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ABSTRACT: The fraction of gauche conformers of N,N-dimethylsuccinamic acid (1) and its Li*, Na*, K, Mg**, Ca*", and
N(Bu)," salts were estimated in DMSO and D,O solution by comparing the experimental vicinal proton—proton couplings
determined by '"H NMR spectroscopy with those calculated using the Haasnoot, de Leeuw, and Altona (HLA) equation. In
DMSO, the gauche preferences were found to increase with decreasing Ahrens ionic radius of the metal counterion. The same
trend was not seen in D, O, where the gauche fraction for all of the metallic salts were estimated to be approximately statistical or
less. This highlights the importance of metal chelation on the conformation of organic molecules in polar aprotic media, which

has implications for protein folding.

B INTRODUCTION

Metal ions interactions are crucial for many biological processes
including protein folding," enzymatic catalysis,” and signal
transduction.”> One of the important roles of metal cations in
biological system is the maintenance of precise electrochemical
gradients across cell membranes. Such electrochemical
gradients have been studied extensively in essential biological
mechanisms such as nutrients transport and the maintenance of
resting and action potentials.”> However, many studies have
also demonstrated that conformational changes caused by metal
chelation can alter the biological activities of substances. For
example, Mg** and Ca’* can induce distinct and separate
conformational changes in calcium-bindin§ protein 1, increas-
ing structural stability of the protein.” In addition, the
mechanism involved in muscle contraction is initiated by the
complexation of Ca** to calmoludin that is activated by
concomitant conformational changes. Also, the binding of Mg**
to three aspartic acid residues in CheY, a signal transduction
protein in bacteria, facilitates activation of the protein.”
Investigation of metal-induced conformational changes at the
molecular level within biological systems is often complicated
by other competing forces such as hydrogen bonds. Therefore,
it is much more convenient to study simpler model systems,
where a specific interaction of interest can be isolated. For
example, Juaristi et al. used a S-acetoamido-1,3-dioxane
derivative to show that LiBr is capable of disrupting
intramolecular amide hydrogen bonds through the formation
of a six-membered ring LiBr complex.® A subsequent extension
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of Juaristi’s study using S-carboxy-1,3-dioxanes revealed an
increase in the stability of the axial isomer with Ag" and Li"
salts, while larger metal ions such as Na" and K" had only
marginal effects.” In a recent paper, Roberts et al. examined the
conformational preferences of N,N-dimethylsuccinamic acid (1,
DMSA), its tetrabutylammonium salt (1e), and its lithium salt
(1a). Interestingly, 1a resulted in an overwhelming preference
for the gauche conformer (Figure 1) in aprotic solvents, while
le remained predominantly trans (anti).'® The un-ionized 1
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Figure 1. Conformational equilibria of N,N-dimethylsuccinamic acid
(1, top) and its lithium salt (1a, bottom) in DMSO.
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was determined to have a statistical gauche fraction of 0.66,
indicating no preference for either the gauche or trans
conformers. The conformational equilibrium of la were
found to be strongly solvent-dependent, such that the solvents’
hydrogen bonding strength as measured by Kamlet—Taft’s o
scale was a dominant factor.'®

In this paper, the conformational study of 1 has been
extended by including the Na*, K¥, Mg**, and Ca’* salts. N,N-
Dimethylsuccinamic acid (1) is particularly suitable for
mimicking metal chelation in biological systems because both
the carboxylate and amide metal complexes are commonly
found in polypeptides.'’ The motivation behind this work is to
draw parallels between the conformational preferences of 1 as a
function of these salts in DMSO and water as solvents. While
water as a solvent imitates the aqueous environments
commonly found in biological systems, DMSO mimics the
polar aprotic media found in the interior of folded polypeptides.

