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Abstract: Breast cancer is one of the major public health issues and is considered a leading cause of
cancer-related deaths among women worldwide. Its early diagnosis can effectively help in increasing
the chances of survival rate. To this end, biopsy is usually followed as a gold standard approach
in which tissues are collected for microscopic analysis. However, the histopathological analysis of
breast cancer is non-trivial, labor-intensive, and may lead to a high degree of disagreement among
pathologists. Therefore, an automatic diagnostic system could assist pathologists to improve the
effectiveness of diagnostic processes. This paper presents an ensemble deep learning approach for
the definite classification of non-carcinoma and carcinoma breast cancer histopathology images using
our collected dataset. We trained four different models based on pre-trained VGG16 and VGG19
architectures. Initially, we followed 5-fold cross-validation operations on all the individual models,
namely, fully-trained VGG16, fine-tuned VGG16, fully-trained VGG19, and fine-tuned VGG19 models.
Then, we followed an ensemble strategy by taking the average of predicted probabilities and found
that the ensemble of fine-tuned VGG16 and fine-tuned VGG19 performed competitive classification
performance, especially on the carcinoma class. The ensemble of fine-tuned VGG16 and VGG19
models offered sensitivity of 97.73% for carcinoma class and overall accuracy of 95.29%. Also,
it offered an F1 score of 95.29%. These experimental results demonstrated that our proposed deep
learning approach is effective for the automatic classification of complex-natured histopathology
images of breast cancer, more specifically for carcinoma images.

Keywords: deep learning; histopathology; breast cancer; image classification; ensemble models

1. Introduction

Cancer is one of the critical public health issues around the world. According to the Global Burden
of Disease (GBD) study, there have been 24.5 million cancer incidence and 9.6 million cancer deaths
worldwide in 2017 [1]. These statistics indicate that cancer incidence expanded by 33% between 2007
and 2017 worldwide [1]. Specifically, breast cancer is the most common malignancy and the leading
cause of cancer-related mortalities among women worldwide [1,2]. Thus, premature diagnosis of this
pathology is crucial to preclude its progression and reduce its morbidity rates in women.

Breast cancer is a heterogeneous disease, composed of numerous entities with distinctive
biological, histological and clinical characteristics [3]. This malignancy erupts from the growth of
abnormal breast cells and might invade the adjacent healthy tissues [3]. Its clinical screening is
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initially performed by utilizing radiology images, for instance, mammography, ultrasound imaging,
and Magnetic Resonance Imaging (MRI) [4,5]. However, these non-invasive imaging approaches may
not be capable of determining the cancerous areas efficiently. To this end, the biopsy technique is usually
used to analyze the malignancy in breast cancer tissues more comprehensively. The process of biopsy
includes the collection of tissue samples, mounting them on microscopic glass slides, and staining these
slides for better visualization of nuclei and cytoplasm [6]. Pathologists then carry out the microscopic
analysis of these slides in order to finalize the diagnosis of breast cancer [6]. The complete process of
biopsy technique is depicted in Figure 1, and is comprehensively described in [7].

Step 01: Tissue Specimen

Step 02: Tissue Slide

One-to-Many One-to-One

Step 03: Whole Slide Image

One-to-Many

Step 04: Annotated Image Patch

Figure 1. The complete process of biopsy is depicted in Figure. Steps 01 and 02 are taken from [7]
whereas steps 03 and 04 are retrieved from our own dataset.

However, the manual analysis of complex-natured histopathological images is fairly a
time-consuming and tedious process, and could be prone to errors. Also, the morphological criteria
used in the classification of these images are somehow subjective, which leads to the result that
an average diagnostic concordance among the pathologists is approximately 75% [8]. Therefore,
the computer-assisted diagnosis [4,6,9] plays a significant role to assist pathologists in analyzing the
histopathology images. Specifically, it improves the diagnostic accuracy of breast cancer by reducing
the inter-pathologist variations in diagnostic decisions [6]. However, the conventional computerized
diagnostic approaches, ranging from rule-based systems to machine learning techniques, may not
effectively challenge the intra-class variation and inter-class consistency within the histopathology
images of breast cancer [10]. Also, these methodologies mainly rely on feature extraction methods like
scale-invariant feature transform [11], speed robust features [12] and local binary patterns [13] which
all are based on supervised information and can be prone to biased results during the classification
of breast cancer histopathology images [10]. Therefore, the need for efficient diagnosis leads to an
advanced set of computational models based on multiple layers of nonlinear processing units, called
deep learning [14].

