

oversampled participants with psychiatric illness. Details about the

incidence of psychiatric diagnoses and the results of symptom assess-

ment scales (reported separately for the Budapest and Manchester

samples) were reported previously (Eszlari et al., 2019), especially

in Supplementary Table 1 of the referenced article. We addressed

this limitation of the sample by adjusting models for self-reported

psychiatric and pain-related disorders as covariates (see Section 3).

For this study, theexperimental cohortwas limited tounrelated indi-

viduals of self-reportedEuropeanwhite ancestry as thiswas the largest

ethnic group.

The study was approved by the local Ethics Committees (Scientific

and Research Ethics Committee of the Medical Research Council,

Budapest, Hungary; and North Manchester Local Research Ethics

Committee, Manchester, UK) and was carried out in accordance with

the Declaration of Helsinki and all relevant rules and regulations as

part of theNewMood study. All participants providedwritten informed

consent.

2.1 Educational attainment

Participants filled out close-ended questions about whether they

attained certain educational levels. These levels were “No qualifica-

tion,” “O-levels,” “A-levels,” “Degree,” “Professional qualification,” and

“Other (please specify).” In the Hungarian version of the question-

naire, British educational levels were translated as their Hungarian

counterparts (O-levels as “szakmunkásképző,” vocational education;

A-levels as “érettségi,” high school diploma; professional qualification

as “szakvizsga,” a vocational or specialist qualification). If a participant

gave a response about an “Other” qualification, the participant was

prompted to provide further detail about his/her qualification and an

educational level was assigned based on this information.

Weused these self-reportededucational attainment levels to create

two educational attainment phenotypes. First, we codedwhether each

participant attained a tertiary degree (college completion). The choice

of a simple binary phenotype was justified by the fact that most of

the educational attainment variance was between tertiary degrees or

the absence of them (Table 1). Second, we converted the self-reported

educational attainment levels to years of completed education as an

interval variable (years in education). Years in education was imputed

as the number of years in educational typically necessary to obtain

the individual’s qualification in the Hungarian system: 8 years for

“no qualification,” 11 years for a professional vocational education

(“szakvizsga”), 12 years for both a vocational and a standard high

school (“szakmunkásképző,” “érettségi”), and 16 years for a university

degree. Four extra years were added for a university degree as an

average estimate because 3-year and 5-year postgraduate programs

were pooled as an answer option (these programs have been replaced

by BA/BSc andMA/MSc programs after data collection). If participants

provided comments about the specifics of their qualification (e.g.,

3-year or 5-year degree or a specific additional qualification), then the

appropriate number of years in education was imputed. We used this

imputation system in both the Budapest and Manchester samples to

ensure compatibility. As a robustness check, we coded educational

attainment as International Standard Classification of Education

(ISCED) categories in an alternative model. Because participants

attended school before the publication of the latest ISCED 2011

system, we used themore applicable ISCED 1997 system and inputted

years in education as reported in the largest published GWAS (Lee

et al., 2018). In this system, we inputted ISCED 1 (primary education,

7 years) for “no qualification,” ISCED 2 (lower secondary education,

10 years) for a professional vocational education, ISCED 3 (upper

secondary education) for both vocational and standard high schools,

but with 10 and 13 years of education, respectively, and ISCED 5

(tertiary education, 20 years) for university degrees. The original and

the ISCED-based years in education phenotype was highly correlated

(r = 0.993 in the Budapest sample and r = 0.946 in the Manchester

sample).

2.2 Age groups

We aimed to investigate whether the strength of genetic effects on

educational attainment varied as a function of graduation cohort. First,

cohortswere separated based onwhether participants graduated from

high school before or after FoC, a possible moderator of the relative

strength of genetic effects at least in the Budapest sample (Rimfeld

et al., 2018). A third category for very young participants (age <24

years) was split off from the PostC cohort because these participants

were likely not to have completed their tertiary education regardless

of their genetic endowment (see low educational attainment variabil-

ity in Table 1) which would exert a downward bias on PGS heritability.

