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There is growing evidence for the role of DNA methylation (DNAm) quantitative trait
loci (mQTLs) in the genetics of complex traits, including psychiatric disorders. How-
ever, due to extensive linkage disequilibrium (LD) of the genome, it is challenging to
identify causal genetic variations that drive DNAm levels by population-based genetic
association studies. This limits the utility of mQTLs for fine-mapping risk loci underly-
ing psychiatric disorders identified by genome-wide association studies (GWAS). Here
we present INTERACT, a deep learning model that integrates convolutional neural
networks with transformer, to predict effects of genetic variations on DNAm levels at
CpG sites in the human brain. We show that INTERACT-derived DNAm regulatory
variants are not confounded by LD, are concentrated in regulatory genomic regions in
the human brain, and are convergent with mQTL evidence from genetic association
analysis. We further demonstrate that predicted DNAm regulatory variants are enriched
for heritability of brain-related traits and improve polygenic risk prediction for schizo-
phrenia across diverse ancestry samples. Finally, we applied predicted DNAm regulatory
variants for fine-mapping schizophrenia GWAS risk loci to identify potential novel risk
genes. Our study shows the power of a deep learning approach to identify functional
regulatory variants that may elucidate the genetic basis of complex traits.

DNA methylation quantitative trait loci (mQTL) j convolutional neural network (CNN) j transformer j
regulatory variants j GWAS

Genome-wide association studies (GWAS) have achieved remarkable success in identi-
fying genetic associations with complex traits, including many hundreds of risk loci
uncovered for psychiatric disorders and brain-related traits (1–3). However, it has been
challenging to identify causal variants within GWAS risk loci and their target genes,
largely due to extensive linkage disequilibrium (LD) across the genome (4) and our
incomplete knowledge of the noncoding genome where most GWAS hits reside (5).
Nonetheless, accumulating evidence indicates that noncoding risk variants are enriched
in regulatory DNA regions in tissues and cell types related to disease, suggesting that
noncoding risk variants may act through regulation of gene expression in disease-
relevant tissues and cell types (6).
DNA methylation (DNAm) plays an important role in transcriptional regulation,

brain development, and function (7, 8). Genetic control of DNAm levels may be one
functional mechanism of noncoding risk variants underlying psychiatric disorders (9).
Indeed, population-based genetic association studies have identified numerous DNAm
quantitative trait loci (mQTLs) associated with DNAm levels at CpG sites in different
tissues, including in the human brain (10–15). There has been considerable interest in
utilizing mQTLs to interpret the functional consequences of noncoding risk variants
within GWAS risk loci, including via colocalization (16), Mendelian randomization
(17), and the imputation-driven methylome-wide association study (18). However, as
with other types of molecular QTLs, due to extensive LD across the genome, it is chal-
lenging to identify causal genetic variations that drive DNAm levels of CpG sites by
genetic association studies. This limits the utility of mQTLs for pinpointing casual
variants within GWAS risk loci and identifying target genes.
As a complementary approach to QTL discovery, deep learning techniques have been

employed to predict effects of genetic variations on molecular traits, such as gene expres-
sion and chromatin marks, in bulk tissues and cell lines (19–21). The general idea is to
first build prediction models for molecular traits from local DNA sequences, and then
estimate the impacts of genetic variations on molecular traits by the difference of pre-
dicted levels of molecular traits between the two DNA sequences of different alleles. In
contrast to traditional molecular QTLs that are confounded by LD, regulatory variants
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predicted by deep learning techniques in theory do not suffer
from the confounding effect of LD, because deep learning pre-
dicts regulatory variants by estimating their impacts on DNA
motifs associated with molecular traits.
However, most previous deep learning-driven studies were

based on a convolutional neural network (CNN) that is usually
unable to capture long-range dependencies. This may result in
suboptimal prediction for molecular traits, because long-range
interactions of DNA elements are not unusual in gene regula-
tion, such as co-occurring DNA motifs that act cooperatively
(22). The recurrent neural network approach was developed to
address long-range dependencies, but it suffers from memory
loss for distant features and computational inefficiency (23).
Recently, the transformer model, characterized by the self-
attention mechanism, is becoming a popular approach to cap-
ture long-range dependencies (24). The transformer has become
the model of choice for natural language processing, and has
been successfully applied to learning representations for DNA
and protein sequences (25, 26). It is also notable that the self-
attention mechanism of transformer is a key feature of Alpha-
Fold, a deep learning architecture that has led to a breakthrough
in predicting protein structure from sequence (27).
The recent advances in deep learning techniques, along with

the availability of high-throughput DNAm quantification in
the human brain, have opened up new opportunities to predict
functional variants regulating DNAm levels in the human brain,
and potentially, to further our understanding of the genetic basis
of psychiatric disorders. However, we are not aware of any study
that has taken advantage of these opportunities. Two studies
applied deep learning to predict DNAm levels or states from
local DNA sequences in cell lines and single cells (28, 29), but
both studies were based on CNN models without the context of
the human brain. Moreover, only one study applied the model
to predict genetic impacts on DNAm states (29), but no further
work was conducted to relate predicted regulatory variants with
genetics of complex traits.
Here, we present a deep learning model, the integrated CNN

and transformer (INTERACT), to predict effects of genetic var-
iations on DNAm levels in the human brain. We show the supe-
rior performance of INTERACT in predicting DNAm levels
from local DNA sequences compared to several other CNN-
based models. We demonstrate that DNAm regulatory variants
predicted by the INTERACT model are not confounded by
LD, are convergent with independent mQTL evidence, and
underlie the genetic basis of brain-related traits. Finally, we apply
predicted DNAm regulatory variants for fine-mapping schizo-
phrenia GWAS risk loci, and show that the approach identifies
potential novel risk genes.

Results

INTERACT Model for Predicting Tissue-Specific DNAm Levels.
We designed INTERACT, which integrates CNN and trans-
former to predict DNAm levels of CpG sites from local DNA
sequences (Fig. 1A). The CNN module enables the capture of
local DNA sequence features, whereas the transformer module
aims to detect distant features that may act jointly. To evaluate
whether INTERACT is able to learn tissue-specific information
that determines tissue-specific DNAm levels, we trained four
tissue-specific INTERACT models to predict DNAm levels of
∼800,000 CpG sites measured by the EPIC Methylation array
in samples of four different tissues (brain, blood, saliva, and
buccal) collected from the same subjects in our previous study
(30). Given the complexity of the INTERACT model and the

limited number of CpG sites on the EPIC array as training
samples, we pretrained INTERACT by predicting DNAm lev-
els of ∼26 million CpG sites in the hippocampus measured by
whole-genome bisulfite sequencing (WGBS) in our previous
study (31). Pretrained INTERACT was then used to fine-tune
each tissue-specific INTERACT model by predicting DNAm
levels of CpG sites on the EPIC array for samples of each tissue.