Recently, deep learning models [7,14–17] have made remarkable progress in computer vision,
specifically in biomedical image processing, due to their abilities to automatically learn complicated
and advanced features from images, which inspired various researchers to leverage these models
in the classification of breast cancer histopathology images [7]. Especially convolutional neural
networks (CNNs) [18] are widely used in image-related tasks due to their abilities to effectively share
parameters across various layers within a deep learning model. Numerous CNN-based architectures
have been proposed during the past few years; however, AlexNet [19] is considered as of the first deep
CNNs to achieve considerable accuracy on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) during 2012. Thereafter, VGG architecture [20] introduced the idea of leveraging deeper
networks with smaller convolutional filters, and achieved second place at ILSVRC 2014. The intuition
of multiple stacked smaller convolutional filters can provide an effective receptive field and is also
used in recently proposed pretrained models, including Inception Network [21] and residual neural
network (ResNet) [22]. In this work, we employed two different approaches of VGG architecture
for an efficient classification of breast cancer histopathology by utilizing our own created dataset.
The main contributions of this paper are: First, we created a private dataset of whole slide images
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(WSI) from breast cancer patients with the help of experienced pathologists. Then, image patches were
extracted from the WSI images, composed of non-carcinoma and carcinoma classes. Next, we selected
and trained different combinations of pretrained VGG16 and VGG19 [20] deep learning architectures
(discussed in Section 3). Specifically, we evaluated an individual as well as ensemble performances
of fully-trained and fine-tuned VGG16 and VGG19 frameworks [20]. Of note, our main objective is
the correct classification of the carcinoma class on a priority basis and we found that the ensemble of
fine-tuned VGG16 and VGG19 approach [20] provided superior performance in the classification of
non-carcinoma and carcinoma histopathology images of breast cancer.

The remaining sections of this paper are provided as follows. Section 2 presents related work.
Section 3 demonstrates the materials and methods used to conduct this research. Section 4 shows
experimental setup and Section 5 illustrates the results along with discussion. Finally, Section 6
highlights the conclusion and future direction of this study.

2. Related Work

With the evolution of machine learning in biomedical engineering, numerous studies leveraged
handcrafted features-based approaches for the classification of histopathology images related to breast
cancer. For instance, Kowal et al. [23] focused on the nuclei segmentation and extracted forty-two
morphological, topological and texture features from the segmented nuclei of 500 fine-needle biopsy
images of breast cancer. Then, these features were utilized to train three different classifiers in
order to classify these images into benign and malignant classes. Similarly, Filipczuk et al. [24]
also showed interest in the segmentation of nuclei and extracted twenty-five shape-based and
texture-based features from the segmented nuclei of 737 cytology images of breast cancer. Based
on these features, four different machine learning classifiers, namely, KNN (K-nearest neighbor),
NB (Naive Bayes), DT (decision tree), and SVM (support vector machine), were trained for the
classification of these cytological images into benign and malignant cases. Apart from nuclei
segmentation [23,24], other studies focused on the extraction of global features from the whole
images. For instance, Zhang et al. [25] combined local binary patterns, statistics from the gray level
co-occurrence matrix and the curvelet transform, and designed a cascade random space ensemble
scheme (with rejection options) for an efficient classification of the microscopic biopsy images of breast
cancer. Although the traditional machine learning approaches have made satisfactory performances in
analyzing the histological images of breast cancer, their performances mainly rely on the selection of
features on which they are trained. Furthermore, they might not be capable of effectively extracting
and organizing the discriminative information from data [26].

In contrast to the traditional machine learning approaches based on hand-crafted features,
deep learning models have the ability to yield complicated and high-level features from images
automatically [26]. Consequently, numerous recent studies employed deep learning approaches,
with and without leveraging the pre-trained models, for the classification of breast cancer
histopathology images. Of note, most of these studies employed BreakHis dataset [27] for the
classification task. For instance, Spanhol et al. [28] employed CNN for the classification of breast
cancer histopathology images and achieved 4 to 6 percentage points higher accuracy on BreakHis
dataset [27] when using a variation of AlexNet [19]. Similarly, Bayramoglu et al. [29] utilized CNN
in order to classify the histopathology images breast cancer irrespectively of their resolution using
BreakHis dataset [27]. Specifically, the authors proposed single-task and multi-task CNN architectures;
whereas the former was capable of predicting malignancy only and the latter was able to predict
malignancy and magnification intensity of images simultaneously. These studies leveraging BreakHis
dataset provided various state-of-the-art performances; however, they are relying on the same dataset.
In this study, we followed the recent approaches of Araújo et al. [30] and Yan et al. [31] and presented
a dataset for the classification of breast cancer histology images using deep learning models. However,
our dataset contains only non-carcinoma and carcinoma classes, unlike [30,31] which have four classes



Sensors 2020, 20, 4373 4 of 17

in their classification problem. The explanation of our dataset and proposed methodologies are
comprehensively discussed in the next Section 3.