B RESULTS AND DISCUSSIONS

Model System. Simple 1,2-disubstituted ethane systems
such as N,N-dimethylsuccinamic acid (1) are efficient models
to study intramolecular interactions because they adopt well
resolved gauche and trans conformers (Figure 2), where
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Figure 2. Two possible gauche (g+ and g—) and trans (t) conformers
of N,N-dimethylsuccinamate, where M* represents the alkali ions (Li",
Na*, and K*) and alkaline earth ions (Mg®" and Ca®"). The various
geometries were deduced from computational modeling (vide infra) in
the gas phase.

intramolecular noncovalent interactions can stabilize the gauche
conformations. Because there are two possible gauche and one
trans staggered conformers, the preference for each conformer
can be deduced by measuring the ratios of their respective
populations using proton ("H) NMR spectroscopy. In the
absence of any preferential stabilization, the statistical gauche
fraction (F,) should be 0.67. Therefore, an F, value greater than
0.67 indicates stabilization of the gauche conformer, plausibly by
intramolecular interaction. On the other hand, F, values less
than 0.67 suggest an antagonistic relationship between the two
substituents on the ethane, which may be due to electrostatic
and/or steric repulsions.

The gauche fraction of each conformer was estimated by
comparing the experimental vicinal proton coupling constants
(*Jun) measured by 'H NMR spectroscopy with their
semiempirical counterparts calculated using the Haasnoot, de
Leeuw and Altona (HLA) equation (eq 2)." Equation 2 is an
improved version of the original equation.> Because the
rotation about the “CH,—CH,” bond is rapid at room
temperature, the experimental vicinal coupling constants
(*Jops) Tepresent weighted averages of the individual couplings
for the gauche and trans conformers, as described by eq 1. Note
here that sum of the fractions is unity, i.e., F,+F =1 Also note
that two experimental ], values, i.e.,, *J;5 and °J,, (where *];; =
*I,4 and *J;, = *],3) can be used to provide independent values
for F, and F,.
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3]HH(0bs) = Z F}]] = (3]HH(g) X P:g) + (3]HH(t) X E) (1)

3 _ 2
]HH(semiempirical) = 14.63 cos ®; - 0.78 cos ?; + 0.60

+ D0 4034 = 231 cos (G, + 18.41))] 2
The HLA equation gives more accurate results than the
traditional Karplus equation because it takes into account the
orientation and electronegativity variables (4) of the substituent
groups attached to the central C—C fragment. The electro-
negativity values for CO,”, CO,H, and CONMe, have been
reported elsewhere.'* The parameter ¢; can take the values +1
or —1 depending on the relative orientation of the substituents.
The essential dihedral angles (¢) were derived from geometries
of the optimized structures from DFT calculations.

Computational Analysis. Conformational searches for
Na*(1b), K*(1c), Ca’*’(1d), and Mg*'(le) salts of N,N-
dimethylsuccinamic acid were first performed with SPARTAN
at the molecular mechanics level. These preliminary calcu-
lations provided guess-structures for subsequent DFT calcu-
lations. The DFT calculations were carried out at the B3LYP/6-
31+G(2d,2p) level in the gas phase using Gaussian 03
program.'® Subsequent free energy calculations at the same
level as the optimized structures determined the relative free
energies and revealed that the gas phase optimized structures
were of stable forms and not transition states."®

The graphical representations of the DFT gas phase
optimized structures are shown in Figure 3. Distances of
carboxylate-metal ion complex in the respective gauche
conformers for la—lc were calculated to be greater than
their trans counterparts in each case. For example, the
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Figure 3. DFT-optimized structures for the gauche (top) and trans
(middle) conformers of la—1c and gauche (bottom) conformers of
1d—1e at the B3LYP/6-31+G(2d,2p) level of theory in the gas phase.
The calculated metal—oxygen distances are in A, and the shown
dihedral angles are in deg. Ahrens ionic radii were used to illustrate the
metal ions.
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calculated Li*—O distances for 1a (1.93—1.96 A) in the gauche
conformer are consistent with the values of 1.90—2.67 A found
in lithium-carboxylate X-ray crystal structures,"®'® while the
values of 1.84—1.85 A observed in the trans conformer appear
to be slightly underestimated. The calculated Na*—O distances
(2.26—2.29 A) in gauche 1b and the K*—O distance in gauche
Ic (2.58—2.70 A) matched the values observed in crystal
structures (i.e., 2.26—2.67 A and 2.36—2.73 A, respec-
tively),'””>* whereas the values in the trans conformers are
slightly lower (i.e., 2.19—2.20 A for 1b and 2.53—2.54 A for 1c).
As for the divalent metal salts, the calculated Ca®>*—O distances
(2.41-2.45 A) in 1d are within range of values found in crystal
structures (2.26—2.59 A).** The calculated Mg**—O distances
(2.10-2.18 A) however, are slightly greater than the values
found in crystal structures (1.99—2.09 A),**** which could be a
result of differential packing forces in the solid state.