For ethical reasons, we did not store data about the birth year of our

participants or exactly when they were interviewed. However, given

that data collection was performed in 2004 and 2005, we can esti-

mate the birth year of each participant within 1-year margin based on

self-reported age at data collection. As described above, we divided

our participants in three age groups based on their age at FoC and
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TABLE 1 The distribution of age and educational level across age groups

Budapest Manchester

YPostC PostC PreC

All

participants YPostC PostC PreC

All

participants

Education

Years in education

(Mean)

12.18 13.68 13.98 13.25 14.08 14.11 13.38 13.71

Years in education

(SD)

0.92 2.06 2.18 1.96 2.11 2.46 2.55 2.47

Mean age (SD) 20.98 (1.21) 27.95 (2.51) 42.65 (7.21) 30,77 (10.39) 20.5 (1.64) 27.96 (2.65) 42.17 (6.42) 33.94 (10.32)

No qualification 1 (0.36%) 1 (0.45%) 4 (1.43%) 6 (0.72%) 2 (1%) 5 (2.25%) 24 (4.35%) 31 (3.18%)

Professional

qualification

1 (0.36%) 1 (0.45%) 1 (0.36%) 4 (0.48%) 5 (2.5%) 14 (6.31%) 70 (12.68%) 89 (9.12%)

O-levels or

equivalent

0 (0%) 10 (4.52%) 20 (7.17%) 36 (4.34%) 16 (8%) 50 (22.52%) 144 (26.09%) 211 (21.62%)

A-levels or

equivalent

259 (94.18%) 114 (51.58%) 109 (39.07%) 512 (61.76%) 70 (35%) 32 (14.41%) 89 (16.12%) 192 (19.67%)

University degree 14 (5.09%) 95 (42.99%) 145 (51.97%) 271 (32.69%) 107 (53.5%) 121 (54.5%) 225 (40.76%) 453 (46.41%)

All participants 275 (100%) 221 (100%) 279 (100%) 829 (100%) 200 (100%) 222 (100%) 552 (100%) 976 (100%)

Age

18 5 (1.82%) 0 0 5 (0.65%) 23 (11.5%) 0 0 23 (2.36%)

19 25 (9.09%) 0 0 25 (3.23%) 45 (22.5%) 0 0 45 (4.62%)

20 65 (23.64%) 0 0 65 (8.39% 36 (18%) 0 0 36 (3.7%)

21 86 (31.27%) 0 0 86 (11.1%) 33 (16.5%) 0 0 33 (3.39%)

22 61 (22.18%) 0 0 61 (7.87%) 30 (15%) 0 0 30 (3.08%)

23 33 (12%) 0 0 33 (4.26%) 33 (16.5%) 0 0 33 (3.39%)

24 0 25 (11.31%) 0 25 (3.23%) 0 32 (12.4%) 0 32 (3.29%)

25 0 19 (8.6%) 0 19 (2.45%) 0 25 (9.69%) 0 25 (2.57%)

26 0 31 (14.03%) 0 31 (4%) 0 35 (13.57%) 0 35 (3.59%)

27 0 19 (8.6%) 0 19 (2.45%) 0 27 (10.47%) 0 27 (2.77%)

28 0 36 (16.29%) 0 36 (4.65%) 0 29 (11.24%) 0 29 (2.98%)

29 0 22 (9.95%) 0 22 (2.84%) 0 22 (8.53%) 0 22 (2.26%)

30 0 22 (9.95%) 0 22 (2.84%) 0 33 (12.79%) 0 33 (3.39%)

31 0 26 (11.76%) 0 26 (3.35%) 0 19 (7.36%) 0 19 (1.95%)

32 0 21 (9.5%) 0 21 (3.35%) 0 36 (13.95%) 0 36 (3.7%)

33-35 0 0 52 (18.64%) 52 (2.71%) 0 0 79 (15.31%) 79 (8.11%)

35-40 0 0 78 (27.96%) 78 (6.71%) 0 0 151 (29.26%) 151 (15.5%)