3. Materials and Methods

In this section, we introduced our dataset, followed by its preprocessing methodology and training,
validation, and testing criteria along with the augmentation process. Then, we discussed the layout of
the VGG model and finally, we described the architecture of our proposed ensemble architecture.

3.1. Data Collection

We collected overall 544 whole slides images (WSI) from 80 patients suffering from breast cancer
in the pathology department of Colsanitas Colombia University, Bogotá, Colombia. The tumor
tissue fragments were fixed in formalin and embedded in paraffin. Subsequently, 4 mm cuts were
made that were stained with hematoxylin and eosin (H & E). For the Immunohistochemistry studies,
the paraffin-embedded tissue sections were treated with xylene to render them diaphanous (the
paraffin being removed later by passing it through decreasing alcohol concentrations until 100% water
was reached). Rehydrated sections were rinsed in phosphate buffered saline (PBS) containing 1%
Tween-20. For the detection of proteins, sections were heated in a high pH Envision FLEX target
retrieval solution at 65 ◦C for 20 min and then incubated for 20 min at room temperature in the same
solution. Endogenous peroxidase activity (3% H2O2) and non-specific binding (33% foetal calf serum)
were blocked and the sections were incubated overnight at 4 ◦C with the following primary antibodies:
anti-ER (estrogen receptor), anti-PR (progesterone receptor), anti-HER-2 (human epidermal growth
factor receptor-2), anti-myosin, anti-Ki-67 (proliferation-associated biomarker). Next, an Ultra View
universal DAB kit was used following the manufacturer’s recommendations in conjunction with an
automated staining procedure.

The tissue sections were then scanned at high resolution (400×) using a Roche iScan HT scanner
(https://diagnostics.roche.com/global/en/products/instruments/ventana-iscan-ht.html). These WSI
images representing multiple cases from every patient were analyzed using H & E, hormone receptors,
including ER, PR, HER2, myosin, and Ki-67. Next, two pathologists examined the digital whole slides
of tissue stained with H & E and extracted 845 areas from WSI, among which 408 are non-carcinoma
and 437 are carcinoma images.The carcinoma class has images of malignant tumors whereas the
non-carcinoma class contains images of normal tisues as well as benign images of non-tumor glandular
tissues. These areas were photographed at 200× (50 micrometers of resolution) and exported
to png format using Qupath 0.1.2 software [32]. The dimensions of these images were noted as
1278 × 760 pixels. This dataset is considered to be balanced and its statistics are represented in Table 1.
The main objective related to this dataset is the automatic classification of breast cancer histopathology
images, most importantly the carcinoma images.

Table 1. Characteristics of our proposed dataset.

Images Quantity Color Model Staining

carcinoma 437 RGB H & E

non-carcinoma 408 RGB H & E

Total 845 RGB H & E

3.2. Preprocessing

The dataset used in this paper contains histopathology images of breast cancer stained with
H & E, which is widely used to assist pathologists during the microscopic assessment of tissue slides.
However, it is difficult to maintain the same staining concentration through all the slides, which results
in color differences among the acquired images. These contrast differences may adversely affect
the training process of the CNN model and thus the color normalization is usually applied. In this

https://diagnostics.roche.com/global/en/products/instruments/ventana-iscan-ht.html
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paper, we followed the recent studies [30,31] and employed the approach proposed by [33] for colour
normalization. In this method, images are first converted into optical density (OD) by using a
logarithmic transformation. Next, singular value decomposition (SVD) is applied to OD tuples to
obtain two-dimensional projections with higher variance. Then, the resulting color space transform is
applied to the original images. Finally, the histogram of images is stretched in order to cover the lower
90% of data. However, the classification performance of our proposed model deteriorated upon using
the normalized images, which is also comprehensively explained in [34]. Eventually, we omitted the
stain normalization process and thus used the original images in this paper. The example of original
and normalized carcinoma images are shown in Figure 2.

A B C D

Figure 2. The examples of original (A,C) and normalized (B,D) images of carcinoma and non-carcinoma cases.