Interestingly, the calculated lowest-energy gauche conformers
for 1b and 1c were similar to that previously calculated for the
lithium salt (1a)'® in the sense that the metal ions preferred to
bridge the carboxylate and amide oxygen atoms (Figure 3). For
la—1Ic, DFT calculations in the gas phase estimated that these
gauche conformers are more stable than their trans counterparts
for every case. The calculated free energy of the gauche
conformer of la is 3.8 kcal/mol more stable than the trans
conformer. On the other hand, the gauche conformer of the
sodium salt (1b) was calculated to be only 1.4 kcal/mol more
stable than the trans conformer, while the calculated gauche/
trans energy difference is 1.6 kcal/mol for the potassium salt
(1b). Free energies of all the DFT gas phase optimized
structures can be found in the Supporting Information.

Efforts were also made to investigate the possibility of an
alternative gauche geometry, that is, where only one of the
carboxylate oxygen atoms coordinates to the metal ions.
However, the calculations produced gauche conformers of
relatively higher energy than previously calculated. Other
conformational possibilities for 1a—1c may involve aggregation,
particularly for la. Lithium salts are known to form dimers,
tetramers and higher-order aggregates.26 However, molecular
mechanics calculations showed that, even in such aggregates
(dimer and tetramer, for example), both the gauche and trans
conformers can still exist. The differences in the gauche
structures calculated for the monovalent metal salts (la—1c)
were, however, noticeable in the calculated dihedral angles. For
example, of the three alkali metal salts, 1a had the smallest ®q
value of 49.4°, and 1c had the largest value of 60.8°. It is
reasonable to suggest that as the Ahrens ionic radius*”*® of the
metal counterion increases, the dihedral angle widens in order
to snugly accommodate the metal ions. Note that these angles
are smaller than the value of 76.7° calculated for the un-ionized
1, where “weak” hydrogen bond has been suggested as the only
stabilizing mechanism for the gauche conformer.'®

Unlike la—1c, the DFT gas phase optimized structure of
divalent alkaline earth metal salts (1d—1e) share a single metal
cation between two molecules of N,N-dimethylsuccinamate.
The divalent metal cation coordinates to six oxygen atoms,
forming a very distorted octahedral geometry, as shown in
Figure 3. A randomized conformational search by molecular
mechanics calculations for the divalent metal salts did not find
any conformers in which N,N-dimethylsuccinamate adopted
the trans conformation, which is not surprising considering the
higher valency of Mg’ and Ca®* as well as their stronger
chelation to the amide relative to the alkali metals.”
Synonymous to the trend observed for the alkali metal salts,
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(¢, also increases with increasing Ahrens ionic radii for 1d and
le, where 1d has a smaller calculated ¢, of 46.9° and ¢, 51.3°
for le.

The calculated dihedral angles were used to estimate gauche
fractions of la—le in DMSO solution. In aqueous solvents,
however, one would expect that both the carboxylate and metal
cation would be strongly solvated by water molecules, which
should result in the complete dissociation of the ion pairs.
Because hydrated metal ions have larger ionic radii,* it is
reasonable to assume that the actual ¢, in aqueous solution
should be greater than the calculated angles for la—le.
Furthermore, explicit solvent—solute hydrogen bond inter-
actions in D,0 are often poorly captured by the current
continuum solvation model (such as the IEFPCM and CPCM)
employed by DFT calculations in the gas phase. For practical
purposes, the ¢, for measurements in aqueous solution was
assumed to be 60° while the trans angle to be 180°.