We evaluated the performance of each fine-tuned tissue-
specific INTERACT model (hereafter referred to as tissue-
specific INTERACT unless otherwise specified) in predicting
DNAm levels of independent CpG sites not used for model
training. Overall, we observed strong correlations between the
predicted and observed DNAm levels of independent CpG sites
across four tissue-specific models, with the average Spearman
correlation ranging from 0.78 in blood to 0.82 in brain samples
(Fig. 1B). As an example, Fig. 1C shows the scatter plot for the
observed and predicted DNAm levels by the brain-specific
INTERACT in one brain sample (Spearman correlation r = 0.82,
P < 2.2 × 10�16). We compared the performance of each
tissue-specific INTERACT with several alternative models in
predicting DNAm levels, including INTERACT without pre-
training, standard CNN, and MRCNN, another CNN-based
model published previously (28) (Fig. 1B and Dataset S1). The
fine-tuned INTERACT achieved the best performance, as mea-
sured by both Spearman correlation and mean squared error
across four tissue-specific models, followed by the INTERACT
without pretraining, and the CNN model. The MRCNN showed
the worst performance across all four tissue-specific models.

We further examined model prediction performance for CpG
sites of different content in brain samples. Specifically, we grouped
CpG sites by specific regulatory regions located in the human
brain (i.e., promoter vs. enhancer) or by their DNAm level (low:
0 to 0.1; intermediate: 0.1 to 0.9; high: 0.9 to 1). We observed
that: 1) INTERACT has better prediction performance for CpG
sites within enhancers than within promoters, and 2) INTER-
ACT has better prediction performance for CpG sites with inter-
mediate DNAm levels than with either high or low DNAm levels
(SI Appendix, Table S1). However, the correlations between mea-
sured and predicted DNAm levels for each subgroup of CpG sites
were lower than the global correlation (average Spearman correla-
tion = 0.82) across all independent CpG sites, which could be
explained by the global correlation being dominated by CpG sites
of very low and very high DNAm levels (Fig. 1C). Nonetheless,
INTERACT consistently outperformed CNN and MRCNN in
predicting DNAm levels for each subgroup of CpG sites (SI
Appendix, Table S1).

We evaluated whether INTERACT captures tissue-specific
information in multiple ways. First, we observed that the top
two principal components (PCs) of predicted DNAm levels
of independent CpG sites can clearly separate samples of four
different tissues (Fig. 1D), suggesting that our tissue-specific
models learned tissue-specific information in predicting DNAm
levels. Second, we computed the correlation of differential
DNAm effect between each tissue pair at independent CpG
sites based on observed and predicted DNAm levels. INTER-
ACT showed a higher correlation on average (0.47) across tis-
sue pairs than INTERACT without pretraining (0.36), CNN
(0.21), and MRCNN (0.13) (SI Appendix, Table S2). Third, we
investigated how well INTERACT can recover tissue-specific
differentially methylated regions (tDMRs) based on observed
DNAm levels for each tissue pair. INTERACT can recover an
average of ∼30% tDMRs across tissue pairs, which were higher
than INTERACT without pretraining (24%), CNN (15%), and
MRCNN (5%) (SI Appendix, Table S3). These data further
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support the superior performance of INTERACT in predicting
tissue-specific DNAm levels.
To evaluate the generalizability of the brain-specific INTERACT,

we applied the trained model to predict DNAm levels of inde-
pendent CpG sites measured in one brain sample not involved
for model training, but with DNAm measured by EPIC array in
our previous study (32). The prediction performance was close
to what we observed in training samples of brain tissue (Spear-
man correlation, r = 0.81, P < 2.2 × 10�16).

INTERACT Identifies DNA Motifs Associated with DNAm Levels.
We examined filters in the first convolutional layer of each tissue-
specific INTERACT to identify DNA motifs associated with
DNAm levels in each tissue. We then matched identified DNA
motifs with transcription factor (TF) binding motifs through the
Tomtom motif comparison tool (33) (Dataset S2). We identified
37 TFs whose DNA binding motifs matched DNA motifs
revealed by filters of the brain-specific INTERACT. Of these
37 TFs, 16 were not identified from the other three tissue-
specific INTERACT models, suggesting their potential roles in
shaping brain-specific DNAm patterns. Among those 16 TFs,
several are clearly involved in brain development and brain-
related disorders, including zinc finger protein ZIC2 (34), and
multiple nuclear receptors [NR2F1 (35), PPARD (36), RXRG
(37, 38)]. It was also notable that nine TFs were identified across
all tissue-specific INTERACT models, suggesting their universal

roles in DNAm. Those included DNMT1, an essential enzyme
for maintaining methylation patterns (39), and EGR1, which
was recently shown to recruit DNA demethylase TET1 to shape
the brain methylome (40).

INTERACT Predicts DNAm Regulatory Variants in the Human
Brain. We predicted DNAm regulatory variants in the human
brain through in silico mutagenesis based on the trained brain-
specific INTERACT (Fig. 2A). We characterized predicted
effects of variants on DNAm levels in multiple ways. First, con-
sistent with mQTLs from genetic association analysis, variants
closer to CpG sites tended to have higher predicted effect sizes
(Fig. 2B). Second, in contrast to mQTLs, predicted effects of
variants were not confounded by LD. There was a clear trend
that variants of higher LD with the top mQTLs showed stron-
ger association evidence, but predicted effects of variants were
not associated with their LD strength with the top variant of the
highest effect (Fig. 2C). Third, we ranked variants in descending
order by the maximum absolute values of predicted effects for all
of their paired CpG sites. Compared with variants of low effect
(ranked in the bottom 10% in effect size), variants of higher
effect had a stronger enrichment in active regulatory regions in
the human brain (Fig. 2D), implicating the potential functional
roles for variants of high effect.