3.3. Training Criteria

For the individual and ensemble models, we selected 80% of images for training and the remaining
20% for testing purposes with the same percentage of carcinoma and non-carcinoma images. In this
way, 675 images were used for training whereas the remaining 170 images were kept for testing
the model. Following [35], we used 5-fold cross-validation on training images which means that
540 images were used for training and 135 images for validation purpose. Again, we have an equal
percentage of non-carcinoma and carcinoma images in training and validation. These statistics about
training, validation, and testing the models are depicted in Table 2.

Table 2. Criteria for the selection of training, validation, and test images.

No. of Images Percentage

Training 540 64%

Validation 135 16%

Test 170 20%

Total 845 100%

3.4. Data Augmentation

Image data augmentation is a technique used to expand the dataset by generating modified
images during the training process. By employing the ImageDataGenerator provided by Keras deep
learning library [36], we generate batches of tensor image data with real-time data augmentation.
With this type of data augmentation, we want to ensure that our network, when trained, sees new
variations of our data at each and every epoch. Firstly, an input batch of images is presented to the
ImageDataGenerator, which then transforms each image in the batch by a series of random translations,
rotations, etc. The rotation which we specified “rotation range = 40” corresponds to a random rotation
angle between [−40, 40] degrees. We also set the “width and height shift range = 0.2” which specifies
the upper bound of the fraction of the total width by which the image is to be randomly shifted, either
towards the left or right for width or up or down for height. Of note, the rotation operation may rotate
some pixels out of the image frame and leave behind empty pixels within the frame which must be
filled. We used the “reflect mode” in order to fill these empty pixels. Finally, the randomly transformed
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batch is then returned to the calling function. All these parameters along with their values are shown
in Table 3.

Table 3. Parameters of data augmentation.

Parameters of Image Augmentation Values

Zoom range 0.2

Rotation range 40

Width shift range 0.2

Height shift range 0.2

Horizontal flip True

Fill mode Reflect

3.5. VGG Architecture

Pretrained models usually help in a better initialization and convergence when the dataset is
comparably small as compared to natural image datasets, and this result has been extensively used in
other areas of medical imaging too [31]. To this end, we employed deep CNN-based pretrained model
proposed by Visual Geometry Group (VGG) of Oxford University [20]. The VGG model is in fact one of
the most influential contributions since it reinforced the notion that CNNs have to have a deep network
of layers in order for this hierarchical representation of visual data to work. Although numerous
follow-up works made improvements in VGG architecture; however, we used its early layouts in
this paper, called VGG16 and VGG19 architectures. These names are given because of the fact that
VGG16 contains sixteen weight layers whereas VGG19 carries nineteen weight layers in their basic
structures [20].

The complete framework of the VGG16 model is portrayed in Figure 3. It is composed of
five convolutional blocks and every block has multiple convolution layers (with relu activation),
together with a max-pooling layer. It strictly uses 3 × 3 filters with stride and pad of 1, along
with 2 × 2 maxpooling layers with stride 2. The basic architecture of VGG19 is the same as that of
VGG16, except three extra convolutional layers. We tried four different approaches by using these
two pretrained architectures. For fully-trained VGG16, we employed all the five blocks and replaced
the last three layers by a single dense layer with 256 nodes, as shown in Figure 3. The final output layer
is composed of binary cross-entropy loss function which is mathematically shown in Equation (1). Also,
for fine-tuned VGG16, we froze the first block (with two convolutional layers and one max-pooling
layer) and used the remaining four blocks for the training purpose. Again, we used one dense layer
of 256 nodes along with the same loss function of binary cross-entropy. Similarly, for fully-trained
VGG19, we trained all the blocks along with one dense layer of 128 nodes. Also, we froze the first
block and trained the remaining blocks in the fine-tuned VGG19 model along with a single dense layer
of 128 nodes. The final layer in case of VGG19 is also composed of binary cross-entropy loss function,
as shown in Equation (1).

Binary cross entropy = − 1
m

m

∑
i
(yi ∗ log (p(yi)) + (1 − yi) ∗ log(1 − p(yi))) (1)

3.6. Proposed Ensemble Approach

The architecture of our proposed ensemble approach is illustrated in Figure 4. It is composed
of an ensemble of fine-tuned VGG16 and fine-tuned VGG19 models. First, for both models, training
images (80%) are arranged in 5-folds, out of which four are used for training and one is used for model
validation or evaluation. Of note, these folds are mutually exclusive and have equal percentages of
non-carcinoma and carcinoma images. Also, we used image augmentation during the training process,
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as described in Table 3. In every fold, we trained each model for 200 epochs; however, we saved
weights of the best model only, based on a minimum value of loss function. In this way, we saved the
weight for 5 folds for both models. Then, the test images (20%) are utilized in order to make the final
prediction in the form of probabilities. The average probability for every class (non-carcinoma and
carcinoma) is derived by taking the mean of ten probability values, obtained from 5-fold VGG16 and
5-fold VGG19 models (10 folds in total). In this way, we considered the average probability of both the
models in order to classify images into non-carcinoma or carcinoma classes. The final results of our
proposed ensemble deep learning approach are discussed in Section 5.