40-45 0 0 53 (19%) 53 (10.06%) 0 0 145 (28.1%) 145 (14.89%)

45-50 0 0 45 (16.13%) 45 (6.84%) 0 0 95 (18.41%) 95 (9.75%)

50-55 0 0 36 (12.9%) 36 (5.81%) 0 0 18 (3.49%) 18 (1.85%)

55-60 0 0 15 (5.38%) 15 (4.65%) 0 0 28 (5.43%) 28 (2.87%)

All participants 275 (100%) 221 (100%) 279 (100%) 775 (100%) 200 258 516 974

whether they were old enough to have realized their potential for edu-

cational attainment by the time data was collected: (1) YPostC (young

participants attending high school after FoC): age <24 at data collec-

tion (earliest possible birth year in 1981, possibly not old enough to

have attained a university education); (2) PostC (participants attend-

ing high school mostly after FoC): age 24–31 years at data collection

(birth year 1973–1981, at most 16 years old at FoC in Hungary and old

enough to have attained a university education); (3) PreC (participants

attending high school mostly before FoC): age at least 32 years at data

collection (latest possible birth year in 1973, at least 16 years old at
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FoC in Hungary). Alternative cohort cut-off points were also explored

(see Section 3).

Weprovide detailed statistics about the sample sizes, ages, and edu-

cational attainments of these groups in Table 1. We hypothesized that

the predictive performance of the EA3 polygenic score will be differ-

ent in these age groups in Hungary, but not in England, due to a gene-

environment interaction induced by the historical political changes in

Hungary and their effects on the educational system (Rimfeld et al.,

2018).

Note that the “All participants” columns under “Education” also con-

tain participantswithnoagedata,whowere consequently not assigned

to either age group (NBudapest = 54, NManchester = 2). For the same rea-

son, counts in these columns are not equal to the sum of the age group

columns and the total count of “All participants” is different for the

“Education” and “Age” panels.

2.3 Genotyping

Genomic DNA was extracted from buccal swabs collected by a cytol-

ogy brush (Cytobrush plus C0012; Durbin PLC). Genomic positions

were defined according to the build GRCh37/hg19. Individuals were

genotyped using Illumina’s CoreExome PsychArray yielding a total of

573,141 variants. Biallelic strand aligned autosomal SNPs were used

for imputation. For haplotype information, SHAPEIT, and for the impu-

tation, IMPUTE2 softwares were used. Multiallelic and not single-

nucleotide variants were excluded. Variants with an imputation score

“info” less than 0.5 or “certainty” less than 0.7 were excluded. After

that, variants and participants were filtered separately for each of the

combinedBudapest-Manchester sample, theBudapest subsample, and

the Manchester subsample. SNPs with minor allele frequency (MAF)

less than 0.01 were excluded. SNPs and participants with missing-

ness larger than 0.01 were excluded in an iterative process (0.1, 0.05,

and 0.01). SNPs with p-value ≤10−5 for the Hardy-Weinberg equilib-

rium test were excluded. Individuals with a problematic inferred gen-

der or outlying individuals based on heterozygosity were excluded. No

pair of individuals with π2 ≥0.1875 was kept in the final dataset. For

these latest steps of participant filtering and also for principal com-

ponents analysis (PCA) of the genome, LD pruning was applied on

the SNPs, with an R2 threshold of 0.2 and a window of 1500 SNPs

by 150 SNPs. In the PCA, the top 10 eigenvectors were extracted

using the software tool EIGENSOFT (https://www.hsph.harvard.edu/

alkes-price/software/) and the smartpca procedure, which implements

the algorithm described elsewhere (Patterson et al., 2006). Further

details of imputation and quality control have been published else-

where (Eszlari et al., 2019).

2.4 Statistical analysis

We used the stable 1.26.0 Genome-wide Complex Trait Analysis

(GCTA) version for theestimationof SNPheritability. Aminor allele fre-

quency (MAF) cut-off of 0.05was used for all SNPs passing quality con-

trol measures, yielding 2,550,710 SNPs in the Budapest and 2,744,431

SNPs in the Manchester sample. We did not apply further LD prun-

ing because GCTA by design accounts for linkage disequilibrium (Yang

et al., 2016).