Experimental 3J,,, Coupling Constants. With the
calculated dihedral angles in hand, the next task is to determine
the J; experimental *Jun coupling constants. NMR simulation
software (gNMR 5.0)>" was used to iteratively reproduce the
experimental '"H NMR spectra of the methylene protons
region. Such simulations are essential because they provide an
accurate depiction of the “real” coupling constants using 4-spin,
AA'XX’ systems. The chemical shifts for the methylene protons
are different for all the salts prepared, however, their spin—spin
splitting appeared as doublet of triplets (Figure 4).
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Figure 4. Stacked spectra of DMSA (1, top), its tetrabutylammonium
salt (1f, middle), and its lithium salt (1a, bottom) in D,O, spectral unit
recorded in ppm.

Conformational Analysis. Using the vicinal proton—
proton coupling constants obtained from simulation of the
experimental '"H NMR spectra and the dihedral angles from
DFT gas phase calculations, the respective Fg values for la-e
were estimated as discussed earlier (Table 1 and 2). Compared
to the un-ionized 1, which has a small gauche fraction of 0.66 +
0.01," the metal salts generally showed higher gauche fraction
in DMSO. The relatively small gauche fraction estimated for 1
in DMSO is likely the result of the carboxylic acid’s unfavorable
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Table 1. Experimental Vicinal H—H Couplings for the N,N-Dimethylsuccinamic Acid Salts (1a—1e) in DMSO and D,0,

Measured in Units of Hz

Li* salt 1a“” Na* salt 1b K* salt 1c Mg** salt 1d Ca* salt le
solvents Ji3 J14 Ji3 Ji4 Ji3 m Ji3 Jia4 Ji3 I
DMSO 6.02 8.13 6.64 7.75 6.64 8.36 6.08 8.18 7.29 7.31
D,0 6.59 8.33 7.08 7.35 7.04 7.94 7.28 7.31 6.36 8.37

“Data obtained from ref 10.

Table 2. Estimated Fraction Gauche (F,) for the N,N-Dimethylsuccinamic Acid Salts (1a—1e) and the Ahrens Ionic Radii® (in A)

of the Metal Counter Ions®

gauche fractions (F,)

solvent Li* salt 1a® Na* salt 1b

DMSO 1.00 + 0.03 0.78 + 0.02

D,0 0.55 + 0.02 0.68 + 0.01
radii (A)° 0.68 0.97

“The error in F, is the deviation of using the J}3 and ], coupling constants for calculations. bData obtained from ref 10.

K* salt 1c Mg** salt 144 Ca* salt le
0.55 + 0.01 0.99 + 0.04 0.79 + 0.01
0.61 + 0.01 0.67 + 0.01 0.53 +£ 0.0

1.33 0.66 0.99

“Ahrens ionic radii were

obtained from ref 28. ng in DMSO was obtained assuming the dihedral angle to be 50°.

E configuration (Figure 5) that must be adopted in order to
form an intramolecular hydrogen bond.*

(¢]
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Figure 5. E and Z configurations of a carboxylic acid. Also see Figure 1

In DMSO, the changing influence of the metal cation on the
conformational preferences of N,N-dimethylsuccinamate is
evident from the experimentally estimated gauche fractions of
la—1e. Of the alkali metal salts, both the lithium and sodium
salts (la and 1b, respectively) showed preferences for the
gauche conformer. 1a has the higher gauche fraction of 1.00,
followed by 0.78 for 1b. These estimated gauche preferences are
in agreement with DFT gas phase calculations, which predicted
the gauche conformer to be more stable in both cases. DFT gas
phase calculations also estimated the energy difference between
the gauche and trans conformer of the lithium salt to be the
highest among all the alkali metal salts, hence 1a’s relatively
high gauche preference. The potassium salt (1c) on the other
hand, has a much lower gauche faction of 0.55 in DMSO, which
suggests that 1c prefers the trans conformer. As for the alkaline
earth metal ions, both the magnesium and calcium salts (1d and
le, respectively) have relatively high preferences for the gauche
conformer in DMSO. For 1d, when the DFT calculated ¢, of
46.9° was used for the estimation of the gauche fraction, a value
of 1.07 = 0.05 was obtained. This is likely due to the
underestimation of ¢, by DFT gas phase calculations, as
adjusting the ¢, to 50° yielded a gauche fraction of 0.99 + 0.04.