Figure 3. Representation of fine-tuned VGG16 architecture [20]. In fine-tuned VGG16 and VGG19
models, the first block (comprising two convolutional layers and one max-pooling layer) is frozen
whereas the rest of layers are trainable. However, in fully-trained VGG16 and VGG19 models, all the
five blocks are trainable.

Figure 4. The proposed ensemble architecture using the fine-tuned VGG16 and VGG19 models along
with 5-fold cross-validation approach.
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4. Experimental Setup

In this section, we explained the experimental environment, followed by the interpretation of
evaluation metrics in our proposed model, and finally, we elucidated the tuning of hyperparameters.

4.1. Implementation

We implemented all the experiments related to this article by using Python 3.7.6 along with
TensorFlow 2.1.0 and Keras 2.2.4 installed on a standard PC with dual Nvidia GeForce GTX 2070
graphical processing unit (GPU) support. Moreover, this PC has a RAM capacity of 32.0 GB and holds
a 3.60 GHz Intel R© CoreTM i9-9900K processor with 16 logical threads as well as 16 MB of cache memory.

4.2. Evaluation Metrics

The overall performance of our proposed model relies on elements of confusion matrix, also called
error matrix or contingency table. This evaluation matrix contains four terms, namely, True Positive
(TP), False Positive (FP), False Negative (FN), and True Negative (TN). In our problem, TP refers to
those images that were correctly classified as carcinoma and the FP represents the non-carcinoma
images mistakenly classified as carcinoma. Whereas, the FN represents the images belonging to
carcinoma class that were classified as non-carcinoma, and the TN refers to the non-carcinoma images
correctly classified. The classification performance of our proposed model was evaluated on the testing
set using four performance measures based on confusion matrix, namely, precision, sensitivity (recall),
overall accuracy, and F1-score, using python scikit-learn module. These performance measures can be
calculated as follow:

• Precision: It quantifies exactness of a model, and represents the ratio of carcinoma images
accurately classified out of the union of predicted same-class images.

Precision =
TP

TP + FP
(2)

• Sensitivity: Sensitivity, also called “recall” computes completeness of a model. It represents the
ratio of images accurately classified as carcinoma out of the total number of carcinoma images.

Sensitivity =
TP

TP + FN
(3)

• Accuracy: It evaluates correctness of a model, and is the ratio of the number of images accurately
classified out of the total number of testing images.

OverallAccuracy =
TP + FN

TP + TN + FP + FN
(4)

• F1-score: It represents the harmonic average of precision and recall, and is usually used for the
optimization of a model towards either precision or recall.

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

4.3. Hyperparameter Tuning

Neural networks have a powerful property of learning sophisticated connections between their
inputs and outputs automatically [37]. However, some of these connections might be the result of
sampling noise, so they can prevail during the training process but could not exist within the real test
dataset. This issue may lead to overfitting problems and thus may degrade the prediction performance
of a deep learning model [37]. For this very reason, we followed the tuning process of hyperparameters
in order to get the generalized performance of our proposed model. The methodology used for
the selection of optimal hyperparameters is as follows: First, we selected binary cross-entropy as
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a loss function for our binary classification problem. Then, Adam (adaptive moment estimation)
algorithm [38,39] was used during the training process in order to perform optimization through
200 epochs. At this stage, we tried three different learning rates (0.001, 0.0001, and 0.00001) and three
different batch sizes (16, 32, and 64) while keeping in mind the values used in the recently published
study [39,40]. During the model training, our primary aim was to minimize the generalization gap
between training loss and validation loss, and found that the batch size of 32 worked well together
with the learning rate of 0.0001. Also, we used a dropout of 0.3 in order to prevent the model from
overfitting during the training process [41]. Next, we saved the weights of five best models based
on their minimal validation loss by using a 5-fold cross validation approach. Finally, we employed
these weights for the class prediction on the test dataset. Of note, we used the convolutional filters,
pooling filters, strides, and padding with their default values mentioned in the original VGG16 and
VGG19 architectures [20]. All the optimal values of hyperparameters used in this study are provided
in Table 4.