We utilized mQTL evidence from genetic association analysis
to evaluate the quality of predicted effects of variants on DNAm

Fig. 1. Prediction of DNAm levels from DNA sequence. (A) Illustration of INTERACT architecture. (B) Comparison of model performance in predicting DNAm
levels of independent CpG sites. Each model predicts DNAm levels of independent CpG sites in each sample of the same tissue used for training the model.
Spearman correlation is calculated for observed and predicted DNAm levels in each training sample. The bar height and error bar represent the mean and
SD of measured Spearman correlations across training samples of the same tissue. (C) Scatter plot for the observed and predicted DNAm levels of indepen-
dent CpG sites in one brain sample by the brain-specific INTERACT model. (D) Clustering of samples by the first two PCs of predicted DNAm levels of inde-
pendent CpG sites.
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levels by our tissue-specific INTERACT models. Specifically, we
computed mQTL association statistics of all single-nucleotide
polymorphism (SNP)–CpG pairs for SNPs within a 2-kb win-
dow of CpG sites on a 450K array, based on a dataset from our
previous study of mQTLs in the prefrontal cortex (15). We then
compared mQTL signals for SNP–CpG pairs grouped by
their effects on DNAm levels predicted by each tissue-specific
INTERACT. We reasoned that if predicted effects were reliable,
SNP–CpG pairs with greater effects would show stronger associa-
tion evidence. This was indeed the case, as SNP–CpG pairs of
greater predicted effects had a higher absolute value of the z-statistic
on average, and the pattern was stronger for effects predicted by the
brain-specific model than by nonbrain-specific models (Fig. 2E),
reinforcing that context matters in predicting regulatory variants
acting in the brain. Moreover, we observed that SNP–CpG pairs of
greater predicted effects had a higher rate of consistency in direction
of effect with mQTLs, with the strongest pattern observed for
effects predicted by the brain-specific model (SI Appendix, Fig. S1),
providing reassurance about model quality.

To further quantify the performance of tissue-specific
INTERACT models in predicting causal mQTLs, we built a
“gold-standard” dataset comprised of SNP–CpG pairs with
high-confidence causal mQTLs and null SNPs (no effects on
DNAm). Specifically, gold standards were built from statistical
fine-mapping using the SuSiE (41) based on the same mQTL
dataset from the prefrontal cortex described above (15). We
collected 541 SNP–CpG pairs with high-confidence causal
mQTLs (posterior inclusion probability [pip] = 1, Bonferroni-
corrected association P < 0.05) and 5,024 SNP–CpG pairs
of no mQTLs (pip = 0, association P > 0.99). We then evalu-
ated the ability of our models to separate the two groups of
SNP–CpG pairs by predicting SNP effects on DNAm levels for
each SNP–CpG pair. The brain-specific INTERACT achieved
the best discrimination performance measured by the area
under the receiver operating characteristic curve (AUC-ROC =
0.86), followed by blood- (AUC-ROC = 0.82), saliva- (AUC-
ROC = 0.81), and buccal-specific INTERACT (AUC-ROC =
0.80). The brain-specific INTERACT achieved more notable

Fig. 2. In silico discovery, characterization, and validation of DNAm regulatory variants. (A) A schematic view of in silico discovery of DNAm regulatory
variants. (B) Comparison of predicted effects of variants on DNAm levels vs. their relative distance to CpG sites. Variants are grouped by their relative
distance to CpG sites on the x axis. A box plot represents the distribution of predicted effects of variants on DNAm levels by the brain-specific model in one
brain sample. (C) Comparison of relative signal of each variant to the top variant of the strongest signal (y axis) derived from either association analysis or
INTERACT vs. the LD strength between the variant and the top variant (x axis) of each CpG site. Relative signal from association analysis were measured by
the [�log10(P value)] of each variant divided by the maximum value of top variant for each CpG site. Relative signal from INTERACT were measured by the
absolute value of predicted effect of each variant divided by the maximum value of top variant for each CpG site. (D) Enrichment of 15-core chromatin states
in the DLPFC from the Epigenome Roadmap project among variants ranked at different intervals by their predicted effects on DNAm levels in one brain
sample. Rank interval “0–0.001” represents variants of large effect and ranked in the top 0.1%. The color gradient represents log2 (enrichment fold) of var-
iants in each rank interval for their enrichment of each chromatin state compared to variants ranked in the bottom (0.9 to 1). (E) Comparing SNP effects on
DNAm levels of SNP–CpG pairs (x axis) predicted by each tissue-specific INTERACT vs. average mQTLs signals of the same SNP–CpG pairs (y axis) from associ-
ation analysis. Each tissue-specific model predicts SNP effects on DNAm levels of SNP–CpG pairs in each sample of the corresponding tissue used for train-
ing the model. SNP–CpG pairs are then ranked by their predicted effects in each training sample, and average mQTLs signals are calculated for SNP–CpG
pairs in each rank interval. Rank interval “0–0.001” represents SNP–CpG pairs of large predicted effect and ranked in the top 0.1%. Each point and its error
bar on the curve represent mean and SD of average mQTLs signals of SNP–CpG pairs in each rank interval across training samples of the same tissue.
(F) Comparison of tissue-specific INTERACT models for their performance in predicting causal mQTLs in the gold-standard dataset. Each tissue-specific
INTERACT predicts SNP effects on DNAm levels of SNP–CpG pairs of gold-standard dataset in each sample of the corresponding tissue used for training the
model. AUC-ROC and AUC-PR are calculated for each tissue-specific INTERACT based on predicted SNP effects on DNAm levels of SNP–CpG pairs by the
model in each training sample. The height of each bar and its error bar represents the mean and SD of AUC-ROC (AUC-PR) across training samples of
the same tissue.
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gain measured by the area under the precision recall curve
(AUC-PR = 0.63) compared to the other three models (blood,
0.44; saliva, 0.45; buccal, 0.40) (Fig. 2F), reinforcing that context
matters in predicting regulatory variants in the human brain.