Polygenic scores were constructed using PRSice-2 (2.3.3) and pub-

licly available summary SNP effect size data (Lee et al., 2018), down-

loaded from https://www.thessgac.org/data. We used the effect sizes

which were constructed without 23andMe data but released for all

SNPs. A MAF threshold of 0.01, a clumping threshold of R2 = 0.1 and

a clumping window of 500 kb was used. For clumping, we used sum-

mary statistics from the Lee et al. GWAS and the pooled Budapest and

Manchester samples to calculate LD. MAF thresholds were based on

published recommendations (Coleman et al., 2016). We used the PGS

constructed with the GWAS p-value threshold that had the strongest

association with a specific phenotype, highest educational level within

the pooled sample. The best performance was achieved by the PGS

with a p-value threshold of 0.032, consisting of 18,261 SNPs. We used

this PGS in all subsequent analyses. The performance of PGSs calcu-

lated using different p-value thresholds is illustrated in Figure S1. All

other calculated alternative PGSs were also significantly associated

with educational level (pmax = 2.2 × 10–6). In total, we calculated 1340

PGSs with various p-value inclusion thresholds, the mean correlation

between all possible pairs of these was r= 0.902 (SD= 0.08).

We estimated PGS effect sizes as the point biserial (college com-

pletion) or Pearson point-moment (years in education) correlation

between the educational attainment phenotype and the PGS. We

ran additional multivariate models controlling for the effects of age,

sex, the first 10 genomic principal components and self-reported

psychiatric or pain-related diagnoses. These were operationalized as

generalized linear models with the fitglm() function in MATLAB 2018a

specifying a binomial distribution and logit link (logistic regression

for college completion) or a normal distribution and an identity link

(linear regression for years in education). For logistic regressions,

the PGS effect size was expressed as the Nagelkerke R2 statistic,

while for linear regressions it was expressed as multiple regression

coefficients.

Because the variance of years in education was not equal in all sub-

samples, we corrected correlation coefficients for restriction of range

using the formula by Schmidt andHunter (2014) using the totalManch-

ester sample as the reference.

We ranbothGCTAandPGSanalyses bothwith andwithout control-

ling for the first 10 genomic principal components.

3 RESULTS

3.1 PGS effects

The EA3 PGS was significantly associated with both categorical

and continuous educational attainment phenotypes in both the total

Budapest (rcollege completion = 0.11 [R2 = 0.012], ryears = 0.12 R2 =

0.072) and Manchester (rcollege completion = 0.22 [R2 = 0.047], ryears =

0.22 [R2 = 0.046]) samples (all p < .001). In multivariate models, we

https://www.hsph.harvard.edu/alkes-price/software/
https://www.hsph.harvard.edu/alkes-price/software/
https://www.thessgac.org/data
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F IGURE 1 PGSs (shown as z-scores) by country and educational levels. PostC and PreC indicate age groups, see Table 1 for details and
definitions of educational levels. “All participants” includes participants with no age data.Whiskers indicate 95% confidence intervals (CIs) of the
mean, overplotted with raw data. Note that some Budapest groups were represented by a single participant which did not permit the estimation of
CIs and instead only the value is shown

explored the effect age, sex, the first 10 genomic PCs and self-reported

illness (depression, suicidal attempt, manic disorder, anxiety disorder,

obsessive-compulsive disorder, schizophrenia, eating disorder, drug, or

alcohol-related disorder and/or pain-related problems) on the PGS-

phenotype association (Tables S1 andS2). The inclusionof these covari-

ates (especially age, sex, and genomicPCs) caused little change in effect

sizes. Using ISCED-derived years in education instead of the original

records also did not substantially affect effect sizes (across all models

Δβmean = 0.013, ΔβSD = 0.018, absolute ΔβMax = 0.054). The largest

change was observed in the Manchester PostC age group, where the

effect size increasedby about 0.05; however, even this remainedwithin

a single standard error from the original value. In other subgroups, the

changewas negligible (Δβmean = 0.008).