Table 4. Hyperparameters used in the individual and an ensemble models.

Hyperparameters VGG16 with Data Augmentation VGG19 with Data Augmentation

Train approach 5-fold cross-validation 5-fold cross-validation

Optimizer Adam Adam

Loss function Binary cross-entropy Binary cross-entropy

Learning rate 0.0001 0.0001

Batch size 32 32

Convolution 3 × 3 with stride 1 3 × 3 with stride 1

Padding Same Same

Pooling 2 × 2 max-pooling with stride 2 2 × 2 max-pooling with stride 2

Epochs 200 200

Drop out 0.3 0.3

Regularizer N/A N/A

Architecture Fully-trained and Fine-tuned Fully-trained and Fine-tuned

5. Results and Discussion

In this section, we evaluated the performances of our proposed deep learning models by taking
into consideration the average predicted probabilities. First, we highlighted the performance metrics
of individual models and then we discussed the competitiveness of our proposed models with recently
published studies, especially in terms of carcinoma classification.

5.1. Results of VGG16 Architecture

The performance metrics of fully-trained VGG16 architecture on our dataset are shown in Table 5.
It can be noticed that these metrics vary across different folds although using the same test samples.
Interestingly, the average recall value (sensitivity) of carcinoma class is noted as 94.55% (±2.59). Also,
the highest accuracy and F1 score are noted during Fold 1, in contrast to their lowest values during
Fold 2. The overall accuracy of the fully-trained VGG16 model is 91.41 (±3.40) along with the average
F1 score of 91.38 (±3.42). The accuracy curves of this model are depicted in Figure 5, whereas its loss
curves are displayed in Figure 6.

Similar to fully-trained VGG16 architecture, the performance metrics of fine-tuned VGG16
framework are also presented in Table 5. Again, we used the same test set across all the folds.
In this case, the average recall value of carcinoma class can be noticed as 94.09% (±3.35). Moreover,
the highest accuracy and F1 score are found during Fold 5, whereas their respective lowest values
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can be seen during Fold 1. Overall, the fine-tuned VGG16 models provided an average accuracy of
91.67% (±3.69) as well as an average F1 score of 91.63% (±3.69). The accuracy curves of this model are
also illustrated in Figure 5, whereas its loss curves are presented in Figure 6. Lastly, the training and
prediction times of fully-trained and fine-tuned VGG16 models are provided in Table 6.

Table 5. Performance metrics of VGG16 architecture on our dataset.

Architecture Folds
Confusion Matrices Performance Evaluation (%) Average (%)

Predict →
Actual ↓ NC C Precision Recall F1 Test Acc. F1

Fold 1 non-carcinoma 75 7 97.40 91.46 94.34 82 94.71 94.70carcinoma 2 86 92.47 97.73 95.03 88

Fold 2 non-carcinoma 65 17 90.28 79.27 84.42 82 85.88 85.80carcinoma 7 81 82.65 92.05 87.10 88

Fully-Trained Fold 3 non-carcinoma 73 9 93.59 89.02 91.25 82 91.76 91.75VGG16 carcinoma 5 83 90.22 94.32 92.22 88

Fold 4 non-carcinoma 70 12 95.89 85.37 90.32 82 91.18 91.13carcinoma 3 85 87.63 96.59 91.89 88

Fold 5 non-carcinoma 78 4 91.76 95.12 93.41 82 93.53 93.53carcinoma 7 81 95.29 92.05 93.64 88

Avg. non-carcinoma – – 93.78 88.05 90.75 82 91.41 91.38carcinoma – – 89.65 94.55 91.98 88

Fold 1 non-carcinoma 67 15 87.01 81.71 84.28 82 85.29 85.27carcinoma 10 78 83.87 88.64 86.19 88

Fold 2 non-carcinoma 74 8 92.50 90.24 91.36 82 91.76 91.76carcinoma 6 82 91.11 93.18 92.13 88

Fine-Tuned Fold 3 non-carcinoma 76 6 95.00 92.68 93.83 82 94.12 94.11VGG16 carcinoma 4 84 93.33 95.45 94.38 88

Fold 4 non-carcinoma 73 9 96.05 89.02 92.41 82 92.94 92.92carcinoma 3 85 90.43 96.59 93.41 88

Fold 5 non-carcinoma 75 7 96.15 91.46 93.75 82 94.12 94.11carcinoma 3 85 92.39 96.59 94.44 88

Avg. non-carcinoma – – 93.34 89.02 91.13 82 91.67 91.63carcinoma – – 90.23 94.09 92.11 88

Table 6. The training and prediction times of fully-trained and fine-tuned models.