DNAm Regulatory Variants Predicted by the Brain-Specific
INTERACT Were Enriched for Heritability of Brain-Related
Traits. We performed stratified LD-score regression (S-LDSC)
to examine whether DNAm regulatory variants predicted by
the brain-specific INTERACT were enriched for heritability of
13 brain-related traits, and 1 nonbrain trait, human height. As
a comparison, the same analyses were conducted for mQTLs
(false-discovery rate [FDR] < 0.01) and fine-mapped mQTLs
(fmQTLs, pip > 0.1) computed from the same mQTL dataset
from the prefrontal cortex described above (15). Overall, we
observed that variants of larger predicted effects were more
strongly enriched for heritability of a number of brain-related
traits, but not for human height (Fig. 3A and Dataset S3). The
strongest enrichment was observed for schizophrenia by var-
iants ranked in the top 10%, which represented 14% of anno-
tation SNPs, but explained 35% of schizophrenia heritability
(enrichment fold = 2.5, P = 1.5 × 10�4, FDR = 0.008). This
level of enrichment was stronger than fmQTLs that had a simi-
lar proportion of annotation SNPs (13%), but explained only
20% of schizophrenia heritability (enrichment fold = 1.6, P =
1.8 × 10�4, FDR = 0.01). On the other hand, mQTLs were
enriched for heritability of only three traits (bipolar disorder,
Parkinson disease, and human height), but fmQTLs showed
stronger enrichment for the same three traits, plus enrichment
for a number of new traits (schizophrenia, depression, educa-
tion years, cigarettes per day, and drinks per week) (Dataset
S4), reinforcing the role of mQTLs in brain-related traits, but
also a need to identify causal mQTLs. Additionally, it was

notable that both mQTLs and fmQTLs showed strong enrich-
ment for heritability of human height, but top-ranked variants
predicted by the brain-specific INTERACT did not, suggesting
that INTERACT tends to predict DNAm regulatory variants
that are unique to brain-related traits.

To evaluate the tissue context for variants implicated in
brain-related traits, we performed S-LDSC for variants pre-
dicted by the blood-specific INTERACT (SI Appendix, Fig. S2
and Dataset S3). Consistent with the brain-specific INTER-
ACT, the top 10% ranked variants from the blood-specific
INTERACT showed the highest enrichment for heritability
of a number of brain-related traits, but their strength was
generally less than what we observed from the brain-specific
INTERACT. For example, the enrichment was only nominally
significant for schizophrenia (fold = 2.1, P = 0.032), neuroti-
cism (fold = 2, P = 0.030), and education years (fold = 1.8,
P = 0.034), whereas the top 10% ranked variants from the
brain-specific INTERACT showed stronger evidence for the
same traits (schizophrenia, fold = 2.5, P = 1.5 × 10�4; neurot-
icism, fold = 2.5, P = 3.6 × 10�4; education years, fold = 2.3,
P = 2.3 × 10�4). However, we did observe that the top of 10%
variants from the blood-specific INTERACT showed stronger
enrichment for heritability of Alzheimer’s disease (fold = 4.5,
P = 0.033) compared to the brain-specific INTERACT (fold =
0.8, P = 0.93), possibly reflecting the more immune-related asso-
ciation of this disease than other brain-related traits. Overall, this
analysis highlights that tissue context matters in identifying regula-
tory variants implicated in brain-related traits.

DNAm Regulatory Variants Predicted by the Brain-Specific
INTERACT Improve Polygenic Risk Prediction for Schizophre-
nia. Given the strong evidence that top-ranked variants pre-
dicted by the brain-specific INTERACT were enriched for

Fig. 3. DNAm regulatory variants predicted by the brain-specific INTERACT underlie the genetic basis of brain-related traits. (A) Heritability enrichment anal-
ysis for variants predicted by the brain-specific INTERACT. The x axis represents variants ranked at different intervals by their predicted effects. Interval
“0–0.1” represents variants of high effect and ranked in the top 10%. As a comparison, mQTL and fmQTLs in the DLPFC are also included. The percent in
brackets represents proportion of annotation SNPs included for S-LDSC. The color gradient represents significance levels for enriched heritability. The black
color represents negative heritability estimates from S-LDSC. The numbers within each square are heritability enrichment fold and numbers in bold indicate
FDR significant (FDR < 0.05) after multiple testing correction. (B) Comparison of prediction performance of three types of PRS for schizophrenia case-control
status. fPRS: functional PRS computed from predicted DNAm regulatory variants; sPRS: standard PRS; rPRS: random PRS computed from random SNPs
matched for the number of SNPs with fPRS. Error bar above rPRS represents SD of R2 across 100 random iterations of rPRS.
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schizophrenia heritability, we further examined whether the top
ranked variants could improve polygenic risk prediction for
schizophrenia case-control status in three independent samples,
including two samples of European ancestry (European-American
[EA] 1, 178 cases, 343 controls; EA2, 660 cases, 685 controls)
and one sample of African ancestry [(African American [AA],
130 cases, 276 controls). We computed polygenic risk scores
(PRS) by the standard approach of LD pruning and P-value
thresholding (P+T), but used only the top 20% of ranked var-
iants that were enriched for schizophrenia heritability as shown
by S-LDSC analysis. We called the PRS computed this way as
“functional PRS” (fPRS) since it was solely based on potential
DNAm regulatory variants. We compared the predictive perfor-
mance of fPRS with standard PRS (sPRS) computed by the
standard P-value thresholding approach. Because the number of
SNPs pruned for fPRS was much less than for sPRS, to make
the fPRS and sPRS more comparable, we also computed a ran-
dom PRS (rPRS) that was matched for the same number of
SNPs used for fPRS at each P-value threshold.
We first investigated the predictive performance of fPRS

using the top 20% of ranked variants predicted across all brain

samples used for training the brain-specific INTERACT. Despite
the smaller number of pruned SNPs, fPRS had a higher predic-
tion value (R2) for schizophrenia case-control status than did
sPRS in EA1 and AA (Fig. 3B and Dataset S5). The relative
increase in the maximum R2 across all P-value thresholds was
28% (fPRS: 15.7% vs. sPRS: 12.3%) and 31% (fPRS: 4.7% vs.
sPRS: 3.1%) in EA1 and AA, respectively. A further increase of
R2 was observed when fPRS was compared to rPRS at each
P-value threshold, ranging from 30 to 87% in EA1 and from
10% to 4.5-fold in AA. In EA2, the maximum R2 of fPRS
(17.3%) was smaller than that, but close to the maximum R2 of
sPRS (17.4%). When compared to rPRS, fPRS still achieved bet-
ter predictive performance in EA2 at P-value thresholds ≥1 ×
10�5, with the increase of R2 ranging from 5 to 27%.