Figure 1 shows groupmeans and the dispersion of PGSs by country,

age group, and educational attainment level. The highest mean values

were always found in participants with tertiary education. Participants

with secondary education had lower means, followed by individuals

with vocational educations (O-levels in the Manchester sample).

Individuals with professional educations had somewhat higher means.

We note, however, that the low number of participants with low

educational attainments led to less precision in estimating mean PGSs.

Note especially the limited educational attainment variability in the

Budapest sample, with most participants having either high school or

university educations.

Because the inclusion of covariates had little effect on the effect

sizes, we illustrate the simple zero-order point biserial (college comple-

tion) or Pearson (years in education) correlations in Figure 2.We show

both correlations both with and without correcting for restriction of

range, separately by sample and age group. The PGS was significantly

associatedwith both phenotypes in all individual subsamples (r= 0.11-

0.27, p=<.001–.097).

We next estimated whether the PGS-phenotype associations were

different by age group. We excluded the youngest participants (age

<24) from these analyses because of the low variability of educa-

tional attainment in this subgroup (see Table 1). With the continu-

ous phenotype (years in education) as the dependent variable, the

PGS*age group interactionwas not statistically significant in either the

Budapest (F1,496 = 0.05, p = .81) or the Manchester (F1,770 = 2.98,

p = .08) samples. In order to assess age group and country effects

on the relative strength of PGS effects, we compared effect sizes of

each phenotype (college completion, years in education, both also cor-

rected for restriction of range) between all subgroups using Fisher’s

r-to-z method (Rimfeld et al., 2018). No subgroup difference was sig-

nificant after correcting for multiple comparisons. A trend (several

nominally significant differences) for higher effect sizes inManchester

subsamples compared to the total Budapest sample was seen. In line

with previous Estonian results, PostCBudapest subsamples had higher

effect sizes than the PreC subsamples for all phenotypes, but this did

not reach statistical significance at our sample size (pmin = 0.45). We

report detailed results in Table S3.

We set the age cut-off between PreC and PostC groups at 32 years

in 2004–2005 (16–17 years old at FoC) followingRimfeld et al., but still
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F IGURE 2 Associations between the best-fit EA3 polygenic score and educational attainment by sample and age group. For college
completion, the effect size is a point-biserial correlation and for years in education, the effect size is a Pearson correlation coefficient. Error bars
show 95%CIs. “Restriction corrected” refers to a PGS-phenotype correlation corrected for restriction of range. PostC: participants at most 16
years old at FoC and at least 24 years old during data collection. PreC: participants at least 16 years old at FoC. “All over 24 years” refers to pooled
PostC and PreC subsamples. “All” also includes participants younger than 24 years old at data collection and those with no age data.

somewhat arbitrarily. In order to test the effect of different age cut-

offs on the results, we performed a specification curve analysis using

all possible PreC/PostC age cut-offs between 26–45 years in 2004–

2005 (Figure S2). In line with previous analyses, we never included

those under 24 years old in either the PreC or the PostC groups. For

both educational level and years in education, the trend of higher PGS

effect sizes in the Budapest PostC sample persisted for all cut-offs less

than 40 years (birth year: 1964/65, at least 25 years old at FoC)with no

similar effect in the Manchester sample. However, at this sample size,

no age cut-off yielded a statistically significant difference between the

effect sizes in thePreCandPostC subsamples for either phenotype and

sample.