Model Single Training Time 5-Fold Training Time Prediction Time

Fully-trained VGG16 17 min 50 s 89 min 30 s

Fine-tuned VGG16 17 min 25 s 87 min 31 s

Fully-trained VGG19 20 min 40 s 103 min 35 s

Fine-tuned VGG19 19 min 55 s 99 min 36 s
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Figure 5. The training and validation accuracy curves of fully-trained and fine-tuned VGG16 models.

Figure 6. The training and validation loss curves of fully-trained and fine-tuned VGG16 models.

5.2. Results of VGG19 Architecture

The performance metrics of fully-trained VGG19 architecture on our dataset are presented in
Table 7. In this case, the average recall value (sensitivity) for carcinoma images is 95.45% (±3.41)
which is 0.9 percentage points higher than that of the fully-trained VGG16 model. Also, the maximum
values of the accuracy and an F1 scores occurred during Fold 3, whereas their minimum values found
during Fold 4. Finally, the overall accuracy of the fully-trained VGG19 model is 90.35% (±1.35) in
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together with the average F1 score of 90.31% (±1.35). The accuracy curves of this model are illustrated
in Figure 7, whereas its loss curves are portrayed in Figure 8.

Similar to the fully-trained VGG19 model, the performance metrics of fine-tuned VGG19
architecture are portrayed in Table 7. The average recall value for carcinoma cases is 95.68% (±3.15)
which reflects 1.59 percentage points higher than that of the fine-tuned VGG16 model. In this case,
the highest values of accuracy and an F1 score are noted for Fold 3 and 4, whereas their low values
occurred during Fold 1. The average accuracy and F1 score in this case are 91.67% (±2.99) and 91.63%
(±3.03), respectively. The accuracy curves of this model are also presented in Figure 7, whereas its loss
curves are shown in Figure 8. Finally, like the VGG16 models, the training and prediction times of
fully-trained and fine-tuned VGG19 frameworks are also given in Table 6.

Table 7. Performance metrics of VGG19 architecture on our dataset.

Architecture Folds
Confusion Matrices Performance Evaluation (%) Average (%)

Predict →
Actual ↓ NC C Precision Recall F1 Test Acc. F1

Fold 1 non-carcinoma 66 16 98.51 80.49 88.59 82 90.00 89.89carcinoma 1 87 84.47 98.86 91.10 88

Fold 2 non-carcinoma 71 11 94.67 86.59 90.45 82 91.18 91.15carcinoma 4 84 88.42 95.45 91.80 88

Fully-Trained Fold 3 non-carcinoma 69 13 98.57 84.15 90.79 82 91.76 91.70VGG19 carcinoma 1 87 87.00 98.86 92.55 88

Fold 4 non-carcinoma 69 13 90.79 84.15 87.34 82 88.24 88.21carcinoma 7 81 86.17 92.05 89.01 88

Fold 5 non-carcinoma 73 9 91.25 89.02 90.12 82 90.59 90.58carcinoma 7 81 90.00 92.05 91.01 88

Avg. non-carcinoma – – 94.76 84.88 89.46 82 90.35 90.31carcinoma – – 87.21 95.45 91.09 88

Fold 1 non-carcinoma 64 18 98.46 78.05 87.07 82 88.82 88.67carcinoma 1 87 82.86 98.86 90.16 88

Fold 2 non-carcinoma 75 7 93.75 91.46 92.59 82 92.94 92.94carcinoma 5 83 92.22 94.32 93.26 88

Fine-Tuned Fold 3 non-carcinoma 75 7 97.40 91.46 94.34 82 94.71 94.70VGG19 carcinoma 2 86 92.47 97.73 95.03 88

Fold 4 non-carcinoma 76 6 96.20 92.68 94.41 82 94.71 94.70carcinoma 3 85 93.41 96.59 94.97 88

Fold 5 non-carcinoma 71 11 89.87 86.59 88.20 82 88.82 88.81carcinoma 8 80 87.91 90.91 89.39 88

Avg. non-carcinoma – – 95.14 88.05 91.32 82 92.00 91.96carcinoma – – 89.77 95.68 92.56 88

5.3. Results of Ensemble VGG16 and VGG19

The performance metrics of the ensemble VGG16 and VGG19 framework are shown in Table 8.
In this approach, we ensemble the fully-trained VGG16 and VGG19 architectures and the fine-tuned
VGG16 and VGG19 frameworks by taking the average of output probabilities among all the folds in the
aforementioned architectures. Interestingly, the recall value for the carcinoma class is noted as the same
(97.73%) in both fully-trained and fine-tuned ensemble approaches. However, the fine-tuned approach
offered high accuracy and F1 score (overall) compared to the fully-trained approach, as shown in
Table 8.
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Figure 7. The training and validation accuracy curves of fully-trained and fine-tuned VGG19 models.