Fine-Mapping Schizophrenia GWAS Risk Loci through DNAm
Regulatory Variants Predicted by the Brain-Specific INTER-
ACT. We utilized DNAm regulatory variants predicted by the
brain-specific INTERACT to identify putative causal variants
and causal genes within schizophrenia GWAS risk loci. Fig. 4A
shows the workflow of our fine-mapping strategy. We first

Fig. 4. Fine-mapping schizophrenia GWAS risk loci. (A) Overview of fine-mapping strategy. (B) Fine-mapping result for one risk locus. (Top) Regional plot for
GWAS association signals. The two vertical dotted red lines indicate risk locus interval. The colored points indicate prioritized risk variants and their annota-
tions (red triangle, variants connected to active promoters in neuron; orange circle, variants within gene bodies). (Middle) Distal regulation of prioritized risk
variants with target gene GRIA1. (Bottom) All genes within risk locus. Gene names in red indicate prioritized risk genes. Gene frames in blue and brown indi-
cates genes on positive and negative strand, respectively. Gene frames are drawn based on the longest transcript from ENSEMBLE annotation (hg19). (C).
Gene ontology enrichment analysis for prioritized genes. The dotted vertical red line indicates significant threshold after FDR correction (FDR < 0.05). (D)
Gene set enrichment analysis for prioritized risk genes. The y axis represents gene sets: ASD, autism risk genes identified by integrated de novo mutations
and rare variants analysis; DDD, genes enriched for de novo mutations in developmental disorder cases; Lof-intolerant, loss-of-function intolerant genes;
Neuron-Ex-down, decreased gene expression in excitatory neurons of schizophrenia cases; Neuron-Ex-up, increased gene expression in excitatory neurons
of schizophrenia cases; Neuron-In-down, decreased gene expression in inhibitory neurons of schizophrenia cases; Neuron-In-up, increased gene expression
in inhibitory neurons of schizophrenia cases. Each horizontal line represents the odds-ratio (OR) and 95% confidence interval of the association between pri-
oritized risk genes and genes of each gene set. Association was computed by logistic regression using Firth’s bias reduction method adjusting for gene size,
with all protein coding genes as background. Numbers above each line are P values. Dotted red line indicates no enrichment.
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collected 14,444 genome-wide significant SNPs (P < 5 ×
10�8) and 4,621 tag SNPs that had strong LD (r2 > 0.9) with
those genome-wide significant SNPs, resulting in 19,065 candi-
date SNPs across 176 autosomal risk loci. We then overlapped
these candidate SNPs with top ranked variants that are poten-
tially DNAm regulatory variants (FDR < 0.05), determined
empirically by our assembled gold-standard dataset in each
training brain sample (Dataset S6). After overlapping, 1,053
variants were retained as putative causal SNPs across 124 risk
loci (Dataset S7). To link candidate causal SNPs to target genes
they might regulate, we first assigned 376 SNPs to active pro-
moters they overlapped or distally contacted in the neuronal
cell type of the human brain, motivated by abundant prior
evidence that the neuron is the most relevant cell type where
schizophrenia risk variants may exert their effects (42). The
remaining 677 SNPs were sequentially assigned to gene bodies
(554 SNPs), nearest genes (97 SNPs, within 100 kb), or inter-
genic regions (26 SNPs, nearest gene > 100 kb) by proximity-
based annotations. After linking candidate causal SNPs to their
putative gene targets, 44 loci had only one candidate gene, 35
loci had two candidate genes, 9 loci had three candidate genes,
and 35 loci contained more than three candidate genes.
It was notable that, among the 124 risk loci mapped by pri-

oritized variants, 58 loci contained risk variants that were dis-
tally linked to active promoters in neurons, including 28 where
risk variants were linked to active promoters even beyond risk
loci (SI Appendix, Fig. S3). The link of risk variants with distal
promoters altered our interpretation of GWAS risk loci in mul-
tiple ways. First, the distal regulation revealed risk genes that
could otherwise be missed if we only examined genes within
risk loci. One example was a risk locus on chromosome 5
(chr5:151,607,057� 152,864,032) in which no obvious candi-
date genes could be identified within the locus, but two risk
variants were linked to GRIA1, a well-known candidate gene
for schizophrenia (43) (Fig. 4B). Second, the distal regulation
indicated alternative causal genes within risk loci. One example
is the DRD2 risk locus where prioritized risk genes not only
included DRD2, but also TTC12, which was contacted by a
prioritized variant. Third, the distal regulation revealed poten-
tial functional mechanisms of noncoding risk variants for risk
loci where prioritized risk variants were linked to promoters of
high confidence risk genes (e.g., CACNA1C, GRIN2A, and
CNTN4) (44–46).
We evaluated the relevance of prioritized genes with schizophre-

nia in multiple ways. First, gene ontology analysis of prioritized
genes revealed pathways strongly implicated in schizophrenia,
particularly synaptic transmission (Fig. 4C). Second, we exam-
ined whether prioritized genes tended to be differentially
expressed genes (P < 0.05) between schizophrenia cases and con-
trols in neuronal cell types utilizing an existing dataset (47).
Prioritized genes were enriched for both up-regulated and down-
regulated genes in excitatory neurons, but not in inhibitory neu-
rons (Fig. 4D). Third, we observed that prioritized genes were
enriched for multiple gene sets that have been implicated in
schizophrenia, including loss-of-function intolerant genes and
genes involved in autism and developmental disorders (Fig. 4D).
The convergence of prioritized genes with our previous knowl-
edge about schizophrenia genetics supports our fine-mapping
strategy.

Discussion

Here, we have described a deep learning model, INTERACT,
to identify DNAm regulatory variants in the human brain, and

further investigated the contribution of predicted DNAm regu-
latory variants to the genetic basis of brain-related traits. Our
study reveals the inherent power of the DNA sequence to
encode tissue-specific DNAm patterns and the ability of our
tissue-specific INTERACT to learn DNA sequence features
that shape tissue-specific DNAm levels. We show that genetic
effects on DNAm levels predicted by the brain-specific INTERACT
were not confounded by LD, were convergent with mQTL evi-
dence from association analysis, and had discriminative power in
separating causal mQTLs from null SNPs. We demonstrate that
DNAm regulatory variants predicted by our brain-specific model
were enriched for heritability of brain-related traits and improved
polygenic risk prediction for schizophrenia across ancestry sam-
ples. Finally, we applied predicted DNAm regulatory variants for
prioritizing risk genes within schizophrenia GWAS risk loci,
which led to the altered interpretation of GWAS risk loci and
the identification of potentially novel risk genes.

Compared to existing deep learning models, our designed
INTERACT model has three key advantages in predicting func-
tional regulatory variants. First, due to the self-attention mecha-
nism of the transformer module, INTERACT has the advantage
of detecting distant interacting features that could otherwise be
missed by a standard CNN. Second, the pretraining and fine-
tuning design enables knowledge transfer from WGBS datasets
to EPIC array datasets, leveraging strengths and limitations of
both datasets. To wit, WGBS measures a much larger number
of CpG sites, but is subject to measurement bias due to variabil-
ity of sequencing depth, while the EPIC array measures a lesser
number of CpG sites, but is more accurate. Third, we trained
the INTERACT within the biological context of brain-related
traits, the human brain. As a result, compared to the nonbrain-
specific model, the brain-specific model predicts DNAm regula-
tory variants that were more strongly converged with mQTL
evidence in human brain and explained more heritability of
brain-related traits.