3.2 SNP heritability

Genomic-relationship-matrix restricted maximum likelihood (GREML-

GCTA) SNP heritabilities indicated that in the Budapest sample, all

common SNPs accounted for 34.4% (SE = 24%, p = .06) of the vari-

ance of years in education. In the Manchester sample, the same SNP

heritability was 20.5% (SE = 20%, p = .13). Controlling for the first 10

genomic PCs, the values were h2SNP = 42.6% (Budapest, SE = 24.6%,

p = .03) and h2SNP = 20.2% (Manchester, p = .15). In case of the col-

lege completion binary outcome, all common SNPs accounted for 52%

(SE = 24%, p = .01) of the variance in the Budapest sample (53%, SE =

24.3%, p = .01 controlling for genomic PCs) and 40% (SE = 20.3%, p =

.02) in the Manchester sample (36%, SE = 20.8%, p = .03 controlling

for genomicPCs).Note that these estimates hadwide confidence inter-

vals due to the limited sample size. However, as our sample sizes were

below the several thousand individuals usually recommended for this

type of analysis (Knopik et al., 2016), and because GCTAmodels failed

to properly converge when we further restricted samples to single age

groups due to very low sample sizes, we did not perform SNP heritabil-

ity analyses within these separately.

4 DISCUSSION

Ours is the first study to estimate molecular genetic effects on educa-

tional attainment in Hungary, and the second to do so in a formerWar-

saw Pact country. We are also unaware of any other behavior genetic

study about educational attainment or cognitive functions in Hungar-

ians, except from some data from the Hungarian Twin Registry pub-

lished in a recent meta-analysis (Silventoinen et al., 2020). The main

goal of our study was to demonstrate the predictive performance of

the EA3PGS in a novel country. Despite its limited size, our samplewas

well-powered for this purpose.

In our main analysis, we found that—in line with international

results—the genetic variants discovered by a recent GWAS to predict

educational attainment inWestern European and American validation

samples also do so in Hungary.

We compared findings in Hungarians to analogous results from an

English comparison sample with identical recruitment protocols and

phenotypicmeasurements.Once restrictionof rangewas corrected for

either statistically or by excluding very young participants presumably

still in education, PGS effect sizes were not significantly lower in the

Budapest sample.

An exact comparison of our PGS effect sizes with other studies is

not feasible due to between-study differences in genotyping, polygenic

score construction (such as differences in the source GWAS and

the selection of p-value and MAF thresholds) and phenotype quality

(including the specific phenotype used and its variance). However, we
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note that that the effect sizes in the Manchester sample were in line

with those reported by independent studies using PGSs based on the

same GWAS with more representative British and American datasets

with higher quality phenotypes (Allegrini et al., 2019; Lee et al., 2018)

including educational attainment and cognitive performance. The

effect sizes in the Budapest sample were generally not substantially

weaker than this. In sum, the relative strength of genetic effects in

our Budapest sample were in line with those reported from other

countries.

Our first auxiliary analysis aimed to replicate previous Estonian

findings about the larger relative role of genetic effects after FoC.

Because this previous finding established a clear prior hypothesis

about the presence and the direction of this effect, we attempted

these auxiliary analyses despite limitations in statistical power. Our

replication was only partially successful. While we found substantially

higher effect sizes for educational attainment phenotypes in the

FoC subsamples in the Budapest, but not the Manchester sample,

these differences did not reach statistical significance. Changes in

educational policy surrounding FoCwere similar in Hungary to Estonia

(Hrubos et al., 2016; Ladányi, 1995). The previous Estonian study on

the same effects (Rimfeld et al., 2018) invokes increases in educational

meritocracy—first of all, the abandonment of political considerations

in university admissions—as the chief driver of increased PGS effect

sizes after FoC. Our results do not exclude the possibility of a similar

change taking place in Hungary, but better powered genetic databases

will be required for a conclusive replication.

Age, cohort, or country differences in the heritability of social traits

can reflect mechanisms other than genuine historical societal differ-

ences. Differences in sampling bias is an especially strong candidate

mechanism of creating spurious heritability differences. We were able

to account for two sources of sampling bias: educational attainment

variance and psychiatric illness. If study participants are recruited from

a narrower educational attainment range in certain subgroups, heri-

tability in that age group is biased downward. We eliminated this bias

by controlling for restriction of range. If psychiatric disorders affect

heritability and individuals in psychiatric disorders are oversampled in

certain subgroups, estimated heritability in that subgroup will also be

affected. We demonstrated that self-reported psychiatric illness does

not affect SNP heritability in the NewMood sample, therefore, sub-

group differences in psychiatric illness are unlikely explanations of SNP

heritability differences.We emphasize that wewere unable to account

for all possible sources of sampling bias (and other biases), warranting

further caution about the results. We note that although due to limi-

tations in statistical power, we limited our auxiliary analyses to repli-

cation instead of discovery and thus we were mainly interested in age

group differences in the Budapest sample, the PreC-PostC difference

in theManchester samplewas even larger (with an opposite sign), even

though no major historical change took place in England at the time of

FoC in Central Europe.