Figure 8. The training and validation loss curves of fully-trained and fine-tuned VGG19 models.

5.4. Discussion

The effectiveness of our proposed ensembling approach can be compared with various
state-of-the-art studies used for the classification of breast cancer histopathology images. Most of these
novel deep learning approaches are based on BreakHis dataset [27]. For instance, Spanhol et al. [28]
employed a variant of AlexNet [19] for the classification of benign and malignant images of BreakHis
dataset [27]. The authors used sum, product and maximum fusions rules along with different patch
sizes and reported an image level accuracy of 84.0% (±3.2) for 200× image magnification. In the
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following year, Bayramoglu et al. [29] proposed a magnification independent approach for BreakHis
dataset. Specifically, the authors presented “single task CNN” and “multi-task CNN” frameworks,
where the former predicts malignancy and the latter predicts malignancy as well as the magnification
level in the benign and malignant images. For 200× magnification, the authors reported an accuracy
of 84.63% (±2.72) and 82.56% (±3.49) for single task CNN and multi-task CNN, respectively. Both of
these studies [28,29] reported better classification performance than the traditional hand-crafted
machine learning approaches. In comparison with Spanhol et al. [28] and Bayramoglu et al. [29],
our approach shows better classification performance despite using a comparatively small dataset.
Recently, Han et al. [42] proposed a structured deep learning model called class structure-based deep
CNN (CSDCNN) for the classification of benign and malignant histopathology images of breast cancer,
and reported an accuracy of 96.7% (±2.0) on BreakHis dataset for 200× magnification factor. Similarly,
Nahid et al. [43] first used clustering algorithm in order to retrieve the statistical and geometrical
clusters hidden in the histopathology images. The authors then evaluated the effect of deep CNN
in together with short-term memory (LSTM) network for the efficient classification of benign and
malignant images, and thus achieved an accuracy of 91.0% on BreakHis dataset for 200× magnification.
Lastly, Daniz et al. [44] employed fine-tuned AlexNet [19] and VGG16 [20] models for the classification
of breast cancer histopathology images. The authors followed 5-fold cross-validation approach and
reported a maximum accuracy of 91.37% (±1.72) when using fine-tuned AlexNet [19] on BreakHis
dataset for 200× magnification. These state-of-the-art studies [28,29,42–44] along with other novel
frameworks are comprehensively reviewed in [45]. Although having a small dataset, our results are
still competitive with the novel deep learning frameworks [28,29,42–45]. In summary, the results
demonstrated that our proposed ensemble deep learning model can retrieve various multi-level
and multi-scale features from histopathology images of breast cancer. It also became clear from
the comparison process that the results of our proposed architecture is competitive with numerous
state-of-the-art studies using comparably bigger datasets.

Table 8. Performance metrics of ensemble VGG16 and VGG19 architectures.

Ensemble Method
Confusion Matrices Performance Evaluation (%) Average (%)

Predict →
Actual ↓ NC C Precision Recall F1 Test Accuracy F1

Full-Trained non-carcinoma 73 9 97.33 89.02 92.99 82 93.53 93.51VGG16+VGG19 carcinoma 2 86 90.53 97.73 93.99 88
Fine-Tuned non-carcinoma 76 6 97.44 92.68 95.00 82 95.29 95.29VGG16+VGG19 carcinoma 2 86 93.48 97.73 95.56 88

6. Conclusions

In this paper, we presented an ensemble deep learning approach for the classification of breast
cancer histopathology images using our collected dataset. The main objective of this work was to
effectively classify carcinoma images. We found that it could be better to use the average predicted
probabilities of two individual models. To this end, we employed an ensemble of fine-tuned VGG16
and VGG19 models and achieved a relatively more robust model. The proposed ensemble approach
provides competitive performance on the classification of complex-natured histopathology images of
breast cancer. However, our collected dataset is comparatively small in contrast to the datasets used
in numerous state-of-the-art studies. Also, our dataset contains merely two-class images. The future
indications of this study include the extension of our dataset and the inclusion of images for multi-class
classification problems. Also, other pretrained models need to be included in the future work. Finally,
it will be interesting to apply similar ensemble criteria to histopathology images of different cancers,
such as lung cancer.
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