This work should be viewed in light of several limitations.
First, our model takes input DNA sequences of only 2 kb, and
hence it can only predict DNAm regulatory variants located
within 1 kb of each CpG site. Future work can be developed to
design models that take longer DNA sequences and hence detect
regulatory variants beyond 1 kb of each CpG site. Second,
our model was trained to predict DNAm levels in bulk brain
tissues, and the in silico mutagenesis we employed may not iden-
tify DNAm regulatory variants that are brain cell-type–specific.
Future studies could be extended to train models that predict
brain cell-type–specific DNAm levels, followed by in silico dis-
covery of brain cell-type–specific DNAm regulatory variants.
Third, variants derived from our model can only help uncover
noncoding risk variants that act through regulation of DNAm
levels, but it is not able to reveal risk variants acting through
mechanisms that are independent of DNAm regulation. Our
model can be extended to identify functional regulatory variants
for other types of molecular traits, such as gene expression and
histone modification, in the human brain or in specific brain cell
types.

Methods

Training Datasets. Training datasets for the INTERACT model were based on
DNAm data we collected in our previous study for comparing DNAm between
brain and peripheral tissues from the same living subjects (30). Details about tis-
sue acquisition, processing, and experimental and bioinformatics procedures
related to the DNAm data were described in our prior study. Dataset S8
shows details about brain and nonbrain samples used in this study. Briefly, we
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collected DNA samples from resected brain tissues of five different brain regions
(frontal cortex, temporal cortex, occipital cortex, temporal pole, and hippocam-
pus) from 21 subjects. We also collected DNA from blood, saliva, and buccal
samples from the same 21 subjects. DNAm was measured by the Infinium
HumanMethylationEPIC array for ∼800,000 CpG sites. DNAm data were proc-
essed using the R packages Minfi (48) and RnBeads (49).

Our pretraining dataset for INTERACT was based on the WGBS dataset we
generated in our previous study for two adult brain regions (the hippocampus
and the dorsolateral prefrontal cortex, DLPFC); details about study samples, data
generation, and data processing have been described in our prior report (31). In
brief, we performed WGBS targeting 30× coverage on ∼300 samples across
two brain regions consisting of patients with schizophrenia and unaffected con-
trols. The raw WGBS data were processed and aligned to the GRCh38.p12
genome. DNAm was called by Bismark (50) and smoothed by the R package
bsseq (v1.18) (51). After data processing and quality control (QC), 165 DLPFC
samples and 179 hippocampal samples were assessed for 29,401,795 CpG sites
across the epigenome, with an average postprocessing coverage of 17.3 reads
per CpG site. INTERACT was pretrained by predicting the smoothed DNAm levels
across 26,416,185 autosomal CpG sites of hippocampal samples.

For both training and pretraining datasets, we split CpG sites into three inde-
pendent sets by chromosomes for model training and evaluation. We used CpG
sites on chromosomes 1 to 20 as the training set and CpG sites on chromosome
21 as the validation set for model tuning. CpG sites on chromosome 22 were
used as the testing set for prediction performance evaluation.

INTERACT Model. INTERACT contains three main modules: CNN, transformer,
and fully connected network. The model takes a one-hot encoded DNA sequence
of 2 kb as input, and the DNAm level of the CpG site centered in the DNA
sequence as output. We explored prediction performance for the brain-specific
INTERACT model taking different lengths of DNA input (1, 2, 3, and 4 kb), and
the 2-kb length generated the best prediction performance (Dataset S9), sup-
porting our choice of 2-kb input DNA length. Details of our model architecture
are provided in SI Appendix, Table S4 and codes are publicly available in our
GitHub. Below are descriptions of each module.
CNNmodule. The CNN module contains three convolution layers with 400 filters
for each layer. The features learned by convolution layers are fed into a max
pooling layer. The feature matrix output by the maximum pooling layer is fed
into a dropout layer to avoid overfitting, with a dropout rate of 0.5.
Transformer module. Output by the CNN module is fed into the transformer
module. The transformer module contains a stack of eight identical layers. Each
layer includes two sublayers: the first is a multihead self-attention layer and the
second is a simple, position-wise fully connected feed-forward network. In addi-
tion, there is residual connect around each sublayer and each sublayer is followed
by layer normalization.
Fully connected network. The features learned by the transformer module are
fed into a fully connected network for predicting DNAm levels at CpG sites in
samples of the same tissue. Our fully connected network contains one hidden
layer and an output layer. For pretraining, the output layer contains 179 units
corresponding prediction tasks for the 179 hippocampal samples in the WGBS
dataset. For fine-tuning, the output layer contains 21 units corresponding predic-
tion tasks for the 21 samples of each tissue in the EPIC array dataset. The output
layer predicts DNAm levels and scales prediction values into the 0 to 1 range
using the sigmoid function.

Pretraining and Fine-Tuning. Given the model complexity of INTERACT and
the limited number of CpG sites on the EPIC array as training samples, we pre-
trained INTERACT by predicting DNAm levels of∼26 million autosomal CpG sites
in 179 hippocampal samples measured by WGBS in our previous study (31).
Pretrained INTERACT was then used to fine-tune each tissue-specific INTERACT
model by predicting DNAm levels of CpG sites on the EPIC array for 21 samples
of each tissue. The reason we chose a WGBS dataset for pretraining instead of
for final training was because WGBS suffers measurement bias due to variability
of sequencing coverage across CpG sites. However, we reasoned that the large
number of CpG sites measured by WGBS still contain informative features under-
lying DNAm levels, which can be learned by the pretrained model and further
transferred to each tissue-specific model, and can hence improve prediction per-
formance of the final model.