The calculated gauche fractions for the metal salts (1a—1e)
are shown schematically in Figure 6 as a function of the Ahrens
ionic radius of the metal counterion. For the metal salts in
DMSO, it is apparent that gauche fractions of the salts decrease
with increasing Ahrens ionic radii of the metal counterion.
Metal cations with smaller Ahrens ionic radii are likely able to
better fit between the amide oxygen atom and carboxylate to
bridge the two functional groups and induce gauche preference
in N,N-dimethylsuccinamate. This assertion is supported by the
DFT calculation results shown in Figure 3, where metal
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Figure 6. Trend in conformational equilibria of the metallic salts of
N,N-dimethylsuccinamic acid as a function of its cationic counterion,
arranged from left to right in decreasing Ahrens ionic radius of the
metal counterion.

counterions with smaller Ahrens ionic radii resulted in shorter
metal—oxygen distances and smaller dihedral angles. In the case
of 1¢c, K is likely too large to allow a proper fit between the
amide and carboxylate.

In D,O however, the interaction between N,N-dimethylsuc-
cinamate and metal cations appears significantly different. No
noticeable correlation between the Ahrens ionic radius of the
metal counterion and gauche fraction of the N,N-dimethylsuc-
cinamate could be established. For the metallic salts in D,0O,
there is generally a lower gauche preference than in DMSO. In
fact, none of the N,N-dimethylsuccinamate salts investigated
have gauche fractions significantly higher than the statistical
value of 0.67. The lack of gauche preferences in aqueous
solution can be explained by the solvation eficiency of water.
Water molecules can isolate and solvate cations (metal cation)
and anions (carboxylates) appreciably well. Such isolated
solvation would greatly diminish interactions between metal
ions and N,N-dimethylsuccinamate. Previous study also found
that la has a lower gauche fraction in solvents with better
hydrogen donor propensities, which are also solvents likely to
solvate anions efficiently."
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B CONCLUSIONS

Using 'H NMR spectroscopy, we have demonstrated that the
conformational equilibria of DMSA and its metal salts are
strongly solvent dependent. In DMSO solution, as the Ahrens
ionic radius of the metal counterion increases, the gauche
fraction of N,N-dimethylsuccinamate decreases. Interestingly,
DFT calculations strongly suggest that the gauche preferences
of the metallic salts are caused by cationic bridging of the amide
and carboxylate oxygen atoms. The same interaction is much
weaker in D,O, where the estimated gauche fractions were
significantly below the statistical 0.67 value. These results seem
to suggest that metal chelation has an especially powerful
influence on the conformation of organic molecules in polar
aprotic media.

B EXPERIMENTAL SECTION

Commercial N,N-dimethylsuccinamic acid (1) of ~98% purity
was used without further purification. The Na*(1b) salt was
prepared by treating 1 with an equivalent mole of NaH in THF.
The K*(1c) salt was prepared by treating 1 with an equivalent
mole of KCN. The Mg** (1d) and Ca®'(le) salts were
prepared by treating 1 with 0.5 equiv of Mg(OH), and
Ca(OH), respectively in water. Solvent was then evaporated
and samples were dried in vacuo. Commercial DMSO-d4; and
D,O were used without further purifications.

The 'H NMR spectra were taken with Varian 300, 400, and
600 MHz spectrometers at 25 °C. See Supporting Information
for specific acquisition parameters of each sample.
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Experimental '"H NMR spectra and Cartesian coordinates of
the optimized structures from DFT calculations. This material
is available free of charge via the Internet at http://pubs.acs.org.
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