Our second auxiliary analysis estimating SNP heritability in the

Budapest subsample suggests that in line with recently published

pedigree-based results (Silventoinen et al., 2020) a substantial propor-

tion of educational attainment variance is accounted for by common

genetic variants inHungarians, but once again our estimates are impre-

cise due to limited power and require replication in a larger sample.

Our work suffers from a number of limitations. The largest of

these is the modest size of our sample, which allowed us to conclu-

sively demonstrate the association of the PGS polygenic score with

actual educational attainment in Hungarians, but limited statistical

power to detect age and country effects on SNP heritability (Table

S3). Systematically higher PGS effect sizes in the FoC Budapest

sample suggest that a historical gene-environment interaction may

have taken place in Hungary during FoC, but this requires replica-

tion in larger samples. We note, however, that large, approximately

population-representative genetic databases like the Estonian

Biobank are rare in Central and Eastern Europe, and therefore ours

is probably the best Hungarian dataset currently available to test our

hypotheses.

Second, our database was not nationally representative and most

educational attainment differences existed between completion and

non-completion of college. This may have exerted a downward bias

on our PGS predictive performance estimates due to range restric-

tion, especially in the Hungarian sample. We corrected our results for

restriction of range, but only relative to the subsamplewith the highest

variance.

Third, a general limitation to between-family molecular genetic

studies is that they may reveal shared environmental instead of

true, biological genetic effects through gene-environment correlation

(Young, 2019). On the one hand, SNPs used to construct PGSs or

the relatedness matrix for GCTA may be associated with educational

attainment because they indexmembership in families which influence

educational attainment through cultural rather than genetic effects

(residual stratification or “dynastic” effects (Morris et al., 2019)). On

the other hand, SNPsmay have a causal effect on parental phenotypes,

which in turn influence offspring educational attainment (genetic nur-

ture (Kong et al., 2018)). While both effects are known to operate

and inflate PGS effect sizes in studies of unrelated individuals (Kong

et al., 2018; Young, 2019; Young et al., 2018), predictive performance

in within-family studies (Belsky et al., 2018; Domingue et al., 2015;

Selzam et al., 2019) demonstrates that a substantial portion of PGS

effects reflects actual genetic influences. While we do not expect the

effect of genetic nurture to be substantially different in Hungary than

in other countries, we expect residual stratification to inflate PGS

effect sizesmore in ourManchester sample and other British between-

family studies than in our Budapest sample. This is because the GWAS,

based onwhichwe constructed our PGSs, contained substantial British

study populations, but noHungarians and a very limited number of par-

ticipants from neighboring countries (specifically, 777 Austrians and

842 Croatians) which would bias stratification effects towards pat-

terns which exist in Britain. Future Hungarian within-family studies

may provide a formal test of this hypothesis.

Finally, the investigated after-FoC period ends in 2004–2005 at the

time of data collection and our study does not investigate educational

attainment after this time.
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5 CONCLUSION

In sum, our work demonstrates that genetic variants discovered in

international GWAS samples also predict educational attainment in

Hungary with equal or only slightly reduced strength relative to an

English sample. In line with Estonian data, individual genetic differ-

ences played a somewhat larger role shaping educational attainment in

those graduating after the fall of Communism, but due to limitations in

statistical power a more conclusive replication of this effect is needed.

Similar findings from Hungary had not been previously available, and

the results are likely of interest to those studying the society of Hun-

gary andmay serve as amodel for other countries of the regionwithout

their own genetic studies.
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