Alternative Models to Compare with INTERACT for Predicting DNAm
Levels. We compared our fine-tuned INTERACT model with three alternative
models for their performance in predicting DNAm levels. 1) INTERACT without
pretraining: This was the INTERACT model started with random weights. It was
trained by CpG sites on the EPIC array and no WGBS data were involved. 2) CNN
model: This had the same structure of CNN module, followed by the same fully
connected network module as described in the INTERACT model. 3) MRCNN:
This was a CNN-based model published previously (28). It includes four convolu-
tion layers, one max-pooling layer following the second convolution layer, one
dropout layer, and one fully connected network. The input of MRCNN was a one-
hot encoded DNA sequence of length 400; the second convolutional layer
reshapes the sequence into a two-dimensional array.

tDMRs. Following a previous approach (52), we identified tDMRs for each tissue
pair based on observed or predicted DNAm levels of independent CpG sites not
used for model training. First, we applied a linear mixed model to identify
tDMPs that were significant after Bonferroni correction (P < 0.05/17,421 inde-
pendent CpG sites) and had an effect size of ≥20% difference in DNAm between
two tissues. The linear mixed model was applied to each CpG, with a fixed effect
for tissue type and a random effect for each individual to correct for any interindi-
vidual variation. ComBat was applied to correct DNAm levels by removing batch
effects that may arise from different EPIC arrays, with sex, age, and tissue type
included as covariates for batch effect estimation (53). Second, we used the
tDMPs status to identify tDMRs in which at least three tDMPs were detected with
an inter-CpG distance of ≤1 kb while allowing ≤3 nontDMPs within the tDMRs.
Finally, we estimated the proportion of tDMRs from observed DNAm levels that
can be recovered by tDMRs from predicted DNAm levels. A tDMR from observed
DNAm levels was declared as recovered if its ≥50% region overlapped with a
tDMR identified by predicted DNAm levels.

DNA Motif Analysis. We examined filters in the first convolutional layer of
each tissue-specific INTERACT model to identify DNA motifs associated with DNAm
levels in each tissue. Following the method described previously (29), DNA motifs
were discovered for each filter by a subset of sequences where the filter produces
an activation value higher than half of the maximum activation value across all
subsets of sequences the filer has scanned. Selected subsets of sequences are
then aligned to generate a position weight matrix, which was further matched to
annotated TF binding DNA motifs in the Homo sapiens CIS-BP database using the
Tomtom v4.10.1 motif comparison tool from the MEME suite (33). We consider
matches at FDR < 0.05 significant for each filter.

In Silico Mutagenesis. We performed in silico mutagenesis to identify func-
tional genetic variations that regulate DNAm levels. Briefly, we first introduced
a variant allele in a given DNA sequence of 1 kb flanking a CpG site. Each
sequence (with or without the introduced variant allele) was then passed to the
trained INTERACT model to get the predicted DNAm level of the CpG site cen-
tered within each sequence. The impact of the introduced variant on DNAm level
of the CpG site was estimated by the difference of the predicted DNAm levels of
the CpG site within the two sequences. We did this in silico mutagenesis for
9,042,066 SNPs (minor allele frequency [MAF] > 0.005) observed in the Euro-
pean ancestry samples of 1000 Genomes and located within a 1-kb window of
25,564,506 autosomal CpG sites, resulting in estimated effects on DNAm levels
for 182,211,784 SNP–CpG pairs in each sample used for training the tissue-
specific INTERACT model. SNPs were ranked in descending order by their maxi-
mum absolute values of predicted effects for all of their paired CpG sites in each
sample of the same tissue used for training the tissue-specific model.

mQTLs Analysis. We obtained mQTL evidence from a dataset generated by
our previous mQTL study of the prefrontal cortex from the BrainSeq consortium
(15). Information on tissue acquisition, processing, curation, dissection, and
experimental and bioinformatics procedures related to the methylation data,
and genotype data processing was described in prior reports. Briefly, DNAm was
measured using the Illumina HumanMethylation450 (450k) array for ∼485,000
CpG sites. DNAm data were processed using the R package Minfi (48). GWAS
data were imputed into 1000 Genomes Phase 3 variants using SHAPEIT2 (54)
and IMPUTE2 (55). We computed mQTL association statistics for SNPs within
1 kb of each CpG site in a subset of 238 samples of European ancestry, adjusting
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for age, sex, schizophrenia diagnosis, the top five PCs from genotype data, and
the top 10 PCs from DNAm levels.

Fine-Mapping mQTLs. We performed statistical fine-mapping using SuSiE to
identify causal mQTLs that drive DNAm levels of CpG sites, based on the same
mQTL dataset described above (15). SuSiE (41) is an approach based on Bayes-
ian variable selection in regression and it showed superior performance in fine-
mapping compared to other approaches including CAVIAR (56), FINEMAP (57),
and DAP-G (58). Specifically, we performed fine-mapping for all SNPs within
20 kb of each autosomal CpG site as captured by the 450K array, adjusting for
the same set of covariates described above for mQTL analysis, in 1-kb window
analysis. We set L = 10 for the largest number of causal mQTLs and let SuSiE
estimate prior effect size from data.

S-LDSC Regression. We performed S-LDSC regression (59) to evaluate the
enrichment of heritability of brain-related traits for variants ranked at different
intervals by their impact on DNAm levels predicted by the INTERACT model. As a
comparison, we also conducted S-LDSC analysis for mQTLs derived from associa-
tion analysis, including 1,065,054 mQTLs without fine-mapping (FDR < 0.01)
and 858,174 fine-mapped mQTLs (pip > 0.1) as described above. We selected
13 brain-related traits with GWAS sample sizes > 40,000, including a wide
range of behavioral traits, and psychiatric and neurological disorders. We also
included one nonbrain trait, human height, as a control to examine whether our
findings are specific to brain-related traits. We downloaded GWAS summary sta-
tistics of each trait from the sources listed in Dataset S10. Following recommen-
dations from the LDSC resource website (https://alkesgroup.broadinstitute.org/
LDSCORE), S-LDSC was run for each list of variants with the baseline LD model
v2.2 that included 97 annotations to control for the LD between variants with
other functional annotations in the genome. We used HapMap Project Phase
3 SNPs as regression SNPs, and 1000 Genomes SNPs of European ancestry samples
as reference SNPs, which were all downloaded from the LDSC resource website.

PRS for Schizophrenia. We calculated schizophrenia PRS in three independent
samples, including two samples of European ancestry (EA1, 178 cases, 343 con-
trols; EA2, 660 cases, 685 controls) and one sample of African ancestry (AA, 130
cases, 276 controls). The samples of EA1 and AA were postmortem brain speci-
mens donated through the Offices of the Chief Medical Examiners of the District
of Columbia and of the Commonwealth of Virginia, Northern District to the
National Institute of Mental Health Brain Tissue Collection at the NIH in
Bethesda, Maryland, according to NIH Institutional Review Board guidelines
(Protocol #90-M-0142). Audiotaped informed consent was obtained from legal
next of kin on every case (as these donations occurred after death, and thus the
donors themselves could not consent). Details of the donation process have
been described previously (60, 61). The sample of EA2 included participants that
were all Caucasians of European ancestry and were selected from the Clinical
Brain Disorders Branch Sibling Study of schizophrenia at the National Institute of
Mental Health (D.R.W., Principal Investigator).

GWAS data for each sample were collected by different types of Illumina
microarray over the years. We imputed GWAS data into 1000 Genomes Phase 3
variants based on a common set of SNPs (∼300,000) across all chips in each
study sample, following the best-practice guidelines of IMPUTE2. In brief, pre-
phasing was first performed with SHAPEIT to infer haplotypes for samples based
on autosomal SNPs with an MAF greater than 0.01. Imputation was carried out
on prephased haplotypes using IMPUTE2 against reference data from the 1000
Genomes Phase 3 haplotype reference. After postimputation QC (SNP missing
rate < 0.05, MAF > 0.01, imputation quality score > 0.9, and Hardy–Weinberg
equilibrium >10�5), 6,229,206, 5,947,269, and 4,993,796 autosomal variants
were retained for EA1, EA2, and AA samples, respectively. To make PRS more
comparable across the three samples, we used the same set of 4,834,021 SNPs
that passed QC across all three samples. Imputed dosage data of SNPs were
used for calculating the PRS in each sample, as described below.

We computed PRS by the standard approach of LD pruning and P-value
thresholding, but used three types of SNPs resulting in three types of PRS: fPRS,
sPRS, and rPRS. 1) fPRS was computed from the top 20% of variants ranked by
their predicted effects on DNAm levels by the brain-specific INTERACT model;
2) sPRS was computed from all of the SNPs that passed QC; 3) for rPRS, to make
fPRS and sPRS more comparable, we randomly selected a subset pruned
SNPs for sPRS to match the number of pruned SNPs for fPRS at each P-value

threshold. We repeated the process 100 times and the average predictive perfor-
mance of rPRS across 100 iterations was compared with fPRS. SNPs were pruned
using P-value informed clumping in PLINK (62), with a cutoff of r2= 0.1 within
a 500-kb window. We calculated 18 levels of PRS using pruned SNPs under 18
different thresholds of P values: 5e-08, 1e-07, 1e-06, 1e-05, 1e-04, 0.001, 0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. Weights used for PRS calcu-
lation were the natural log (odds ratio) of SNPs estimated from a metaanalysis of
PGC3 GWAS of European ancestry samples (63), from which we removed sam-
ples used here for PRS calculation. We tested associations between each type of
PRS and schizophrenia case-control status adjusting for population stratification
using the top five PCs from genotype data as covariates. The portion of the vari-
ance in schizophrenia case-control status explained by the PRS was assessed by
the Nagelkerke pseudo R2.

Fine-Mapping Schizophrenia GWAS Risk Loci.
Define GWAS risk loci. We clumped significant SNPs from schizophrenia GWAS
summary statistics [PGC3, European ancestry samples (64)] into 176 indepen-
dent risk loci on autosomes using PLINK. Specifically, we first obtained 299
index SNPs (P < 5 × 10�8) that were LD-independent and had r2 < 0.1 within
a 3-Mb window. Risk loci for each index SNP were defined as being 50-kb
upstream of the leftmost and 50-kb downstream of the rightmost SNPs that
were within a 3-Mb window of an index SNP and had r2 > 0.2 with the index
SNP. Risk loci were merged if they were within 50 kb, resulting in 176 indepen-
dent risk loci.
Prioritize candidate causal SNPs. We prioritized putative causal SNPs within
risk loci by overlapping significant SNPs (P < 5 × 10�8) and their tagged SNPs
(r2 > 0.9) with DNAm regulatory variants predicted by the brain-specific model
across all brain samples used for training the model. DNAm regulatory variants
were top ranked variants with predicted effect sizes larger than a predefined cut-
off that was determined for each training brain sample separately using our
assembled gold-standard dataset (SNP–CpG pairs with high-confident causal
mQTLs or null SNPs). Specifically, we predicted SNP effect on DNAm level for
each SNP–CpG pair in each training brain sample. We then ranked all SNP–CpG
pairs based on the absolute value of their predicted effect sizes. We calculated
the FDR at each data point of the ranked list and the effect cutoff was set as the
smallest effect at which FDR ≤ 0.05 could be achieved. The effect cutoffs were
∼0.05 across 21 brain samples used for training the brain-specific INTERACT
model (Dataset S6).
Assign candidate causal SNPs to target genes. Utilizing an epigenomics data-
set of neuronal cell types in the human brain (65), we first assigned prioritized
risk variants to putative causal genes if the genes had active promoters in the
neuronal cell type that overlapped with prioritized risk variants. Putative causal
genes were also assigned if they had active promoters that could be connected
to prioritized risk variants through distal regulation. Details for identification of
active promoters and their interactions with distal regulatory regions in the neu-
ronal cell types were described in the prior report (65). Briefly, active promoters
were identified by H3K4me3 peaks that overlap H3K27ac within 2,000 bp of a
nearest transcription start site. Interactions between active promoters and distal
regulatory regions were detected by proximity ligation-assisted chromatin immu-
noprecipitiaton sequencing (PLAC-seq). To link risk variants to distal promoters,
each risk variant was extended by 2,500 bp in both directions and then inter-
sected with PLAC-seq bins that had significant interactions in neurons. If one of
the PLAC-seq bins overlapped a risk variant-region and another bin overlapped
an active promoter, the active promoter was then distally linked with the risk
variant. If the risk variant could not be assigned to overlapping or distal active
promoters in neurons, we then assigned them to genes according to proximity-
based annotations from the Ensembl Variant Effect Predictor (66).

Gene Set Enrichment Analysis. We used clusterProfiler for gene ontology
enrichment analysis (67). We also tested the enrichment of prioritized schizo-
phrenia risk genes for a number of gene sets: 1) differentially expressed genes
(P < 0.05) between schizophrenia cases and controls in excitatory and inhibitory
neuronal cell types (47); 2) 3,123 loss-of-function intolerant genes (pLI > 0.9)
(68); 3) 102 significant (FDR < 10%) autism-spectrum disorder genes (69);
4) 293 genes enriched for de novo mutation in developmental disorder cases
(70). Enrichment was tested by logistic regression with Firth’s bias reduction
using the R package “logistf.” All analyses were adjusted for gene size.
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Data, Materials, and Software Availability. The codes in this paper have
been deposited in GitHub, https://github.com/LieberInstitute/INTERACT (71). All
other data are available in the main text and supporting information.
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